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ABSTRACT
Syntactic data anonymization strives to (i) ensure that an adversary
cannot identify an individual’s record from published attributes with
high probability, and (ii) provide high data utility. These mutu-
ally conflicting goals can be expressed as an optimization problem
with privacy as the constraint and utility as the objective function.
Conventional research using the k-anonymity model has resorted
to publishing data in homogeneous generalized groups. A recently
proposed alternative does not create such cliques; instead, it recasts
data values in a heterogeneous manner, aiming for higher utility.
Nevertheless, such works never defined the problem in the most
general terms; thus, the utility gains they achieve are limited. In this
paper, we propose a methodology that achieves the full potential
of heterogeneity and gains higher utility while providing the same
privacy guarantee. We formulate the problem of maximal-utility k-
anonymization by freeform generalization as a network flow prob-
lem. We develop an optimal solution therefor using Mixed Integer
Programming. Given the non-scalability of this solution, we de-
velop an O(kn2) Greedy algorithm that has no time-complexity
disadvantage vis-á-vis previous approaches, an O(kn2 log n) en-
hanced version thereof, and an O(kn3) adaptation of the Hungar-
ian algorithm; these algorithms build a set of k perfect matchings
from original to anonymized data, a novel approach to the problem.
Moreover, our techniques can resist adversaries who may know the
employed algorithms. Our experiments with real-world data ver-
ify that our schemes achieve near-optimal utility (with gains of up
to 41%), while they can exploit parallelism and data partitioning,
gaining an efficiency advantage over simpler methods.

1. INTRODUCTION
The imperative to protect the privacy of individuals [27] requires

that a certain privacy guarantee be observed when sharing data
among agents such as public organizations and private corpora-
tions, while disclosing as much information as possible. A popular
such guarantee is provided by the k-anonymity model, which re-
quires that the records in a released table should be recast, so that
any combination of values on a set of quasi-identifying attributes
(QI) can be indistinctly matched to at least k (or none) individuals
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therein [24]. This model has been extended and specialized in sev-
eral forms [23, 20, 7, 6] and other alternatives have been suggested
[12, 8]; however, k-anonymity remains a fundamental prerequisite
of more advanced models and useful as a stand-alone device in
its own right. For example, microtargeted advertising systems in
online social networks, even while refraining from selling users’
personal information to advertisers, may still inadvertently reveal
a user’s personal information when an adversary targets an adver-
tisement to a particular user’s set of quasi-identifier values [17].
A remedy for this problem requires privacy protections built in by
design. Such a protection would be to ensure that an advertiser’s
targeting criteria never fit less than k user profiles, i.e., to apply the
advertising criteria on k-anonymized data indeed. Therefore, the
k-anonymity model remains topical and relevant in novel settings,
and preferable to noise addition techniques in many cases [21, 10].

Despite its usefulness in principle, a concern about the appli-
cability of k-anonymity in practice has been caused by a percep-
tion that the loss of data utility it engenders would be too large to
bear [5], an effect exacerbated as the number of dimensions (QI
attributes) grows [2]. However, such loss in utility does not nec-
essarily arise from an inherent drawback of the model itself, but
rather from the deficiencies of the algorithms used to implement the
model. Indeed, conventional microdata anonymization algorithms
have typically departed from the assumption that all recast records
whose QI values are meant to match the original values of a record
t must be assigned identical QI values to each other [24]; thereby,
sanitized records are clustered in disjoint homogeneous groups of
the same QI values, called equivalence classes [24]. Brickell and
Shmatikov first discerned that “there is no privacy reason” for this
homogeneity requirement [5]; they speculated that a strategy using
directed acyclic graphs may fare better. In our view, the message
to be drawn from [2] and [5] is not a negative, pessimist view that
obtaining higher data utility under k-anonymity is impossible, but
rather a call for k-anonymization algorithms that do obtain higher
data utility by dropping the constraints of previous research. More-
over, we argue that such utility may also be gained at the expense
of runtime, if a tradeoff between the two emerges. As the anony-
mization process is an one-off process, some additional runtime is
always worth investing for the sake of obtaining higher utility.

This paper provides such algorithms. We observe that some at-
tempts already made in this direction [16, 28, 25, 29, 9] do not
define the problem in the most general terms; they introduce super-
fluous constraints in their solutions or solve the problem by triv-
ially suppressing some values. We keep away from such super-
fluities and explore the potential to obtain high data utility by value
generalization under the k-anonymity model. We define the prob-
lem of optimal-utility k-anonymization by value generalization as
a network flow problem, a generalization of the assignment prob-
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Figure 1: Generalization types in graph view

lem on a bipartite graph. To our knowledge, we are the first to
formulate this problem in such terms. We develop an exact optimal
solution therefor using Mixed Integer Programming. As this so-
lution does not scale, we propose a scalable Greedy algorithm, an
enhanced version thereof, and a computationally more demanding
solution employing the Hungarian algorithm for the Assignment
Problem. We also examine whether an off-the-shelf algorithm for
the minimum-cost network flow problem can provide a viable solu-
tion to our problem. Last, we demonstrate that our techniques can
gain an efficiency advantage over simpler methods, when applied
in a distributed environment, after partitioning the data.

Our approach differs from preceding research in the form of its
solutions, which provide better utility, while it provides the same
privacy guarantee and recasts data values in the same syntactic way
as previous research. A recasting of tuples can be represented by a
directed graph, the generalization graph [29], that shows how the
values of original records match those of anonymized ones. In the
bipartite view of the graph, an edge from the vertex standing for
an original record, ri, to the one standing for a recast record, r′j ,
indicates that the QI values of ri are included in (match) those of
r′j . In the unified view, a single vertex represents both the original
record ri and its recast form r′i.

Figure 1(a) shows the kind of generalization graph constructed
by conventional k-anonymization algorithms obeying the homo-
geneity requirement [24, 19, 15]. In the bipartite view, the partition-
ing forms two disconnected complete subgraphs of four vertices
in each side (i.e., two K4,4 bicliques), hence obeys 4-anonymity.
These subgraphs correspond to the equivalence classes formed by
those methods; in the unified view, they appear as complete di-
graphs with self-loops. Previous works [28, 29] eschewed the re-
dundant homogeneity requirement so as to achieve higher utility;
still, they resorted to another superfluous requirement, namely that
the generalization graph be a ring: a cyclical order of vertices is de-
fined, and each vertex matches its predecessors and/or successors
over this order. Figure 1(b) shows such a graph.

We propose that homogeneity be eschewed without introducing
any other constraint in its place. A corollary of homogeneity is reci-
procity [29]: when record ri matches the recast form r′j of another
record rj , then rj matches r′i too; thus, the generalization graph
is symmetric. To illustrate the distinction between the two, Figure
1(c) shows a generalization graph that is reciprocal (records match
each other mutually), but heterogenous (no record has the same
matchings as another). Going further, we can eschew reciprocity
too, and aim to construct an entirely unconstrained generalization
graph that maximizes utility by value generalization. To our knowl-
edge, our work is the first to define this problem in such terms. A
freeform generalization is illustrated by the graph in Figure 1(d).

The advantages of our approach are illustrated by the example
in Table 1. The top table presents the values of eight tuples on QI
attributes Age and Salary. By our method, these tuples are anony-
mized as in the bottom left table; each tuple is recast to a range
of values, so as to be compatible with, or match, three original tu-
ples, and vice versa, as the bottom right table shows; this property

ID t0 t1 t2 t3 t4 t5 t6 t7

Age 59 57 39 28 41 37 40 53

Salary 25 27 47 41 20 59 35 34

ID Age Salary Original Matches Anon/zed Matches
t′0 53-59 25-34 t0 t′0, t′1, t′4 t′0 t0, t1, t7
t′1 53-59 25-34 t1 t′0, t′1, t′7 t′1 t0, t1, t7
t′2 28-39 41-59 t2 t′2, t′5, t′6 t′2 t2, t3, t5
t′3 28-41 20-59 t3 t′2, t′3, t′5 t′3 t3, t4, t5
t′4 40-59 20-35 t4 t′3, t′4, t′6 t′4 t0, t4, t6
t′5 28-39 41-59 t5 t′2, t′3, t′5 t′5 t2, t3, t5
t′6 39-41 20-47 t6 t′4, t′6, t′7 t′6 t2, t4, t6
t′7 40-57 27-35 t7 t′0, t′1, t′7 t′7 t1, t6, t7

Table 1: Example data anonymized by our method

is called 3-regularity. This property and a randomization scheme
guarantee that each original tuple has three equiprobable identities
[28]; thus, k-regularity is a sufficient condition for k-anonymity.

Figure 2(a) presents the data of Table 1 in a 2d coordinate system
where the x-axis stands for Age and the y-axis for Salary. Each tu-
ple ti is represented as a point ri in this coordinate system (shown
by a black circle in the figure). An arrow from ri to rj denotes
that ri matches the anonymized tuple for rj . The matching rela-
tionships in Table 1 are thus shown in Figure 2(a). For clarity, we
present the same matchings in pure (unified) graph form as well,
without positioning points by their coordinates, in Figure 2(b).
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Figure 2: Example solution
We reiterate our main contributions as follows:

• We formulate the optimal-utility k-anonymization problem
as a network flow problem.

• We provide an exact optimal Mixed Integer Programming-
based solution.

• We offer a collection of heuristic solutions.

• We demonstrate experimentally that our techniques achieve
significantly lower information loss than previous methods.

• We show our techniques can achieve near-optimal utility.

• We apply our techniques in a parallel-computing environ-
ment, gaining an efficiency advantage over previous work.



2. RELATED WORK
The k-anonymity model calls for recasting data so that each orig-

inal record have at least k equally probable matches among re-
cast records. This effect is achieved by a syntactic transformation,
reducing the precision of the data, but not its accuracy; the pub-
lished data is truthful, albeit less exact [19, 5]; a k-anonymization
algorithm aims to bring the data to a form that abides by the given
privacy condition via syntactic transformations, while introducing
small inexactness [15]. This type of transformation comes in con-
trast to anonymization by perturbation, which introduces errors in
the data; as perturbation-based transformations provide no infor-
mation on how much a given record has been perturbed, they limit
the purposes such data can be useful for [19].

2.1 Striving for Data Utility
Past research has expressed concerns about the usefulness of the

k-anonymity model, due to a perception that it engenders high loss
of data utility due to the imprecision introduced. Aggarwal [2]
noted that, under conventional approaches for k-anonymization, it
is difficult to anonymize high-dimensional data “without an unac-
ceptably high amount of information loss”. Brickell and Shmatikov
[5] went further to claim that data utility is necessarily almost com-
pletely destroyed for “modest privacy gains”. This claim was re-
examined by Li and Li [22]; the point made in [22] amounts, in
effect, to the statement that the privacy loss and utility gain in-
volved in publishing anonymized data are incommensurable; they
do not share a common standard of measurement, as [5] assumed;
specific knowledge has a larger impact on privacy, while aggregate
information has a larger impact on utility [22].

Still, an observation made in [5] regarding classic k-anonymiza-
tion algorithms is valid. Such algorithms have raised a homogene-
ity requirement, by which recast records form groups of at least
k records, such that all records in a group have the same QI val-
ues and are hence interchangeable with each other. Brickell and
Shmatikov correctly observed that this requirement is redundant,
and called for algorithms that drop it to provide improved utility.

Some attempts have been made in this direction [16, 28, 25, 29],
yet retain redundant constraints and superfluities in their solutions.
Gionis et al. [16, 25] suggested the model of k-concealment, which
guarantees that an original record is associated with at least k recast
ones, without the homogeneity requirement. However, the O(kn2)
agglomerative algorithm in [16, 25] goes through a series of steps
that perform superfluous generalizations, introducing extra infor-
mation loss. Besides, as observed in [28] and [25], k-concealment
is a weaker guarantee than k-anonymity, as it does not ensure that
each association is equiprobable. For example, the graph in Fig-
ure 3 satisfies 2-concealment: each record, on both sides of the
graph (in bipartite view), has at least two matches, each of whom
participates in a complete assignment (perfect matching). However,
the matches are not equiprobable: some of them (shown with bold
lines) participate in three out of four possible assignments, while
others (shown with light lines) participate in only one.

Wong et al. [28] studied the conditions for equiprobable associa-
tions, and proposed a technique that achieves k-anonymity without
the homogeneity requirement. Yet, even while dropping that redun-
dant requirement, [28] does not entirely break its shackles: it still
requires that original and recast records relate to each other by a
fixed motif, ring generalization, thus substituting one superfluous
constraint for another. Furthermore, [28] does not apply ring gen-
eralization on a complete data set, but only within piecemeal par-
titions obtained via a homogeneous partitioning; the utility gains
achieved are primarily due to this partitioning, not due to ring gen-
eralization. Xue et al. [29] adopt ring generalization as an element
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Figure 3: Graph satisfying 2-concealment, but not 2-anonymity

of a technique for anonymizing sparse high-dimensional data; they
apply the motif on complete data sets with good results, yet still
adhere to that fixed motif. The anonymization algorithms in [28,
29] consist of two components: (i) a component catering to data
utility, aiming to produce a data transformation of low information
loss by building a ring, and (ii) a component that caters to privacy,
aiming to guarantee the equiprobability of k produced associations,
via randomization. Even though (i) has sub-quadratic time com-
plexity, the randomization in (ii) brings in an O(kn2) component.
We argue that, since a quadratic time complexity is invested for the
sake of privacy anyway, this time complexity budget should also be
employed for the sake of utility as well.

Wong et al. have shown that, to achieve k-anonymity, it suffices
to ensure that each original record ri has exactly k matches in the
published data R′ and each anonymized record r′i also has exactly
k matches in the original data R; in other words, each vertex in the
generalization graph has outdegree and indegree k, i.e., the graph
is k-regular. It would also suffice to ensure that the generaliza-
tion graph contains a k-regular subgraph, but then we could also
maintain that k-regular subgraph only. All graphs in Figure 1 are
4-regular, hence ensure 4-anonymity. The motif of ring general-
ization is applied exactly to create a k-regular graph in [28], as in
Figure 1(c), imposing an arbitrary constraint of its own.

2.2 Security against Adversaries
Wong et al. [28] show that we can extract k disjoint assign-

ments, i.e., one-to-one correspondences between original and re-
cast records, as subsets of a k-regular generalization graph. For
the sake of completeness, we reiterate their argument, following a
more concise formulation than the one in [28].

LEMMA 2.1. In a directed graph G, where each vertex v has
the same indegree and outdegree dv , each edge belongs to a cycle.

PROOF. Assume there is an edge e = (u → v) that does not
belong to a cycle. Then u cannot be reached from v. Then we
classify vertices in two disjoint groups: A, those that can reach u,
with u ∈ A and B, those that can be reached from v, with v ∈ B,
where A∩B = ∅. By our assumption, vertices in B have the same
number

∑
w∈B dw of incoming and outgoing edges. All outgoing

edges should point to a vertex in B, since they cannot not reach
u. Yet there is an incoming edge to B, namely e, which originates
outside B. Hence, there are at most

∑
w∈B dw−1 incoming edges

from B to B, but
∑

w∈B dw outgoing edges from B to B. This is
a contradiction of the pigeonhole principle.

LEMMA 2.2. In a k-regular directed graph G, each edge be-
longs to a perfect matching (i.e., a set of cycles incoming to and
outgoing from each vertex exactly once).

PROOF. Consider any edge e. By Lemma 2.1, since all vertices
in G have equal indegree and outdegree, e belongs to a cycle. Con-
sider such a cycle C. If C contains all vertices of G, it is a perfect



matching itself. If not, then we rewire graph G to G′ as follows:
for each edge e = (u → v) in C, we substitute vertex u by a
new vertex u/v, such that the outgoing edges from u/v become
the outgoing edges from u and the incoming edges to u/v become
the incoming edges to v; each edge in C becomes a self-loop in
G′. Since G is k-regular, G′ is k-regular as well, with indegree
and outdegree k on each vertex, and Lemma 2.1 still applies on
G′. We say that all vertices in C have been matched. Then, we se-
lect an arbitrary unmatched vertex w ∈ G′ and one of its outgoing
edges e′ at random. We repeat the process, finding a cycle C′ for
e′. If C′ contains a previously matched vertex w′, we update the
matches of w′ according to C′. Note that any previously formed
matches that are now destroyed are self-loops in G′; thus, the num-
ber of matched vertices is monotonically increasing, with at least
one new previously unmatched vertex getting matched at each it-
eration. Therefore, the process eventually terminates; the resulting
set of matches M forms a perfect matching on the original graph G
itself, since each vertex has exactly one incoming and one outgoing
edge in M.

THEOREM 2.3. In a k-regular directed graph G there exist k
disjoint assignments (i.e., perfect matchings).

PROOF. We pick up a node ni and an outgoing edge e randomly.
By Lemma 2.2, e belongs to an assignment (perfect matching) a.
We take the edges of a out of G, to get graph G′. Each node in
G′ has exactly k−1 incoming/outgoing edges, hence G′ is (k−1)-
regular. We repeat iteratively and find k disjoint assignments.

Any of k such assignments can provide the putative identities of
recast records, and may be used as a guide when assigning other,
non-generalized attributes to them. Hence, a record represented by
a vertex in a k-regular generalization graph appears to have k pos-
sible identities, each in one of the k possible worlds represented
by the k assignments. Yet to satisfy the equiprobability require-
ment of k-anonymity, we should also ensure that each edge (i.e.,
match) of a vertex is equally likely to participate in a chosen as-
signment, in other words, there should be k equiprobable disjoint
assignments. We achieve this result by selecting one of k disjoint
assignments uniformly at random. Moreover, in order to resist at-
tacks based on knowledge of some anonymized tuples’ identities
and/or of the algorithm itself, the particular set of k disjoint assign-
ments we choose from is generated by a randomization scheme.

In effect, each of the k possible matches for each tuple has, from
an adversary’s perspective, equal probability to be the true one. An
adversary running the same algorithm on the same data would get
different results, due to the randomization employed. Using ran-
domization to avert attacks based on knowledge of the algorithm
was also recommended in [11]. Wong et al. show how a random as-
signment can be generated by iteratively extracting cycles from the
generalization graph (in unified view) via random walks [28]; Xue
et al. improve on the efficiency of this process [29]. As discussed,
the time complexity of this randomization scheme is O(kn2). Our
methods utilize the same scheme for the sake of security, thus tol-
erate adversaries who know the algorithm.

Choromanski et al. [9] recently studied k-anonymization as a
matching problem as well, with a view to providing adaptiveness,
i.e. a different privacy guarantee for each individual. In this con-
text, they have also provided an analysis on the question of security
in case a match is already known to an adversary. They conclude
that heterogeneous reciprocal generalization (which they call sym-
metric b-anonymity) is as secure as k-anonymity, while freeform
(i.e., heterogeneous nonreciprocal) generalization (which they call
asymmetric b-anonymity) is weaker only against sustained attacks

by an adversary who gains knowledge of some true matches. In
particular, if an adversary knows c true matches, then the secu-
rity of heterogeneous reciprocal generalization drops to (k− c)-
anonymity, exactly as for homogeneous generalization. However,
the security of heterogeneous nonreciprocal generalization drops to
(k−c−φ(k))-anonymity, for a function φ that satisfies certain con-
ditions. The root cause of this difference is that, after we delete all
nodes adjacent to c edges (true matches) known to an adversary,
we are left with a graph that contains a (k−c)-regular subgraph in
the former case, but not always so in the latter case. All algorithms
we suggest in this paper can be tuned to produce symmetric gener-
alizations. Aside of this security analysis, [9] does not provide al-
gorithms to achieve k-anonymity by value generalization; instead,
they resort to suppression, substituting some values by stars.

3. DEFINITIONS AND PRINCIPLES
We consider a dataset D = (Q,P ) of n tuples. Q = {q1, . . . , qn},

where qi is the quasi-identifier part of tuple i and P = {p1, . . . , pn}
is the rest of the record, not considered to contain potentially iden-
tifying information. Our task is to recast the values of quasi-iden-
tifying attributes in Q, producing an anonymized form thereof,
Q′ = {q′1, . . . , q′n}. In this recasting, we allow the value of qi
on attribute Aj , qji , to be substituted by a set of possible values

V(qji ); as in previous work [24, 19, 15], for a numerical attribute,
we publish a range of values defined by that set, as shown in Table
1, while for a categorical attribute we publish that set itself. We say
that (the quasi-identifier part of) an original tuple qi and a recast
tuple q′� match each other when q′� could be a recast from of qi, i.e.,
each qji is included in V(qj� ). The privacy guarantee of k-anony-
mity [24] is then defined as follows:

DEFINITION 1. An anonymized data set D′=(Q′, P ) satisfies
k-anonymity with respect to the original data D=(Q,P ) iff each
original record qi ∈ D matches at least k published records in D′,
each having, from an adversary’s perspective, equal probability (at
most 1

k
) to be the true match of qi.

This guarantee ensures that an adversary knowing the quasi-iden-
tifying part of all records, Q, is not able to identify the true match
of a record qi with probability higher than 1

k
. We describe a collec-

tion of one-to-one matches encompassing a complete set of original
and recast records as an assignment.

DEFINITION 2. Given a data set D=(Q,P ) and a recast ver-
sion thereof, D′ = (Q′, P ), an assignment α from D to D′ is an
one-to-one mapping, α = {(qi1 , q′j1), . . . , (qin , q′jn)}, such that
each qi∈Q is mapped to exactly one q′j ∈Q′, where qi matches q′j .
In each pair (qi, q′j) ∈ α, we say that qi is the preimage of q′j and
q′j is the postimage of qi. Two assignments αs and αt are disjoint
if αs ∩ αt = ∅.

In order to achieve k-anonymity, we need to ensure that there ex-
ist k disjoint assignments from original tuples in Q to recast tuples
in Q′. A set of k disjoint assignments defines k distinct matches in
Q′ for each qi ∈ Q and vice versa, i.e., k distinct matches in Q for
each q′i ∈ Q′. The net result can be represented by a generalization
graph [29], as in Figure 1.

DEFINITION 3. Given a data set D=(Q,P ) and its anonymi-
zed version D′ = (Q′, P ), a generalization graph G = (V,E)
is a directed graph in which each vertex v ∈ V stands for an
original/anonymized tuple qi ∈ Q and q′i ∈ Q′, and an edge
(vi, vj) ∈ E is present iff qi matches q′j .



Our definition corresponds to the unified view of such a graph
(see Figure 1). In a bipartite view, the vertex standing for an origi-
nal tuple qi is separate from that standing for its anonymized form
q′i. A set of k disjoint assignments defines (and is defined by) a
generalization graph in which each vertex has exactly k outgoing
and k incoming edges, i.e., a k-regular generalization graph [29].
By constructing a set of k such assignments, we determine that the
set of possible values of a tuple q′i ∈Q′ on an attribute Aj , V(qji ),
should include those of the tuples in Q mapped to q′i. As discussed
in Section 2, once we have a k-regular generalization graph, we can
randomly regenerate a set of k disjoint assignments, select one of
them uniformly at random as the one that defines the true matches
between D and D′, and publish any other attributes of our data (i.e.,
in P ) accordingly. We reiterate that the random character of this
process ensures the equiprobability property of k-anonymity.

Based on the preceding discussion, the problem of k-anonymiza-
tion is translated to a problem of determining a k-regular general-
ization graph from original to anonymized tuples, and then general-
ize the attribute values of each anonymized tuple q′i so as to include
the values of its k matches. We aim to find a generalization graph
that achieves low information loss. Previous research [14, 15, 28, 7,
6] has used several variants of a Global Certainty Penalty (GCP )
as a measure of information loss. We opt for a similar metric, in
which we distinguish between numerical and categorical attributes
in a way that reflects the way we publish the data. For a numer-
ical attribute Aj , published as a range, we define the Normalized
Certainty Penalty, NCP , for a recast tuple q′i as follows:

NCPj(q
′
i) =

uj
i − lji

U j − Lj
(1)

where uj
i (lji ) is the largest (smallest) value of attribute Aj in

the set of possible values of q′i, V(qji ), (i.e., among the matches of
q′i), and U j (Lj) is the largest (smallest) value in the domain of
attribute Aj . The published ranges prevent the determination of an
individual’s presence in the data, while they can be used for query
processing assuming uniform distribution of values within a range
[14, 15]. On the other hand, in case Aj is a categorical attribute,
we define the NCP for a recast tuple q′i as follows:

NCPj(q
′
i) =

countj(q
′
i)− 1

|Aj | − 1
(2)

where countj(q
′
i) is the number of distinct values of attribute Aj

in V(qji ), and |Aj | is the cardinality of the domain of Aj . A similar
metric is employed in [28]. By definition, the NCP obtains values
between 0 and 1, where 0 signifies no information loss and 1 sig-
nifies the maximum information loss for the attribute in question.
Then the GCP for a set of recast tuples Q′ is defined as:

GCP (Q′) =

∑
q′i∈Q′

∑
j NCPj(q

′
i)

d · |Q′| (3)

where j is the index of any attribute Aj in Q, d is the number
of all such attributes, and |Q′| the number of tuples in Q and Q′.
Our definition of GCP is the average value of NCP among all
attributes and all tuples. We aim to minimize this GCP value,
hence the problem of optimal k-anonymization calls for satisfying
the k-anonymity guarantee with a minimal reduction in the utility
of the original data:

PROBLEM 1. Given a data set D = (Q,P ), transform D to an
anonymized form D′ that satisfies k-anonymity, such that GCP (Q′)
is minimized.

4. OPTIMAL SOLUTION
The methodology proposed in [28] and adopted in [29] creates a

fixed k-regular ring generalization graphs, without taking into ac-
count the actual data values involved. The chief contribution of [28]
lies in the randomized process that extracts k disjoint assignments
from those graphs in a secure fashion, while that of [29] lies in de-
vising a total order over the records that yields good utility after the
fixed graph pattern is applied on it for sparse set-valued data. How-
ever, the information loss incurred by the anonymization process
eventually depends on the exact form of graph built over the data.
Unfortunately, the problem of building a graph that minimizes in-
formation loss is not addressed in [28, 29]. As we discussed, [28]
uses a fixed-form solution and [29] follows suit by adopting it.

Our contribution lies exactly on this graph construction process.
We aim to build the graph in a way that minimizes the information
lost by value generalization or achieves a near-minimal value of it;
to our knowledge, we are the first to address this problem in such
terms. In this section, we examine the possibility for an optimal
solution that builds a k-regular generalization graph. The construc-
tion of such a graph corresponds to selecting the set of edges that
define it, out of all the available edges in the complete bipartite
graph from Q to Q′. Viewed in this manner, our problem is a spe-
cial case of a network flow problem [3]. In network flow terminol-
ogy, the characteristics of this special case are outlined as follows:

• Our network is a complete bipartite graph from Q to Q′.

• All n vertices in Q are sources supplying k units of flow, and
all n vertices in Q′ side are sinks demanding k flow units.

• The flow across each edge can take binary values in {0, 1}.

• The objective is to minimize our GCP function.

We can formulate this problem using techniques of Mixed Inte-
ger Programming (MIP). For a numerical attribute Aj , we employ
auxiliary variables uj

i and lji that stand for the maximum (mini-

mum) value in V(qji ). Let qji be the actual value of original tuple
qi on attribute Aj . Last, let x(�, i) be a binary variable denoting
whether the edge from q� to q′i is included in the generalization
graph we are building (i.e., whether the values of q� are included in
the possible values of q′i). Then the relationship between original
and recast tuples can be expressed via the following constraints:

uj
i ≥ qj� · x(�, i) + (1− x(�, i)) · qji ∀q� (4)

uj
i ≥ qji (5)

lji ≤ qj� · x(�, i) + (1− x(�, i)) · qji ∀q� (6)

lji ≤ qji (7)

In case Aj is a categorical attribute Aj , our formulation is slightly
different. We substitute Aj by a set of |Aj | auxiliary binary at-
tributes, denoted as Bj , one for each value in the domain of Aj .
Then an original tuple qi has value 1 in one of these attributes only,
and 0 in the others, while a recast tuple q′i should get value 1 in
each auxiliary attribute corresponding to a value in the domain of
Aj that is in the set of possible Aj values of q′i, V(qji ). Using h as
an index for the auxiliary attributes for Aj , it now suffices to em-
ploy one auxiliary variable, uh

i , that stands for the maximum value
in V(qhi ), which is either 1 or 0. The sum

∑
h∈Bj

uh
i for a given

tuple q′i and attribute Aj denotes the number of distinct values of
Aj in V(qji ), i.e., equals countj(q

′
i) in Equation 2. Using other

notations as before, the constraints can be expressed as:



uh
i ≥ qh� · x(�, i) + (1− x(�, i)) · qhi ∀q� (8)

uh
i ≥ qhi (9)

To the above constraints we should add the constraint represent-
ing the k-regularity of the graph:

∑
i

x(�, i) = k ∀�
∑
�

x(�, i) = k ∀i (10)

Then, denoting the set of numerical attributes as NA and that of
categorical attributes as CA, the objective to minimize the GCP
metric translates to the minimization of the following quantity:

∑
i

⎧⎨
⎩

∑
Aj∈NA

uj
i − lji

U j − Lj
+

∑
Aj∈CA

∑
h∈Bj

uh
i − 1

|Aj | − 1

⎫⎬
⎭ (11)

where we follow the notation in Equations (1) and (2). Our for-
mulation is a Mixed Integer Program, where the variables uj

i and

lji are real-valued, while the edge flows x(�, i) are constrained to
be binary. In Section 8 we show that this formulation can be run
by an MIP Solver for small data. Unfortunately, it is prohibitive on
sizeable data sets, as Mixed-Integer Programming is NP-hard [4].

5. THE GREEDY ALGORITHM
Given the impracticability of the optimal solution presented in

Section 4 for large data, in this section we set up to design a prac-
ticable and efficient algorithm for our problem, aiming to achieve
near to optimal data utility. Our strategy starts out from the follow-
ing observation: Instead of striving to build a k-regular generaliza-
tion graph over the data at once, we can do so in a sequence of k
distinct iterations, adding a single assignment to the graph under
construction at each iteration.

Let G = (S, T,E) be a bipartite graph with the vertex set S
standing for original tuples (pre-images) and the vertex set T stand-
ing for the recast records (post-images) we aim to define, where
|S|= |T |=n. The assignment selection starts out with G being a
complete graph. Initially, the weight of each edge ei,j from Si to
Tj , wi,j is defined as the GCP that will be incurred if the tuple qj
at vertex Tj is recast so as to include the tuple qi at vertex Si; for
brevity, we call this the cost of recasting qj as {qi, qj}. At each it-
eration of our algorithm, we aim to find an assignment (i.e., a set of
n edges covering all vertices) from S to T that achieves a low total
sum of edge weights. After each iteration, the selected edges are
discarded from the graph, and the weights of remaining edges are
redefined so as to reflect the new state of affairs. Thus, a redefined
weight wi,j reflects the increase of GCP that will be incurred if
we extend the set of possible values of tuple qj at Tj to include
the values of tuple qi at Si (i.e., if we recast qj as {qi, qj}). In ef-
fect, at each iteration we attempt to increase the total GCP as little
as possible. After k iterations, a k-regular generalization graph is
constructed. In fact, the first iteration is redundant, since the self-
matching assignment, having zero information loss, is chosen by
default. Thus, there are k − 1 iterations that matter.

We now discuss the details of assignment selection at each it-
eration. We sequentially process all vertices in S. For each such
Si∈S we select the edge ei,j , matching it to a Tj ∈T , that has the
minimum weight wi,j . In other words, we greedily match each qi
to the qj that incurs the least GCP increase. Thereafter, we omit
Si from S and its chosen match Tj from T . This O(n2) process
terminates when all pre-image vertices in S have been matched,
and hence all post-image vertices in T have been used.

Nevertheless, the termination of the process outlined above is not
guaranteed. Given that at each iteration the degree of each vertex

is reduced by one, at the �th iteration, our algorithm works on an
incomplete bipartite graph where each pre-image in S connects to
n−�+1 vertices of T , and vice versa, i.e., on an (n−�+1)-regular
bipartite graph. While it is always possible to extract an assignment
from such a graph, the process outlined above may encounter a
dead-end, in case all n−�+1 possible matches of a certain vertex
Si have already been matched to preceding vertices of S and are
hence unavailable. To resolve this problem, when we encounter
such a dead-end, we perform a backtracking process as follows.

Algorithm 1: Greedy Algorithm Iteration

Data: A weighted bipartite graph G = (S, T,E)
Result: An assignment A with weight close to minimum

1 while S �= � do
2 select next vertex Si ∈ S;
3 if � available vertex in T connected to Si then
4 find Si−x matched to Tj such that ei,j and ei−x,m are

available;
5 substitute ei−x,m for ei−x,j ;

6 else
7 select Tj such that wi,j is the minimum of all edges incident

to Si;

8 S = S − Si, T = T − Tj ;
9 Add ei,j to A;

10 return A;

Assume that a dead-end is encountered when processing vertex
Si in the �th iteration, i.e. there exists no available match between
Si and any remaining vertex of T . Then we backtrack to vertex
Si−1, which has been already matched to a vertex Tj ∈T by edge
ei−1,j , and check whether two edges as follows are available:

1. The edge ei,j , so that Tj can be assigned as a match to Si.

2. Any edge ei−1,m between Si−1 and any vertex Tm ∈ T , so
that Si−1 can obtain another available match in T instead.

In case such available edges exist, we add edge ei,j to the con-
structed matching and substitute ei−1,j by ei−1,m (in case more
than one Tm are available, we select the one of minimum wi−1,m).
Otherwise, backtracking continues with vertex Si−2, and goes on
until it finds an eligible candidate Si−x. A pseudo-code for a single
iteration of this Greedy algorithm is shown in Algorithm 1.

The backtracking process forces a dead-end vertex Si to obtain
the first available match Tj of a predecessor vertex Si−x. However,
while the match of Si−x has been selected as the one of minimum
edge weight, such a consideration is not taken into account during
backtracking. Therefore, we should better ensure that the vertices
in S are examined in an order such that it is likely that neighbor-
ing vertices have similar attribute values. To achieve this effect, we
first sort the tuples in S by a lexicographic order of their attribute
values, positioning these attributes from lower to higher cardinality.
Putting attributes of lower cardinality at a higher position in this or-
der ensures that large value changes among consecutive tuples are
less frequent; for instance, the order {{a, 1}, {a, 3}, {b, 2}, {b, 4}},
obtained by positioning the low-cardinality alphabetic attribute of
these four tuples first, is better than {{1, a}, {2, b}, {3, a}, {4, b}},
obtained by positioning the high-cardinality numerical attribute first.

While backtracking offers a way out of the dead-end, we should
prove that it can efficiently find an eligible substitution candidate
for practical values of k. We start out with the following lemma.

LEMMA 5.1. In the �th iteration of our Greedy algorithm, if we
encounter a dead-end while processing the ith vertex, Si, we can
find a previously matched vertex Sy , which can exchange its match-
ing with Si and obtain an alternative match Tm, among no more
than 2 · �+ i− n− 3 previously matched vertices.



PROOF. The status of our graph while processing the ith vertex
at the �th iteration is visualized in the matrix of Figure 4. Rows
correspond to vertices in S and columns stand for vertices in T .
The entry in the cell (a, b) shows the status of edge ea,b. A “×”
indicates that Sa has been matched to Tb in a previous iteration.
Without loss of generality, we arrange the matrix columns so that
all post-images in T to which Si has been matched in the previous
�−1 iterations are gathered in positions {T1, . . . , T�−1}. The cor-
responding cells are labeled with “×” in Figure 4. We do not show
other ”×” entries as they are inconsequential for the proof, but we
keep in mind that there are exactly �−1 “×” entries in each row and
each column, corresponding to previously deleted edges. Then, an
“©” indicates that Sa has been matched to Tb in the current, �th

iteration. Thus, each of rows {S1 . . . Si−1} contains exactly one
“©”. Besides, each column contains at most one “©”, since a
post-image in T can be matched to at most one pre-image in S in
the current iteration.

1S

1xiS

xiS

1iS

iS

1T 1lT nT

R1 R2 

R3 R4 
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Figure 4: Matrix representation for bipartite matching

An edge from Sa to Tb will be available for matching provided
that (i) the corresponding cell is empty; and (ii) there is no “©”
entry in the whole Tb column. Since we encounter a dead-end at
vertex Si, we deduce that each column in {T�, . . . , Tn}, for which
the cell in the Si row is empty, contains exactly one “©” entry, as
Figure 4 shows.

Without loss of generality, we gather the rows for all x vertices
that need to be revisited by our backtracking process in the worst-
case scenario at the bottom of the matrix, from Si−x to Si−1.
Then our matrix is divided into four disjoint regions, shown by
different colors in Figure 4, such that R1 = {S1, . . . , Si−x−1}×
{T1, . . . , T�−1}, R2 = {S1, . . . , Si−x−1}×{T�, . . . , Tn}, R3 =
{Si−x, . . . , Si−1}×{T1, . . . , T�−1}, and R4={Si−x, . . . , Si−1}×
{T�, . . . , Tn}. The row of a vertex Sy , with y ∈ [i− x, i− 1], that
can exchange its match with Si should satisfy the following two
requirements, which correspond to the existence of edges ei,j and
ey,m we have seen in our discussion of backtracking:

1. Sy should have been given a match Tj ∈ {T�, . . . , Tn} in
the current iteration that it can transfer to Si; thus, the row of
Sy should have an “©” entry in R4.

2. There should exist a Tm, neither already used in the cur-
rent iteration and nor matched to Sy in previous iterations,
which Sy can obtain as a substitute for Tj . Such a Tm can-
not be in {T�, . . . , Tn}, given that all T matches therein
have been used already in the current iteration, hence their
columns contain “©” entries, as discussed; it should then be

a Tm ∈ {T1, . . . , T�−1}; thus, the row of Sy should have an
empty cell in R3 whose column does not contain an “©”.

Let w1, w2, w3, and w4 denote the number of “©” entries in
region R1, R2, R3, and R4, respectively. We devise sufficient
conditions for the above requirements as follows: Requirement (2)
implies that there should exist a column Tm ∈ {T1, . . . , T�−1}
that does not contain an “©” entry. Thus, the total number of “©”
entries in these columns should be less than the number of columns
themselves. This number of “©” entries is w1 + w3, while the
number of columns is �− 1. Thus, it should hold that:

w1 + w3 < �− 1 (12)

Furthermore, since each column contains exactly �−1 “×” en-
tries, and columns in {T1, . . . , T�−1} already contain an “×” entry
in row Si, it follows that each column segment within region R3
contains at most �−2 “×” entries. Then any group of �−1 cells
within column Tm in R3 will necessarily contain at least one non-
“×” entry. Given that column Tm does not contain an “©” entry
either, as Inequality (12) guarantees, it follows that any group of
�−1 cells within column Tm in R3 will necessarily contain at least
one empty cell. Thus, as long as x≥�−1, Inequality (12) provides
that any set of �−1 rows in {Si−x, . . . , Si−1}, spanning R3 and
R4, contains a row Sy having an empty cell in R3 whose column
does not contain an “©”, as Requirement (2) stipulates. It only re-
mains to devise such a set in a way that fulfills Requirement (1) as
well, namely guarantees that row Sy also has an “©” entry in R4.
To that end, if suffices to postulate that R4 contains at least �−1
“©” entries:

w4 ≥ �− 1 (13)

Since each “©” entry occupies a different row, Inequality (13)
implies that there exists a set of �−1 rows with “©” entries in R4,
while by Inequality (12), one of them will have an empty cell in R3
whose column does not contain an “©” as well. Thus, when both
Inequalities (12) and (13) are satisfied, there exists a row Sy with
“©” in R4 and an empty entry in R3 without a “©” in its column.

Now we proceed to find what values of x, the number of revis-
ited vertices, render both inequalities true. Since each row in the
matrix contains exactly one “©” and each column in {T�, . . . , Tn}
contains one “©”, it follows that:

w1 + w2 = i− x− 1 (14)

w3 + w4 = x (15)

w2 + w4 = n− �+ 1 (16)

By Equations (14)+(15)-(16), we get:

w1 + w3 = (�− 1)− (n− i+ 1) (17)

Since it always holds that n−i+1 > 0, Inequality (12) is always
true. Then, by Equations (14)-(16):

w4 = n− �− i+ x+ 2 + w1 (18)

Since w1 ≥ 0, it follows that:

w4 ≥ n− �− i+ x+ 2 (19)

Then, to satisfy Inequality (13), we have to ensure that:

n− �− i+ x+ 2 ≥ �− 1 (20)

which is equivalent to:

x ≥ 2 · �+ i− n− 3 (21)



Thus, we can find the desired Sy by examining no more than
2 · �+ i− n− 3 previously matched vertices.

We can now prove the following Theorem:

THEOREM 5.2. Our Greedy algorithm always resolves the dead-
end for k < n+3

2
.

PROOF. By Lemma (5.1), in order to resolve a dead-end en-
countered by the algorithm while processing the ith vertex in the
�th iteration, we need to be able to revisit up to 2 · �+ i−n−3 pre-
viously matched vertices. In order for so many previously matched
vertices to be available, it should be i > 2 · � + i − n − 3, or
� < n+3

2
. Since the algorithm requires k iterations, it can resolve

the dead-end in linear time for any k < n+3
2

.

In conclusion, our Greedy algorithm works for practical values
of k used in real-world settings. Furthermore, the linear-time back-
tracking process does not affect the O(n2) complexity of an itera-
tion. Hence, the overall complexity of all k iterations is O(kn2).

6. THE SORTGREEDY ALGORITHM
The algorithm we presented in Section 5 is greedy in the sense

that it makes a greedy choice when it selects the lightest avail-
able edge of each vertex, while scanning vertices in S sequentially.
Nevertheless, this process does not necessarily lead to good edge
choices from a global view. For example, assume that edges ei,j
and ek,j are both available for pickup, while wi,j > wk,j and Si is
the next vertex to be processed. Then, assuming ei,j is the lightest
edge incident to Si, it will be picked up; thus, ek,j will be ren-
dered unavailable, even though it was a better choice of edge from
a global (though still greedy) perspective.

Motivated by this observation, we propose an enhanced greedy
algorithm, which we call SortGreedy. The external shell of the al-
gorithm remains the same, i.e., it operates over k iterations, with
each iteration striving to select an assignment that brings about a
small increase of the total GCP , and edge weights properly rede-
fined among iterations. What differs is the internal edge selection
process within each iteration. We outline this process below.

Algorithm 2: SortGreedy Algorithm Iteration

Data: A weighted bipartite graph G = (S, T,E)
Result: An assignment A with weight close to minimum

1 Sort edges E by ascending weight;
2 while E �= � do
3 Select ei,j with minimum weight;
4 if Si ∈ S and Tj ∈ T then
5 S = S − Si, T = T − Tj ;
6 Remove ei,j from E;
7 Add ei,j to A;

8 if ∃ unmatched vertices then
9 foreach unmatched vertex Si ∈ S do

10 find Sy matched to Tj such that ei,j and ey,m are available;
11 substitute ey,m for ey,j and add ei,j to A;

12 return A;

We first sort all edges in E by ascending weight at O(n2 log n)
cost. Then, instead of scanning a vertex list S, we scan the sorted
list of edges instead and try to pick up good edges directly there-
from. For each encountered edge, ei,j , we check whether its adja-
cent vertices, Si and Tj , are both available for matching. If that is
the case, we select ei,j as a match and remove it from E, while also
removing Si from S and Tj from T , as they are no longer available
for matching. Otherwise, we proceed to the next edge in the sorted
list, until all edges are examined.

As with our basic Greedy algorithm, the above process may not
terminate successfully, i.e., it may not have built a perfect matching
of n edges after one pass through the edge list; some vertices may
remain unmatched even after all edges have been processed. If this
is the case, we call a backtracking procedure similar to the one out-
lined in Section 5. We scan the vertex list S, in lexicographic order,
so as to detect unmatched vertices; for each such vertex Si we look
for an eligible substitution candidate among its neighbors in the lex-
icographic order; now we look not only at its predecessors, but at
both predecessors and successors, as already-matched vertices can
be found anywhere in the lexicographically ordered list. However,
the essence of the backtracking process remains the same, hence
Lemma 5.1 and Theorem 5.2 still hold. Algorithm 2 presents the
basic iteration of this SortGreedy algorithm. As the complexity of
an iteration is dominated by the sorting step, the overall complexity
of SortGreedy is O(kn2 log n).

7. THE HUNGARIAN-BASED ALGORITHM
Both our greedy algorithms work over k iterations, and at each

iteration they attempt to find a perfect matching (assignment) that
achieves small sum of edge weights (i.e., GCP increase). They
follow a heuristic greedy logic in solving k local problems instead
of the global problem of finding a k-regular generalization graph
that minimizes GCP in one go. We have maintained the heuristic
logic of k iterations and enhanced the internal greedy algorithm for
assignment extraction. Still, the weight minimization problem ad-
dressed by this internal process is polynomially solvable - it is the
Assignment Problem that finds a Maximum (or Minimum) Weight
Perfect Matching (MWPM) in a bipartite graph. We can then apply
the O(n3) Hungarian algorithm that finds an optimal solution for
this problem as the internal process, while maintaining the shell of
k iterations. We call the resulting O(kn3) algorithm Hungarian
for brevity. This algorithm remains a heuristic, as it iteratively per-
forms local optimizations. For the sake of completeness, we offer a
brief description of the plain Hungarian algorithm, which we apply
for minimizing the GCP increase at each iteration.

The Hungarian algorithm was developed by Kuhn [18], Edmonds
and Karp [13], and Tomizawa [26]. Consider the graph in Fig-
ure 5a, where edge ei,j = (Xi, Yj) carries a weight wi,j . Without
loss of generality, we aim to find a perfect matching of maximum
weight (MWPM). Such a matching is formed by red edges in Fig-
ure 5a, with total weight 16. Given a bipartite graph G with edges
E and a matching M , an augmenting path is a path starting out
from and terminating at nodes not in M , with edges alternating be-
tween E−M and M . The path X1 → Y2 →X2 → Y3 in Figure 5c
is an augmenting path with respect to the matching M formed by
green edges. Such a path can be used to increase the size of a
matching M by exchanging the roles of edges in M and not in M ;
e.g. M = {e3,1, e2,2}, will be extended to {e3,1, e1,2, e2,3} after
exchanging edges within the augmenting path.

A labeling L labels each vertex v in G with a weight L(v);
such weights are shown in rectangles in Figure 5a. L is feasible if
L(Xi) + L(Yj) ≥ wi,j for any edge ei,j . An equality graph EL
for L is formed by the set of edges {ei,j : L(Xi)+L(Yj) = wi,j}.
By the Kuhn-Munkres theorem, if L is feasible and M is a perfect
matching in EL then M is a MWPM for G. We can see that this
theorem holds as follows: Since, by definition, no matching can
have weight more than the total weight of its vertex labels, a match-
ing ML that establishes the equality achieves the maximum weight.
The Hungarian algorithm iteratively finds a maximum matching
(i.e. a matching with the most edges) within EL, and extends EL
by adjusting L, until a perfect matching is found within EL.
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Figure 5: Hungarian Algorithm Illustration
We clarify that, before applying the algorithm to our problem at

each iteration, we convert each edge weight wi,j to −wi,j , so as
to minimize GCP increase. The algorithm starts with an initial
feasible labeling L, obtained by assigning the largest edge weight
at each node on one side, and 0 on the other side. Figure 5a shows
such an initial labeling, which creates the equality graph EL shown
by dotted blue and solid green edges in Figure 5b. We pick a match-
ing ML inside EL, formed by solid green edges, and extend it using
augmenting paths found by breadth-first search until no more such
path can be found. By Berge’s Theorem, a matching ML is maxi-
mum iff it has no augmenting path. When ML becomes maximum
in EL, we extend EL by reducing the weight of some Xi’s by a
certain amount σ, so that an edge that was not in EL now becomes
a part of EL. In order to ensure the original edges in EL are re-
tained after the modification, σ is compensated to the neighbors of
Xi. For example, the equality graph in Figure 5b is extended to
the one in Figure 5c by reducing the weights of X1 and X2 by 2
and increasing the weight of Y2 by 2, thereby bringing edge e2,3
into EL. Then we extend ML in the new EL. Eventually, if the
graph contains a perfect matching, it will be found within EL and
returned as the MWPM.

8. EXPERIMENTAL EVALUATION
In this section we conduct a thorough experimental study of the

algorithms we have introduced in comparison to previous work. To
the best of our knowledge, this is the first work to provide experi-
mental results comparing a practical k-anonymization algorithm to
an optimal solution. Our study features the following algorithms:

• NH The ring-generalization method proposed in [28]. We
run this method exactly as it is proposed, with ring general-
ization applied on the partitions of size between k and 2k−1.
We attempted to apply ring generalization on larger parti-
tions, yet we determined that the best results are obtained
when the method runs in its proposed form. This finding
confirms that the utility gains achieved by NH are primarily
due to the employed partitioning method, rather than due to
the ring generalization itself. Runtime measures for NH in-
clude the time for partitioning, building rings, and the final
randomization step that extracts assignments.

• k-c The agglomerative algorithm implementing the k-con-
cealment method in [16, 25]. A randomization step for this
algorithm is proposed in [25], aiming to provide security
against reverse-engineering the algorithm. Yet this step in-
troduces extra information loss. In order to allow for the
best-case scenario for k−c, in terms of both information loss
and runtime, we do not include this step in our experiments.

• minCostFlow The CPLEX solver for the minimum-cost net-
work flow problem, in which the minimized objective func-
tion is not GCP , but the sum of edge weights in the original
complete graph. We include this so as to check whether an
off-the-shelf algorithm can perform well on our problem.

• MIP The CPLEX MIP solver running our formulation for an
optimal solution in Section 4.

• Greedy Our Greedy algorithm of Section 5, with a random-
ization step for assignment extraction as in [28, 29].

• SortGreedy Our enhanced greedy algorithm of Section 6,
with randomized assignment extraction included.

• Hungarian Our Hungarian-based algorithm of Section 7, with
assignment extraction by randomization.

Attribute Cardinality Type
Age 79 numerical

Gender 2 categorical

Education Level 17 numerical

Marital Status 6 categorical

Race 9 categorical

Work Class 10 categorical

Country 83 categorical

Occupation 51 categorical

Table 2: The CENSUS dataset

MIP and minCostFlow employ the IBM CPLEX Studio 12.4,
invoked by a C++ interface. NH is implemented in C++, while
Greedy, SortGreedy, Hungarian, and k−c, are in Java. The meth-
ods we compare against have no efficiency disadvantage arising
from their implementation environment. All experiments ran on
a 24-core Intel Xeon CPU machine @2.67GHz with 48GB RAM
running Ubuntu 12.04.1 LTS. We use the CENSUS dataset [1],
which contains 500K tuples on 8 attributes as shown in Table 2.

8.1 Evaluation under Partitioning
We commence our experimental study with the following ob-

servation: Our methods are configured to run on the full data set;
nevertheless, the main competing technique, NH, does not do so.
We tried to run NH on the full data set, yet the GCP results it
achieved were worse than those achieved in its default partitioning-
based version. This finding indicates that the ring generalization
employed by NH may be a liability on large data sets. It is ar-
guably a good idea to apply our methods on a per-partition basis
too, for the sake of efficiency. This is what we do in this exper-
iment. We first sort the input data set following a lexicographic
order as described in Section 5. Then we divide the data into par-
titions of equal size P by simply selecting segments of P tuples
along the lexicographic order. Furthermore, we use a different par-
tition size for each algorithm, so as to ensure that SortGreedy and
Hungarian run at time close to that of Greedy on a single partition.
We envisage these algorithms running at a data center offering par-
allel processing capabilities, with each partition utilizing a different
machine. Thus, the runtime of an algorithm is measured as the time
for partitioning plus the time for processing a single partition, in-
cluding the extraction of k random assignments. This configuration
allows us to compare the performance of Hungarian, SortGreedy,
and Greedy when they are given an equal time budget per partition.

In the case of NH, there is no point of selecting the largest parti-
tion in which its core routine can run at time no longer than Greedy,
since NH gains no benefit by running on larger partitions than the
partitions of size from k to 2k − 1 it employs by default. Thus, we
stick with the partitions the algorithm inherently uses. However, it
would not be fair to assume that all such partitions can be processed
in parallel either; that would require far more machines than those
utilized by the other methods. Instead, we assume that NH can use
the same number of machines in parallel as Greedy, i.e. the al-
gorithm that employs the largest size and hence smallest number of
partitions among the other three. In other words, we offer to NH the
same parallelism budget as Greedy. The runtime for NH is mea-
sured as the time for running its special partitioning scheme plus
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Figure 6: Evaluation under partitioning

the time for processing as many tuples as in a single partition used
by Greedy, including assignment extraction by randomization.

We measure the achieved GCP and runtime, as defined above,
for each algorithm. Figure 6 shows our results, as a function of
full data size, for three different values of k. As shown in the
legends, the employed partition size is 100 tuples for Hungarian,
150 for SortGreedy, and 250 for Greedy. Remarkably, under the
same time budget per partition, Greedy achieves better GCP than
SortGreedy, while both of them outperform Hungarian as k grows.
At the same time, Greedy achieves consistently lower GCP than
NH under the same parallelism budget. Figures 6d-f show the run-
time of all methods as a ratio of the runtime of NH. Interestingly,
our methods approach and eventually surpass the runtime of NH as
data size grows. This is due to the fact that NH employs a more de-
manding partitioning scheme, hence its runtime is eventually dom-
inated by the burden of initially partitioning the data set.

8.2 Comparison to optimal solution
We now examine data sets on which the CPLEX MIP solver can

run the optimal solution. This way, we have a chance to assess how
close our algorithms arrive to the optimal GCP . To our knowl-
edge, no such experiments have been performed in any preceding
experimental study on k-anonymization. We randomly select 100
different data sets of 14 tuples from the CENSUS data set of at-
tribute cardinality d = 8 and run all competing techniques for sev-
eral values of the privacy parameter k. We average the results over
the 100 runs. Figure 7a shows our results. The bar charts in the
figure show the fraction of the GCP difference between k−c (the
worst performer on average) and Optimal each method gains (that
is 1 for Optimal, 0 for k-c), vs. k. When a method achieves worse
GCP than k−c, its bar shows a negative value. Hungarian achieves
consistently the most near-optimal results, followed by SortGreedy
at a very close distance. The minCostFlow method achieves, as ex-
pected, the optimal result for k = 2, since, for this value of k,
minimizing the GCP metric is tantamount of minimizing the sum
of edge weights selected as the second assignment (the first cho-
sen assignment being the self-assignment). However, as k grows,

minCostFlow progressively loses its advantage over other methods.
For k ≥ 6, it fares even worse than NH.

We also measure the average runtime, over 100 runs, as a func-
tion of the number of tuples, for k = 6. Figure 7b presents our
results on logarithmic time axes. * These results show that the run-
time of our three polynomial-time algorithms grows modestly as a
function of data size, while they are positioned between those of
NH and k−c; we will come back to this result later with much
larger data. On the other hand, the runtime of the CPLEX MIP
Solver grows inexorably, as shown in Figure 7b; running this solver
on larger data is a prohibitive task. Therefore, MIP will not be fea-
tured in our subsequent experiments. The usefulness of running
MIP was in leading us to the finding that our polynomial-time al-
gorithms provide near-optimal solutions indeed.
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Figure 7: GCP Gain and Runtime on small data

8.3 Effect of k
Next, we study the effect of the k parameter on the compared

methods, on data sets of 1k and 10k tuples from the CENSUS data
set of dimensionality d= 8. Figure 8 presents our results, with k
ranging from 10 to 150. These results reconfirm the superior per-
formance of our methods in terms of information loss. Remarkably,
the GCP divergence between our methods and those of previous
works is widened as k grows (with up to 41% improvement), while
that between our two greedy methods and Hungarian is narrowed.
SortGreedy achieves practically the same GCP as Hungarian for
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Figure 9: Effect of dimensionality

large k. In terms of runtime, our techniques scale equally well as
NH with k, while k−c exhibits unstable behavior (Figure 8(c)).
We reiterate that paying some extra runtime is worthwhile for the
sake of data utility, given that anonymization is an one-off process.
The performance of minCostFlow on the 1k data reconfirms that
optimizing a non-GCP objective function is not a viable approach.
Thus, we omit minCostFlow from subsequent experiments.

8.4 Effect of Dimensionality
Next, we study the effect of dimensionality on each of the com-

peting techniques. We select the first 10K tuples from the CENSUS
data set, and examine the performance of our algorithms as a func-
tion of the number of selected attributes d, letting d range from 2
to 8, and setting k = 30 and k = 50. Figure 9 shows the re-
sults. We observe that, not only do our three algorithms achieve
better GCP than the competing NH and k−c methods, but they
also present better resistance to the curse of dimensionality; the
GCP they achieve does not deteriorate as severely as that of the
other two methods as d grows. To make this effect more visible,
we measure the difference quotient (i.e., the slope) of the GCP as

a function of d,
GCP (d)−GCP (2)

d−2
. The middle column in Figure 9

presents our results. Remarkably, k−c has the worst behavior with

respect to growing dimensionality, with NH coming second worst.
On the other hand, our three algorithms exhibit much better dimen-
sionality robustness, with SortGreedy and Hungarian being con-
sistently the best performers. We also present runtime results for
this experiment in the third column of Figure 9 in logarithmic time
axes. As before, the runtime of our three methods falls between
those of NH and k−c. Still, all algorithms scale equally well with
growing dimensionality.

8.5 Effect of Size
Last, we investigate the scalability of the compared algorithms

as the data set size grows. We obtain data sets of exponentially
growing size, ranging from 1k to 64k tuples, from the CENSUS
data set, with full dimensionality d=8. We present GCP and run-
time results in Figure 10, for k values set at k = 15 and k = 50,
using logarithmic scales for all size and time axes. The GCP
results present a familiar pattern. Remarkably, our methods con-
sistently outperform NH and k−c, with SortGreedy approaching
Hungarian. Concerning the two methods we compare against, it
is interesting to note that k−c achieves better GCP than NH for
small k. This finding is consistent with the results in Figure 8.
The runtime results show that our two greedy methods, Greedy and



1k 4k 16k 64k
dataset size (# of tuples)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
G

C
P

k-concealment
NH
Greedy
SortGreedy
Hungarian

1k 4k 16k 64k
dataset size (# of tuples)

0.05

0.1

0.15

0.2

0.25

0.3

G
C

P

k-concealment
NH
Greedy
SortGreedy
Hungarian

1k 4k 16k 64k
dataset size (# of tuples)

0.01

0.1

1

10

100

1000

10000

1e+05

1e+06

T
im

e 
(s

ec
)

k-concealment
NH
Greedy
SortGreedy
Hungarian

(a) GCP vs. size, k = 15 (b) GCP vs. size, k = 50 (c) time vs. size, k = 50

Figure 10: Effect of size

SortGreedy are similarly scalable as k−c, as is expected theoreti-
cally. While NH has the same quadratic complexity as those three,
its default version which we are running does not actually run the
algorithm on the complete data set, but only on partitions thereof.
As we saw in Section 8.1, our algorithms have an efficiency advan-
tage when given the benefits of data partitioning and parallelism.

9. CONCLUSIONS
This paper casts new light on the k-anonymity privacy model,

which remains a prerequisite for more advanced models as well as
a useful device in its own right. We treat k-anonymization as a
network flow problem, aiming to minimize the information lost by
value generalization. While previous works suggested the graph
analogy, they either imposed superfluous constraints, or employed
value suppression, compromising data utility in both cases. We
devise solutions for the most general form of the problem, achiev-
ing significantly lower information loss. Conceived in this manner,
the problem amounts to building a k-regular bipartite graph that
defines an anonymization of high utility. We model an optimal so-
lution using Mixed Integer Programming. Furthermore, we devise
a greedy algorithm having the same O(kn2) time complexity as
more restrictive previous solutions, an O(kn2 log n) enhancement
thereof, and an O(kn3) solution based on the Hungarian algorithm.
Our techniques provide the same privacy guarantee as previous
research on k-anonymity, as well as security against adversaries
reverse-engineering the algorithm. Our experimental study shows
that our algorithms achieve near-optimal utility and reliably out-
perform previous work, while their advantage is enhanced as the
data dimensionality grows. We show this advantage applies also
in terms of time efficiency when working in a parallel processing
environment, after we divide a large data set into partitions.
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