
Mix ’n’ Match Multi-Engine Analytics

Katerina Doka∗, Nikolaos Papailiou∗, Victor Giannakouris∗, Dimitrios Tsoumakos§ and Nectarios Koziris∗
∗National Technical University of Athens, Greece, {katerina,npapa,vgian,nkoziris}@cslab.ece.ntua.gr

§Ionian University, Greece, dtsouma@ionio.gr

Abstract—Current platforms fail to efficiently cope with the
data and task heterogeneity of modern analytics workflows due
to their adhesion to a single data and/or compute model. As
a remedy, we present IReS, the Intelligent Resource Scheduler
for complex analytics workflows executed over multi-engine
environments. IReS is able to optimize a workflow with respect
to a user-defined policy relying on cost and performance
models of the required tasks over the available platforms. This
optimization consists in allocating distinct workflow parts to the
most advantageous execution and/or storage engine among the
available ones and deciding on the exact amount of resources
provisioned. Our current prototype supports 5 compute and 3
data engines, yet new ones can effortlessly be added to IReS
by virtue of its engine-agnostic mechanisms. Our extensive
experimental evaluation confirms that IReS speeds up diverse
and realistic workflows by up to 30% compared to their optimal
single-engine plan by automatically scattering parts of them
to different execution engines and datastores. Its optimizer
incurs only marginal overhead to the workflow execution
performance, managing to discover the optimal execution plan
within a few seconds, even for large-scale workflow instances.

I. INTRODUCTION
Big Data analytics have become indispensable to organi-

zations worldwide as a means of extracting significant value
out of the enormous amounts of data that stream into their
businesses. That, in turn, offers organizations an unprece-
dented competitive advantage: The ability to identify new
opportunities, take educated decisions based on historical
facts, render their operations faster and more cost efficient
and keep customers satisfied [1]. The volume, velocity
and variety of Big Data pose new challenges to analytics,
entailing a high degree of parallelism in both storage and
computation: Modern datacenters host huge volumes of data
over large numbers of nodes with multiple storage devices
and process them using thousands or millions of cores.

In the landscape of Big Data analytics, multiple and
diverse execution engines and datastores have emerged as
platforms of choice for specific computation types and data
formats (e.g., [2], [3], [4], etc.). To alleviate the burden of
building and maintaining such systems, many of them are
currently either offered as-a-service by the most prevalent
Cloud providers (e.g., [5], [6], [7]) or packaged in pre-
cooked VM or container images for ease of deployment [8].
Still, although many approaches in the relevant literature
manage to optimize the performance of single engines by
automatically tuning a number of configuration parameters
[9], [10], they bind their efficacy to specific data formats
and query/analytics task types.

However, one size does not fit all: No single execution
model is suitable for all types of tasks and no single data
model is suitable for all types of data. Indeed, modern
workflows have evolved into increasingly long and complex
series of diverse operators, ranging from simple Select-
Project-Join (SPJ) and data movement to complex NLP-,
graph- or custom business-related tasks, with varying data
formats (e.g., relational, key-value, graph, etc.) and shrinking
delivery deadlines [11]. Time constraints aside, analysts may
be equally interested in other execution aspects, such as
cost, resource utilization, fault-tolerance, etc., and thus need
to be able to impose various – and often multi-objective –
optimization policies, adding another degree of complexity
to an already convoluted problem.

Multi-engine analytics have recently been proposed as a
promising solution that can optimize for this complexity [12]
and are gaining ground ever since. Cloud vendors currently
offer software solutions that incorporate a multitude of
processing frameworks, data stores and libraries to facilitate
the management of multiple installations and configurations
[13], [14], [15]. One of the most compelling, yet daunting
challenges in such a multi-engine environment is the design
and creation of a meta-scheduler that automatically allocates
tasks to the right engine(s) according to multiple criteria,
deploys and runs them without manual intervention.

Recent works along this line are either proprietary tools
with limited applicability and extension possibilities for the
community (e.g., [16]) or focus more on the translation
of scripts from one engine to another, being thus tied to
specific programming languages and engines (e.g., [17],
[18]). Contrarily, we would ideally opt for an open-source,
engine-agnostic solution that could easily be extended to
new engines and implementation languages.

To that end, we present IReS, an open-source Intelligent
Multi-Engine Resource Scheduler that integrates multiple
execution engines and datastores into the optimizing, plan-
ning and execution of complex analytics workflows1. IReS
adops a black-box approach on the analytics operators. This
facilitates the handling of any kind of task, ranging from
low- (e.g., join, sort, etc.) to higher-level operators (e.g.,
machine learning, graph processing, etc.) that run on any
state-of-the-art, centralized or distributed system (e.g., Map-
Reduce, BSP, RDBMSs, NoSQL, distributed file-systems,

1https://github.com/project-asap/IReS-Platform

etc.). Moreover, the engine-agnostic approach allows for
easy addition of new operators and engines. All that IReS
requires is a description of the analytics tasks and data
via an extensible meta-data framework, as well as a model
of the cost and performance characteristics of the required
tasks over the available platforms. Consequently, utilizing
a DP-based, state-of-the-art planner, the platform is able to
map distinct parts of a workflow to the most advantageous
store, indexing and execution pattern and decide on the exact
amount of resources provisioned in order to optimize any
user-defined policy. The resulting optimization is orthogonal
to (and in fact enhanced by) any optimization effort within
an engine. In this paper we thoroughly describe the architec-
ture of IReS and delve into the design and implementation
details of its inner modules. Our key contributions are:
IA multi-engine planner that selects the most prominent
workflow execution plan among existing engines, datastores
and operators and elastically provisions the correct amount
of resources, consulting the cost and performance models of
the various operators.
IA modeling methodology that provides performance and
cost metrics of the available analytics operators for different
engine configurations. These metrics are collected from
actual executions of the operators both offline (training
phase) and online (refinement phase). The resulting models
are utilized in multi-engine workflow optimization.
IAn extensible meta-data description framework for opera-
tors and data, which allows IReS to automatically discover
all alternative execution paths of an abstractly described
workflow by matching operators that perform similar tasks.
IAn extensive evaluation of our open-source prototype op-
erating over various real-life and synthetic workflows chosen
to include diverse datasets and computation types under
realistic conditions. The results attest the ability of IReS
to efficiently decide on the optimal execution plan based on
the optimization policy and the available engines within a
few seconds, even for large-scale workflow graphs, adapt
to changes in the underlying infrastructure and temporal
degradations with minimal overhead and, most importantly,
speed-up the fastest single-engine workflow executions up
to 30% by exploiting multiple engines.

II. IRES ARCHITECTURE

IReS focuses on the highly efficient and user-customizable
execution of analytics workflows. This is made possible
through the transparent modeling, monitoring and schedul-
ing that involves different execution engines and storage
technologies. Our system is able to handle all types of ana-
lytics workflows by adaptively choosing to execute each sub-
part in a (possibly different) deployed engine. IReS assigns
sub-tasks to the most advantageous technology available and
ensures resource and dataflow scheduling in order to enhance
performance: If a single engine is used, enhancement will be
achieved through optimized and elastic resource allocation

Multi-Engine
Cloud

ML models

Profiler/Modeler

Parser

Health status

execution plan

user policy,
workflow

available
resources

Planner
M

o
d

el
R

efin
em

en
t

Enforcer
Execution
Monitor

M
o

n
ito

rin
g

Operator
 lib

Container allocation & execution

replan

In
te
rf
a
ce

O
p
ti
m
iz
er

Ex
ec
u
to
r

Figure 1: Architecture of the IReS platform

(e.g., execute on the right cluster size, etc.); if multiple ones
are required, enhancements will relate both to single-engine
optimization and to workflow management that decides on
the best execution plan and data placement (e.g., first execute
subtask A in Spark, store intermediate results in a NoSQL
engine and then run subtasks B and C in parallel, having the
final results written in HDFS).

The central notion behind IReS is to utilize detailed mod-
els of the costs and performance characteristics of analytics
operators over multiple execution engines. The models are
stored and updated in an IReS library. Whenever a new
workflow is run atop IReS, these models are used in order
to intelligently assign and orchestrate workflow parts to the
underlying engines according to the user optimization policy.
The architecture of the IReS platform is depicted in Figure 1.
IReS comprises of three layers, the interface, the optimizer
and the executor layer. In the following, we describe in more
detail the role, functionality and internals of these layers,
delving into the specifics of the most important modules.

A. Interface Layer

The interface layer is responsible for handling the inter-
action between IReS and its users. A user should be able to
accurately define execution artefacts such as operators, data,
workflows, etc., along with their inter-dependencies, proper-
ties and restrictions using a common meta-data description
framework. Based on this framework, the parser module is
parses the user-provided workflow as a dependency graph
and validates the user-defined policy.

The main challenges of defining such a framework are
extensibility and abstraction. Users should be granted the
ability to define custom meta-data for fine-grained operator
and dataset description. This freedom supports the effortless
addition of new engines and operators, as opposed to the
rigidity of having a predefined set of meta-data fields. More-
over, users should be able to specify the data and operators
that compose their workflow at any desired abstraction

(a) (b)

Figure 2: Meta-data descriptions of (a) a dataset of crawled
web pages and (b) an abstract tf-idf operator.

level on its various steps, ranging from the fine-grained
definition of specific implementations/engines to the coarse-
grained description of the general functionality regardless
of the platform. It is IReS that will remove this abstraction,
examine alternative execution paths of the same conceptual
workflow and select the most beneficial one, according to
the user-defined policy.

The main entities of our framework are data and opera-
tors, which need to be accompanied by a set of meta-data,
i.e., properties that describe them. Data and operators can
be either abstract or materialized. Abstract operators and
datasets are defined and used when composing a workflow,
whereas materialized ones refer to specific implementations
and existing datasets and are usually provided by the opera-
tor developer or the dataset owner respectively. Materialized
operators along with their descriptions are stored in the
operator library, as depicted in Figure 1.

The meta-data accompanying operators (e.g., input types,
execution parameters, invocation scripts, etc.) and data (e.g.,
schemata, location of objects, etc.) are organized in a generic
tree format. To avoid restricting the user and allow for
flexibility, only the first levels of the meta-data tree are pre-
defined. Users can add their ad-hoc subtrees to define custom
data or operator properties. Moreover, some fields (mostly
the ones related to the operator and data requirements)
are compulsory while the rest (e.g., known cost models,
statistics, etc.) are optional and user-defined. Materialized
data and operators need to have all their compulsory fields
filled in with information. Abstract data and operators do not
adhere to this rule. Apart from having empty fields, they can
also support regular expressions (e.g., the ∗ symbol under
a field means that the abstract object matches materialized
ones with any value of that field). In general, we pre-define
the following the meta-data fields:
Constraints: This sub-tree contains all the information
that is required to match (a) abstract operators to
materialized ones and (b) data to operators. Mandatory
fields include specifications of operator inputs/outputs,
algorithms, engines and anything considered necessary in
the abstract/materialized matching of operators.
Execution: This sub-tree provides the execution parameters
of a materialized operator, such as the path of a dataset or
the execution arguments of an operator script.

Figure 3: Meta-data description of a materialized tf-idf
operator, implemented in mahout/Hadoop

Optimization: This optional part of the meta-data holds
additional information that assists in the optimization of the
workflow. This information could include, for instance, a
cost function provided by the developer of the operator or
instructions on how to create one by profiling over specific
metrics (e.g., execution time, required RAM, etc.).

As an example, let us assume an analyst wants to per-
form tf-idf over a corpus of documents crawled from the
Internet. First, she needs to describe the input dataset,
crawlDocuments, as depicted in Figure 2.a: It is a
sequence file stored in HDFS, following the path spec-
ified by the Execution field. The information under
Optimization notifies the system of the number of
documents contained in the dataset. Then, she needs to
specify the operation to be performed. In its abstract form,
the TF_IDF operator (see Figure 2.b) needs only define
one input parameter, the implemented algorithm (under
opSpecification.Algorithm) and an output param-
eter. In short, TF_IDF defines a format that any tf-idf
implementation of the specific functionality needs to follow.

Additionally, a materialized tf-idf operator includes all
information required in order to perform the operation on
an execution engine. In TF_IDF_mahout (see Figure 3),
the operator calculates tf-idf over Mahout/Hadoop; it thus
includes Hadoop-specific information about the input, output
and the engine. The input and output in this case have
specific types and an engine specification (under Engine).
The operator itself also has an EngineSpecification,
indicating its execution location.

To discover the actual implementations that comply with
the description of both the abstract operator and the dataset
provided by the user, we employ a tree matching algorithm
to ensure that all meta-data constraints are met, i.e., all
compulsory fields are consistent. This is performed during
the planning and optimization phase, described subsequently.
In our example, TF_IDF_mahout matches TF_IDF in

the fields designated by the red rectangles. Moreover,
the crawlDocuments dataset can be used as input to
TF_IDF_mahout as is, as the matched greed rectangles
suggest. Thus, TF_IDF_mahout is considered when con-
structing the optimized execution plan.

B. Optimizer Layer

The optimizer layer is responsible for optimizing the
execution of an analytics workflow with respect to the policy
provided by the user. The core component of this layer is
the planner, which determines the optimal execution plan
in real-time. This entails deciding on where each subtask
is to be run, under what amount of resources provisioned
and whether data need to be moved to/from their current
locations and between runtimes (if more than one is chosen).

Such a decision must rely on the characteristics of the
analytics task in hand which are modeled and stored within
IReS. The initial model of an operator results from the
offline profiling of it using a profiler that directly interacts
with the pool of physical resources and the monitoring layer
in-between. Moreover, while the workflow is being executed,
the initial models are refined in an online manner by the
model refinement module, using monitoring information of
the actual run. This mechanism allows for dynamic adjust-
ments of the models and enables the planner to base its
decisions on the most up-to-date knowledge.
IProfiler/Modeler: While accurate models exist for SQL
operations over an RDBMS, which includes its own cost-
based optimizer, this is not the case for other analytics
operators (e.g., machine learning, graph processing, etc.)
and modern runtimes (be it distributed or centralized): Only
a very limited number of operators and engines has been
studied, while most of the proposed models entail knowledge
of the code to be executed [19], [20], [21]. Moreover, there
is no trivial way to compare or correlate cost estimations
derived from different engines at a meta-level.

To that end, we adopt an engine-agnostic approach that
treats materialized operators as “black boxes”, assuming no
prior knowledge of their internals, and models them using
profiling in an offline mode, as well as machine learning
over actual runs.

The profiling mechanism adopted builds on prior work
[22]. Its input parameters fall into three categories: (a) data
specific, which describe the data to be used for the operator
profiling (e.g., the type of data and its size), (b) operator
specific, which relate to the algorithm of the operator (e.g.,
the number of output clusters in k-means), and (c) resource
specific, which define the resources to be tweaked during
profiling (e.g., cluster size, main memory, etc.)

The output of each run is the profiled operator’s per-
formance and cost (e.g., completion time, I/O operations,
average memory, CPU consumption, etc.) under each com-
bination of the input parameter values for specific user-
defined optimization metrics, such as cost in $ or I/O,

latency, throughput, etc. Both the input parameters as well as
the output metrics are specified by the user/developer. The
collected metrics are then used to create estimation models
[23], making use of neural networks, SVM, interpolation
and curve fitting techniques for each operator running on a
specific engine. The cross validation technique [24] is used
to maintain the model that best fits the available data.
IModel Refinement Upon execution of a workflow, the
currently monitored execution metrics provide feedback to
the existing models in order to refine them and capture pos-
sible changes in the underlying infrastructure (e.g., hardware
upgrades) or temporal degradations (e.g., due to unbalanced
use of engines, collocation of competing tasks, surges in
load etc.). This mechanism contributes to the adaptability
of IReS, ameliorating the accuracy of the models while the
platform is in operation.
IPlanner This module, in analogy to traditional query
planners, intelligently explores all the available execution
plans and discovers the optimal one with respect to the user-
defined optimization objectives. Algorithm 1 describes the
optimization process, which relies on dynamic programming
(DP) to select the optimal execution plan.

The algorithm receives as input the abstract workflow
graph, expressed as a DAG of operator and dataset nodes
G(Datasets,Operators). It maintains a dpTable structure,
responsible for storing the best execution plan for each
different format of a dataset node (e.g., csv, json, etc.).
The planner processes all abstract operators of the workflow
following a DAG topological order, using a depth-first search
(line 11). This ordering ensures that when an operator is be-
ing processed, all its predecessors in the DAG have already
been processed and thus the dpTable always contains the
optimal plans per input.

For each abstract operator, the IReS library is explored
to find all matching materialized operators, i.e., operators
that share the same meta-data (line 12). To speedup this
procedure we use string labelled and lexicographically or-
dered meta-data trees. This data structure allows for efficient,
one pass tree matching. The complexity of matching two
meta-data trees with up to t nodes is O(t). We further
improve the matching procedure by indexing the IReS
library operators using a set of highly selective meta-data
attributes (e.g., algorithm name). Only operators that contain
the correct attributes are considered as candidate matches
and are further examined by the above algorithm.

When all operator matches have been discovered, the
process consults the input and output specifications of the
materialized operators and adds the required move/transform
operators (lines 22-25). Those operators are needed in order
to connect operators of different engines and input/output
configurations. Here, we make the assumption that oper-
ator alternatives have a 1-1 relationship (we do not yet
consider the possibility of one operator being equivalent
to a combination of 2 or more operators) and that only

ALGORITHM 1: Optimizer

1 //G(Datasets,Operators) : abstract workflow graph
2 //Datasets : set of datasets
3 //Operators : set of abstract operators
4 //target : target dataset
5 for d ∈ Datasets do
6 //initialize dpTable
7 if d.isMaterialized() then
8 if d == target then
9 return 0;

10 dpTable[d].insert(d, 0);
11 for o ∈ Operators following DAG topological ordering do
12 MOperators = findMaterializedOperators(o);
13 for mo ∈ MOperators do
14 inputCost = 0;
15 for in ∈ mo.getInputs() do
16 minCost = ∞;
17 for tin ∈ dpTable[in] do
18 if tin.matchWithOperatorInput(mo)

then
19 if tin.getCost < minCost then
20 minCost = tin.getCost;
21 else
22 if tin.checkMove(mo) then
23 moveCost = tin.getCost+

tin.moveCost(mo);
24 if moveCost < minCost then
25 minCost = moveCost;
26 inputCost+ = minCost;
27 operatorCost = estimateCost(mo);
28 cost = inputCost+ operatorCost;
29 for out ∈ o.getOutputs() do
30 tout = outputFor(mo, out);
31 dpTable[out].insert(tout, cost);
32 return dpTable[target].getMinCost();

one move/transform operator is used to match consecutive
operators with different output/input formats.

Consequently, to estimate operator performance metrics
(e.g., cost, execution time) our planner consults the estimator
models for each one of the materialized operators (line 27).
In our current implementation, the planner is configured to
optimize one metric or a function of multiple performance
metrics that the user is interested in. We are currently
investigating methods for optimizing multiple dimensions
of performance metrics, such as finding Pareto frontier
execution plans. After estimating the operator cost, we add
all its output datasets in the dpTable. When all abstract
operators have been processed, the optimal cost of the target
dataset is returned using the respective dpTable record.

To study the complexity of the Optimizer algorithm, let
us assume that a workflow contains op number of abstract
operators, with at most m materialized operators matching
an abstract one. Moreover, let us assume that each operator
has k inputs at maximum. For each intermediate dataset,
our dpTable will contain at most m records, each generated
from one of the m materialized operators that match the
abstract one that produces it. Therefore, the inner loop of

Figure 4: Abstract tf-idf, k-means workflow.

Figure 5: Materialized workflow and optimal plan.

Algorithm 1 (line 17 onwards) will run at most m times.
Thus, the worst case complexity of our optimizer is:

O(op ·m2 · k)

Figure 4 depicts an abstract workflow which performs
tf-idf feature-extraction over a corpus of documents and
clusters the output using the k-means clustering algorithm.
Assuming each operator has 2 implementations, using either
the mahout or WEKA libraries (running in Hadoop and
Java respectively) we have the possible alternative execution
plans of Figure 5. The planner automatically adds the
necessary move/transform operators in order to transfer
intermediate results between the two engines (i.e., match the
output of an operator to the input of the subsequent one).

Let us assume an optimization policy that targets execu-
tion time minimization. Intuitively, small datasets run faster
in a centralized manner while distributed implementations
outperform the centralized ones for bigger datasets. Indeed,
the WEKA implementation is estimated to be the fastest for
both steps, due to the small input size and is thus included
in the selected execution path, marked in green.
IResource Provisioning Apart from deciding on the spe-
cific implementation/engine of each workflow operator, the
planner of IReS provisions the correct amount of resources
to execute the workflow conforming as much as possible to
the user-defined optimization policy. This policy may involve
the execution time or any user-defined cost function. The re-
source provisioning process builds on the MOEA framework
[25] and relies on the NSGA-II genetic algorithm [26] to
supply resource-related parameters (e.g., #cores, memory)
from the local minima of the trained models. NSGA-II is
the most prevalent evolutionary algorithm that has become
the standard approach to generating Pareto optimal solutions
to a multi-objective optimization problem. The estimated
parameter values are passed as arguments to the workflow
execution during run-time.

C. Executor Layer

The executor layer is the layer that enforces the optimal
plan over the physical infrastructure. Its main responsibilities

include the execution of the ensuing plan, a task undertaken
by the enforcer, and the assurance of the platform’s robust-
ness, carried out by the execution monitor.

The enforcer adopts methods and tools that translate high
level “start runtime under x amount of resources”, “move
data from site Y to Z” type of commands to primitives
as understood by the specific runtimes and storage engines.
Such actions might entail code and/or data shipment.

Our current working prototype relies on YARN [27], a
cluster management tool that enables fine-grained, container-
level resource allocation and scheduling over various pro-
cessing frameworks. Apart from requesting from YARN the
necessary container resources for each workflow operator,
the enforcer needs to pay special attention to the workflow
execution orchestration. To that end, IReS extends Cloudera
Kitten [28], a set of tools for configuring and launching
YARN containers as well as running applications inside
them, in order to add support for the execution of a DAG
of operators instead of just one.

The execution monitor captures faults and failures occur-
ring on-the-fly through real-time monitoring. Thus, it ensures
the robustness and availability of the system by employing
two mechanisms:
• A mechanism that monitors the health status of the

underlying infrastructure by periodically executing cus-
tomizable and parametrized health scripts in all cluster
nodes. The health status (HEALTHY/UNHEALTHY state
per cluster node) is reported back to the IReS server.

• A mechanism that checks the availability of all services
(i.e., engines and datastores) needed for the enforcement
of an execution plan (ON/OFF status).
This information is used during the phases of both plan-

ning and execution of a workflow. During planning, unavail-
able engines are excluded when constructing the optimal
execution plan and resources are provisioned exclusively
taking into account the currently available ones. During the
execution of a workflow, failures are detected in real-time.
The remaining workflow is re-planned and the new plan is
enforced. We should note here that our system does not
discard results of tasks that have been successfully executed.
Contrarily, it takes advantage of any intermediate material-
ized data, effectively reducing the part of the workflow that
needs to be re-scheduled.

III. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate IReS to show-
case its ability to optimize the execution of an analytics
workflow with respect to a user-defined policy by mapping
parts of it to the most beneficial compute or data engines.
Apart from the gains in workflow performance, which con-
stitute the intuition that inspired IReS, the experiments aim
to prove that the overhead of the IReS decision making pro-
cess is affordable, the resource provisioning strategy caters
for the user needs and the system improves its accuracy as it

operates, being adaptable to any short- or long term change
in the characteristics of the supported engines.

Our system prototype has been implemented in Java
and is open-source. In our experiments, IReS controls a
cloud-based deployment of several runtime engines and data
stores2 over 16 virtual machines of an Openstack cluster
hosted in our lab. All the supported engines have been tuned
according to best practices.

Throughout the experiments we make use of three work-
flows, one of each of the three categories which we consider
as the most representative of modern, real-life workflows,
namely text analytics, graph analytics and relational ana-
lytics. Two of them are driven by real business needs and
have been specified in the context of the eu-funded ASAP
project3. These cover complex data manipulations in the
areas of business analytics on telecommunication data and
web data analytics, provided by a large telecommunications
company and a well-known web archiving organization
respectively. The input datasets for these workflows consist
of anonymized telecommunication traces and web content
data (WARC files). More precisely:
Graph analytics: The workflow involves the processing of
anonymized call detail records (CDR), residing in HDFS, to
calculate the influence score of a subscriber on a telecom-
munications network. This is achieved by treating CDR
data as a graph, where each customer (i.e., phone number)
represents a vertex and each call corresponds to an edge,
and applying Pagerank over them. Pagerank has been im-
plemented in Spark, Hama and Java.
Text analytics: The workflow starts by performing tf-idf
on web content that resides in HDFS; the outputs are
then clustered using k-means. Both operators are chosen
between scikit and MLlib running centrally or over Spark
respectively.
Relational analytics: The workflow contains 3 synthetic
SQL queries (Figure 6.d) which join tables residing in
different stores. For this workflow, we use data produced
by the popular TPC-H [29] benchmark generator. We make
the assumption that the small tables containing legacy data
(customer, nation, region) are stored in PostgreSQL, the
medium ones (part, partsupp) in MemSQL, taking advantage
of the collective memory of the cluster and the large ones
(lineitem, orders) in HDFS, since their size can not be
accommodated by any of the former.

A. Efficiency of Workflow Execution Plan

In this set of experiments, assuming the optimization
objective of minimizing execution time, we plan and execute
all three test workflows in a multi-engine environment using
IReS and plot the execution time of the chosen plan for

2Hadoop 2.7.0, Spark 1.6.0, Hama 0.7.1, scikit-learn 0.17.1, MemSQL
5.0, Postgres 9.5.3

3ASAP (Adaptive, highly Scalable Analytics Platform) envisions a uni-
fied execution framework for scalable data analytics. www.asap-fp7.eu/

10k 100k 1M 10M 100M
number of graph edges

10

100

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Spark
Hama
Java
IReS

(a)

10k 100k
number of documents

0

50

100

150

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Spark
Scikit
IReS

(b)

10 20 30 40 50
TPCH scale (GB)

10
1

10
2

10
3

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Spark
PostgreSQL
MemSQL
IReS

(c) (d)

Figure 6: Execution times for the (a) graph, (b) text and (c) relational analytics workflows vs. various input sizes when
running on single- and multi-engine (through IReS) environments. (d) The sql query of the relational analytics workflow.

various sizes of the input dataset. These measurements are
compared against the time required to run each workflow in
its entirety using exclusively a single engine. The goal is to
confirm that the execution plan chosen by IReS is at least
as efficient as the fastest single-engine choice (with some
small overhead) and can in fact speed up the single-engine
execution combining different engines in the same plan.

Figure 6.a depicts the execution times of the graph an-
alytics workflow (which consists of a single operator, i.e.,
pagerank) when run in Java, Hama and Spark as well as
the execution times of the plan adaptively selected by IReS
for each input size. As expected, a centralized, Java-based,
implementation outperforms its alternatives for small-scale
graphs. However, this approach fails as the input size grows
larger than the available main-memory of a single node. In
contrast, a distributed, Spark-based implementation incurs
overheads for small graphs but proves scalable when han-
dling larger input sizes. The Hama-based implementation,
which relies on a distributed main-memory execution model,
proves better for medium scale datasets that can fit in the
aggregate cluster memory but also fails for larger graph
sizes. We observe that IReS successfully chooses the most
efficient operator implementation for each input dataset size.
Furthermore, the IReS workflow optimization and YARN-
based execution incur a small overhead of a couple of
seconds. This overhead is visible for small input sizes but
is alleviated for longer running operators.

Figure 6.b refers to the text analytics workflow, proving
that the centralized scikit implementation achieves better
performance than Spark only for small datasets (less than
10K documents in our case). Using trained cost estimators,
IReS selects the proper engines for executing the workflow,
depending on the input data size. We also note that IReS
performs hybrid executions by combining operators of dif-
ferent engines for a range of input sizes. Indeed, from 10k
to about 40k documents IReS maps tf-idf to scikit and k-
means to Spark and manages to outperform even the fastest
single-engine execution by up to 30%. In these cases, IReS
automatically inserts the required move/transform operators.

Figure 6.c depicts the execution performance of the rela-
tional analytics workflow. While PostgreSQL can provably

10 100 1000
number of workflow nodes

1

10

O
p

ti
m

iz
at

io
n

 T
im

e
(s

) Montage
CyberShake
Epigenomics
Inspiral
Sipht

10 100 1000
number of workflow nodes

1

10

O
p

ti
m

iz
at

io
n

 T
im

e
(s

) Montage
CyberShake
Epigenomics
Inspiral
Sipht

Figure 7: Workflow optimization times for 4 and 8 engines,
using various workflow types of ranging size.

10 100 1000
number of workflow nodes

0,1

1

10

O
p

ti
m

iz
at

io
n

 T
im

e
(s

) 2 engines
4 engines
6 engines
8 engines

10 100 1000
number of workflow nodes

0,1

1

10

O
p
ti

m
iz

at
io

n
 T

im
e

(s
) 2 engines

4 engines
6 engines
8 engines

Figure 8: Workflow optimization times for Montage and
Epigenomics graphs, using various number of engines and
ranging the workflow size.

perform well for small datasets, the cost of data transfer from
other engines is prohibitive. MemSQL fails to execute the
workflow for sizes larger than 2GB due to intermediate re-
sults exceeding the available cluster memory. IReS executes
each workflow query in the engine where its tables reside (q1
in PostgreSQL, q2 in MemSQL and q3 in Spark), minimizing
the required data movements and thus achieving a constantly
good performance, regardless of the data size. In fact, the
workflow execution starts to accelerate as the dataset scales
to larger sizes (50G), for which the planning and movement
overhead is amortized by the pure task execution speed-up.
B. Workflow Planner Performance

In this section we experimentally evaluate the perfor-
mance of our multi-engine workflow planner with respect
to the workflow complexity and the number of alternative
implementations of a workflow operator. To provide a repro-
ducible experimental set-up and comparable results we use
the Pegasus workflow generator [30]. The produced work-
flow graphs fall into five scientific workflow categories (i.e.,

Montage, CyberShake, Epigenomics, Inspiral and Sipht) and
contain patterns derived from diverse scientific application
domains such as astronomy, biology, gravitational physics
and earthquake science. They include massively parallel
workflows that process large amounts of data, pipelined
applications that split up input datasets and operate on
different chunks in parallel as well as workflows that have a
relatively fixed structure and perform identical analyses on
multiple input datasets.

Figure 7 depicts the time required by our planner to opti-
mize all five Pegasus workflow categories. In this experiment
we range both the number of the workflow nodes and the
number of alternative execution engines (denoted as m in
our evaluation of the planner’s complexity). The first graph
of Figure 7 plots the planner’s execution time for 4 engines,
while the second for 8 engines, i.e., the IReS operator library
contains 4 and 8 alternative implementations of each of
the abstract workflow operators respectively. While most of
the Pegasus graphs show similar behaviour, the Montage
workflow graph is more connected, having multiple nodes
with high in- and out-degrees. This results in a 2× increase
in planning times, which is theoretically confirmed by our
planner’s algorithmic complexity (O(op · m2 · k)). Indeed,
performance is linearly affected only by the number of
inputs k of each operator. We also note that our planner
demonstrates almost linear complexity when ranging the
number of workflow nodes between 30 and 1000. In the
extreme case of 1000-node workflows the time required to
produce the optimal execution plan is less than 10 seconds
in all runs. This allows us to expect that the IReS planner
can handle even the most complex multi-engine workflow
scenarios with an almost negligible overhead compared to
the total execution time of the analytics workflow itself.

To further test the impact of the number of available
engines on the workflow planning performance, we mea-
sure the time required to optimize and plan the Montage
and Epigenomics workflows, which we consider the most
representative ones based on the previous experiment, while
ranging the number of alternative execution engines for each
workflow operator between 2 and 8 (Figure 8).

As expected, the existence of multiple operator imple-
mentations affects the performance of the planning process.
However, the IReS planner manages to handle even the
extreme cases of 100-node workflows with up to 8 en-
gines within a couple of seconds. The majority of real-life
workflows though are far from being that abundant, as our
experience in the ASAP project also suggests. An average
10-node workflow, even under the immoderate assumption
of 8 alternative operator implementations, can be optimized
and scheduled for execution with IReS in the sub-second
time-scale. This also holds for all of the real-life workflows
utilized throughout this section, which require planning
times in the order of milliseconds.

0 20 40 60 80
number of executions

0,2

0,4

0,6

0,8

1

1,2

R
el

at
iv

e
es

ti
m

at
io

n
 e

rr
o

r

Wordcount MapReduce
Pagerank Java

(a)

20 40 60 80 100 120 140 160 180
number of executions

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
es

ti
m

at
io

n
 e

rr
o
r

Wordcount MapReduce

(b)

Figure 9: Relative execution time estimation error w.r.t. the
number of executions (a) in normal IReS operation (b) when
an infrastructure change occurs after 100 executions.

C. Operator Modeling

In this section, we test the ability of IReS to accurately
estimate the cost and performance of various operators
as well as its adaptability to changes in operator char-
acteristics due to temporal degradation or infrastructural
modifications. In this set of experiments we run single-
operator workflows, for the sake of simplicity. Apart from
the Pagerank operator, we introduce, from the field of text
analytics, an operator that counts distinct words in a corpus
of documents - Wordcount. Figure 9.a depicts the relative
performance estimation error achieved for Wordcount
over MapReduce and Pagerank using a centralized Java
implementation. We iteratively execute the operators with
different input sizes, number of resources (i.e., CPUs, RAM)
and application specific parameters (i.e., number of itera-
tions), uniformly selecting from a set of possible setups.
The models are refined with each operator execution. In
the beginning of the experiment there is no knowledge of
the operator performance and therefore the models present
high estimation errors. However, in both cases the relative
execution time estimation error drops bellow 30% after only
50 runs. The accuracy of IReS keeps on improving smoothly
after that, as more sample execution points are gathered.

The adaptability and reusability of our machine learning
models is tested by enforcing a sudden infrastructure change.
Figure 9.b plots the relative execution time estimation error
for the Wordcount MapReduce operator when after 100 runs
the cluster undergoes an upgrade, where all the HDDs that
form the HDFS substrate that stores the data are substituted
by SSDs. This affects the execution time estimations of
the Wordcount operator (assuming that no I/O information
has been modeled and used for estimating the operator
performance). As depicted in Figure 9.b there is a temporal
degradation of the relative error due to the fact that IReS
still uses the same models, which capture the characteristics
of the previous infrastructure. Although the relative error
increases from 30% to 50% right after the change, it is
still more beneficial to use the existing models than to
discard them and start from scratch, as the relative error
of assuming no knowledge would be almost 100%. Besides,
as more execution measurement are acquired the relative

1k 10k 100k 1M 10M
documents

10

100

E
x

e
c
u

ti
o

n
 T

im
e
 (

s)

IReS
min resources
max resources

1k 10k 100k 1M 10M
documents

100

1k

10k

E
x

e
c
u

ti
o

n
 C

o
s
t

IReS
min resources
max resources

Figure 10: Execution time and cost vs. input size.

error decreases again and the models regain their accuracy,
adapting seamlessly to the new cluster state.
D. Resource provisioning

In this last set of experiments we demonstrate the effec-
tiveness of our resource provisioning mechanism by letting
IReS decide on the amount of resources to be allocated
in a cluster of 32 cores and 54GB RAM in total when
executing the Spark (MLlib) implementation of the tf-idf
operator. We assume an optimization policy of minimizing
the workflow (i.e., operator) execution time. In Figure 10 we
plot the time needed to execute the workflow as well as the
cost of the allocated resources for various input sizes and
3 different strategies: a) static selection of the maximum
available cluster resources (denoted as max resources), b)
static allocation of the minimum resources required (de-
noted as min resources) and c) dynamic resource allocation
through IReS. The execution cost can be considered as
the amount of money spent on renting Amazon VMs or
simply a function of the utilized resources. To express the
execution cost we adopt a simplified version of [31], namely
#VM · cores/VM · MM/VM · t, where #VM is the
number of VM instances, cores/VM is the number of cores
per VM, MM/VM is the main memory per VM (in GB)
and t is the execution time. This is the metric we plot in the
second graph of Figure 10.

Intuitively, when running a task in a distributed environ-
ment the execution time decreases as more resources are
utilized - yet, more resources result in a higher execution
cost. Contrarily, settling with the minimum resources nec-
essary to execute an operator cuts corners at the cost of
performance. IReS manages to achieve workflow execution
times as low as the max resources strategy, yet incurring an
execution cost that lies in-between the two static strategies,
provisioning just the right amount of resources according to
the size of the input data: As the input dataset scales, more
resources are provisioned by IReS in order to sustain low
execution times, thus the execution cost approaches the one
incurred by max resources.

IV. RELATED WORK
In the ever evolving Big Data landscape, the reconcili-

ation and/or combination of the different data models and
programming paradigms open up new and promising fields
of research. The first attempts along this line lie in the
field of data management and aim to provide a unified

query language or API over various datastores. SparkSQL
[32], part of the Apache Spark project [3], and PrestoDB
[33], powered by Facebook, are two production systems that
provide a query execution engine with connectors to various
external systems (e.g., PostgreSQL, MemSQL, Hive, etc.).
However, to perform any operation on external data they
both need to fetch and distribute them internally, missing
out on many engine-specific optimizations.

Other approaches, like SQL++ [34] and Apache Drill
[35], focus more on providing extended SQL querying
capabilities over different, possibly schema-less data stores,
without assuming any planning or optimization mechanisms.
QUEPA [36], the most recent effort on data integration
over polystores, offers advanced exploration capabilities
through record linkage. However, it too lacks mechanisms
that optimize query execution.

Recent research works like the Cascading Lingual project
[37], CloudMdsQL [38] and BigDAWG [39] try to op-
timize query resolution over heterogeneous environments
by pushing query processing to the datastores that manage
the data as much as possible. They mostly provide rule-
based optimizations while considerable effort is devoted to
the translation between the involved storage engines’ native
query languages. All of the above approaches, unlike IReS,
focus solely on storing and querying Big Data, rather than
performing any complex analytics workflow on them.

In the field of workflow management, HFMS [16] aims
to create a planner for multi-engine workflows, but focuses
more on lower-level database operators, emphasizing on
their automatic translation from/to specific engines via an
XML-based language. Yet, this is a proprietary tool with
limited applicability and extension possibilities for the com-
munity. Contrarily, IReS, an early prototype of which has
been demonstrated in [40] and [41], is a fully open-source
platform that targets both low and high level operators.

Musketeer [17] and Rheem [18] also address multi-engine
workflow execution, acting as mediators between an engine’s
front- and back-end. They first map a user’s workflow to
an internal representation and then apply a set of rule-
based optimizations before sending it for execution. They
focus more on the translation of scripts from one engine to
another, being thus tied to specific programming languages
and engines. Contrarily, IReS is engine agnostic, treating
operators as black boxes. This allows for extensibility to
new engines and easy addition of new operators regardless
of their implementation language.

V. CONCLUSIONS
In this paper we presented IReS, a sophisticated meta-

scheduler for multi-engine environments. IReS optimizes
and plans complex analytics workflows by performing a
mix ’n’ match of diverse runtimes and data stores and by
deciding on the exact amount or resources to be allocated
in order to conform as much as possible to the user-
defined optimization criteria, be it execution time, resource

consumption or any custom function of measurable exe-
cution metrics. This functionality relies on the cost and
performance estimations of the available operators over the
deployed engines.

The IReS prototype already supports a number of compute
and data engines and has been extensively evaluated in
optimizing and scheduling a variety of diverse, business-
driven workflows that fall into the fields of text, graph
and relational analytics. The experiments showcase (a) the
performance gains of the IReS mix ’n’ match strategy,
which reach 30% with respect to statically scheduled, single-
engine workflows, (b) the efficiency of the optimizer, which
designates the optimal execution plan in the sub-second
time scale for realistic, medium-sized workflows, (c) the
effectiveness of the resource provisioning strategy, which
perfectly matches any user-provided policy and (d) the
adaptability of the system, which manages to ameliorate its
accuracy with every execution and recover from unexpected
changes within a few tens of extra runs.

ACKNOWLEDGEMENT

This work has been supported by the European Com-
mission in terms of the ASAP FP7 ICT Project (619706).
N. Papailiou has received funding from IKY fellowships of
excellence for postgraduate studies in Greece - SIEMENS
program.

REFERENCES

[1] T. H. Davenport and J. Dyché, “Big Data in Big Companies,”
International Institute for Analytics, 2013.

[2] “Apache Hadoop,” http://hadoop.apache.org/.
[3] “Apache Spark,” https://spark.apache.org/.
[4] “Apache Hama,” https://hama.apache.org/.
[5] “Amazon EMR,” http://aws.amazon.com/elasticmapreduce/.
[6] “Google Cloud Platform,” https://cloud.google.com/hadoop/.
[7] “Microsoft Azure HDInsight,” https://azure.microsoft.com/

en-us/services/hdinsight/.
[8] “Docker Hub,” https://hub.docker.com/.
[9] H. Herodotou et al., “Starfish: A Self-tuning System for Big

Data Analytics.” in CIDR, 2011.
[10] H. Lim, H. Herodotou, and S. Babu, “Stubby: A

Transformation-based Optimizer for Mapreduce Workflows,”
VLDB, 2012.

[11] M. Ferguson, “Architecting A Big Data Platform for Analyt-
ics,” A Whitepaper Prepared for IBM, 2012.

[12] D. Tsoumakos and C. Mantas, “The Case for Multi-Engine
Data Analytics,” in Euro-Par 2013: Parallel Processing Work-
shops. Springer, 2014.

[13] “Cloudera Distribution CDH 5.2.0,” http://www.cloudera.
com/content/cloudera/en/downloads/cdh/cdh-5-2-0.html.

[14] “Hortonworks Sandbox 2.1,” http://hortonworks.com/
products/hortonworks-sandbox/.

[15] “Running Databases on AWS,” http://aws.amazon.com/
running databases/.

[16] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu, “HFMS:
Managing the Lifecycle and Complexity of Hybrid Analytic
Data Flows,” in ICDE. IEEE, 2013.

[17] I. Gog et al., “Musketeer: All for One, One for All in Data
Processing Systems,” in Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015, p. 2.

[18] D. Agrawal et al., “Rheem: Enabling multi-platform task exe-
cution,” Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data, 2016.

[19] S. Babu, “Towards Automatic Optimization of MapReduce
Programs,” in ACM symposium on Cloud computing, 2010.

[20] Z. Zhang et al., “Automated Profiling and Resource Manage-
ment of Pig Programs for Meeting Service Level Objectives,”
in Conference on Autonomic Computing. ACM, 2012.

[21] B. Sharma, T. Wood, and C. R. Das, “HybridMR: A Hier-
archical MapReduce Scheduler for Hybrid Data Centers,” in
ICDCS. IEEE, 2013.

[22] I. Giannakopoulos et al., “PANIC: Modeling Application
Performance over Virtualized Resources,” in 2015 IEEE In-
ternational Conference on Cloud Engineering, IC2E 2015,
2015, pp. 213–218.

[23] Y. Jin, “Surrogate-assisted evolutionary computation: Recent
advances and future challenges,” Swarm and Evolutionary
Computation, 2011.

[24] R. Kohavi et al., “A study of cross-validation and bootstrap
for accuracy estimation and model selection,” in IJCAI,
vol. 14, no. 2, 1995, pp. 1137–1145.

[25] “FrameworkA Free and Open Source Java Framework for
Multiobjective Optimization,” http://moeaframework.org/.

[26] K. Deb et al., “A fast and elitist multiobjective genetic
algorithm: Nsga-ii,” IEEE transactions on evolutionary com-
putation, vol. 6, no. 2, pp. 182–197, 2002.

[27] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th annual Sym-
posium on Cloud Computing. ACM, 2013, p. 5.

[28] “Kitten: For Developers Who Like Playing with YARN,”
https://github.com/cloudera/kitten.

[29] “TPC-H benchmark,” http://www.tcp.org/hspec.html.
[30] S. Bharathi et al., “Characterization of scientific workflows,”

in Workshop on Workflows in Support of Large-Scale Science.
IEEE, 2008, pp. 1–10.

[31] H.-L. Truong and S. Dustdar, “Composable cost estimation
and monitoring for computational applications in cloud com-
puting environments,” Procedia Computer Science, vol. 1,
no. 1, pp. 2175–2184, 2010.

[32] M. Armbrust et al., “SparkSQL: Relational data processing in
Spark,” in Proceedings of the 2015 ACM SIGMOD. ACM,
2015, pp. 1383–1394.

[33] “Presto,” http://www.teradata.com/Presto.
[34] K. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++

semi-structured data model and query language: A capabil-
ities survey of sql-on-hadoop, nosql and newsql databases,”
CoRR, vol. abs/1405.3631, 2014.

[35] “Apache Drill,” https://drill.apache.org/.
[36] A. Maccioni, E. Basili, and R. Torlone, “QUEPA: QUerying

and Exploring a Polystore by Augmentation,” in SIGMOD,
2016, pp. 2133–2136.

[37] “Cascading Lingual,” www.cascading.org/projects/lingual/.
[38] B. Kolev et al., “CloudMdsQL: querying heterogeneous cloud

data stores with a common language,” Distributed and Par-
allel Databases, pp. 1–41, 2015.

[39] J. Duggan et al., “The BigDAWG Polystore System,” ACM
Sigmod Record, vol. 44, no. 2, pp. 11–16, 2015.

[40] K. Doka et al., “IReS: Intelligent, Multi-Engine Resource
Scheduler for Big Data Analytics Workflows,” in Proceedings
of the 2015 ACM SIGMOD. ACM, 2015, pp. 1451–1456.

[41] N. Papailiou et al., “Robust and Adaptive Multi-Engine
Analytics using IReS,” in Proceedings of BIRTE, 2016.

