
Fair, Fast and Frugal Large-Scale Matchmaking
for VM Placement

Nikolaos Korasidis1, Ioannis Giannakopoulos1, Katerina Doka1, Dimitrios
Tsoumakos2, and Nectarios Koziris1

1 Computing Systems Laboratory, National Technical University of Athens, Greece
{nkoras,ggian,katerina,nkoziris}@cslab.ece.ntua.gr

2 Ionian University, Greece
dtsouma@ionio.gr

Abstract. VM placement, be it in public or private clouds, has a de-
cisive impact on the provider’s interest and the customer’s needs alike,
both of which may vary over time and circumstances. However, current
resource management practices are either statically bound to specific
policies or unilaterally favor the needs of Cloud operators. In this pa-
per we argue for a flexible and democratic mechanism to map virtual
to physical resources, trying to balance satisfaction on both sides of the
involved stakeholders. To that end, VM placement is expressed as an
Equitable Stable Matching Problem (ESMP), where each party’s pol-
icy is translated to a preference list. A practical approximation for this
NP-hard problem, modified accordingly to ensure efficiency and scalabil-
ity, is applied to provide equitable matchings within a reasonable time
frame. Our experimental evaluation shows that, requiring no more mem-
ory than what a high-end desktop PC provides and knowing no more
than the top 20% of the agent’s preference lists, our solution can ef-
ficiently resolve more than 90% of large-scale ESMP instances within
N
√
N rounds of matchmaking.

1 Introduction

VM placement is a fundamental problem addressed by current cloud providers
[2, 1, 3]. The policy through which the VMs are placed into the physical hosts
tremendously affects the data center’s utilization, energy consumption and op-
erational cost [1] while, at the same time, it greatly influences the VM perfor-
mance and, hence, the cloud customer satisfaction. Albeit initially static and
determined solely by the capacity and the utilization of the physical hosts, the
VM placement schemes are becoming more sophisticated and democratic, tak-
ing into consideration the client’s needs as well. Indeed, policies that increase
both the data center’s efficiency and the VMs’ performance can prove a boon for
providers and clients alike, keeping both sides content. For example, a user would
benefit from collocating two VMs that require a low-latency network connection
whereas the provider would also benefit from packing those VMs into a single
host to save network bandwidth. In the general case, though, the interests of the
two parties may also oppose each other, a fact that complicates decision-making.

Some works in the field examine the policy-based VM placement from a game-
theoretic viewpoint, formulating the problem as a multi-agent game in which
each agent tries to maximize her profit [9, 15]. The provided solution is a per-
sonalized pricing scheme, which mainly targets fairness among users themselves,
rather than users and providers. Other approaches view the placement problem
as a matching problem [14, 13, 11]. Instead of attempting to optimize a multi-
dimensional utility function that encapsulates the objectives of both providers
and users, each stakeholder retains a preference list that expresses her policy.
The problem is then transformed into the Stable Marriage Problem (SMP) [7],
where the objective is to identify a stable matching between VMs/VM slots.

Stability is a key concept in this formulation as it guarantees that there ex-
ists no pair of a VM (representing the cloud users) and a VM slot (representing
the data center) that prefer each other more than their current match. Such
a matching is proven to exist in any problem instance and it can be found by
the Gale-Shapley algorithm [7]. Although the Gale-Shapley algorithm guaran-
tees stability, it fails to ensure that the two sides are treated equally. On the
contrary, due to the strict proposer-acceptor scheme it relies on, it inherently
favors one side of the involved negotiators. Besides, finding an optimally fair
stable matching is proven to be NP-hard [10]. Furthermore, the execution of the
Gale-Shapley algorithm requires O(N2) memory, N being the number of VMs,
rendering it unsuitable for resource management in modern data centers that
host hundreds of thousands of VMs.

To overcome the limitations of unfairness and quadratic memory growth, we
propose a novel VM placement approach that seeks for a fair solution based on
incomplete preference lists. Specifically, we generate preference lists based on
the provider and user policies and apply the heuristic from our previous work in
[8] to create a fair matching between the VMs and the available VM slots. To
avoid quadratic memory expansion and scale to thousands of VMs, we reduce
the preference lists to the top-K most preferable positions, rejecting any pro-
posal originating from an agent lower on the list than the Kth one. Since this
optimization modifies the problem’s properties, we evaluate its impact on the
algorithm execution and showcase that the usage of incomplete lists is suitable
for most problem instances since equivalent matchings can be produced using
only a portion of the original lists. Furthermore, through our extensive evalua-
tion we study the parameters that affect the performance of our VM placement
methodology and demonstrate that we can provide fair solutions even for prob-
lem instances up to 20k VMs within a few seconds, while using only 20% of the
memory needed in the casual case without compromising neither the correct-
ness nor the quality of the algorithm. Our concrete contributions can be, thus,
summarized as follows:

– We formulate the policy-based VM placement problem as the sex-equal SMP
and utilize an approximation algorithm [8] to identify a fair solution.

– We introduce a variation of the original approximation algorithm that relies
on incomplete preference lists to be able to accommodate larger problem in-
stances.

– We provide a thorough experimental study that evaluates our proposed method
under various situations arising in modern data centers and demonstrates that
our approach is particularly suitable for large-scale datasets where thousands
of VMs must be scheduled for deployment.

2 Related Work

VM placement is a vividly researched problem in the cloud computing area. The
suggested approaches can be categorized in two distinct classes: (a) the ones that
aim to resolve the problem favoring exclusively the provider and (b) the ones
that seek for a compromise between the provider’s interest and the user-defined
placement policies.

The first category includes approaches that optimize data center indicators
such as utilization, operational cost, energy consumption, etc., while honoring
the Service Level Agreements (SLAs). [2] focuses on the initial VM placement
when a stream of deployment requests arrive to a data center. [1] proposes an
energy efficient VM placement scheme that utilizes migration to relocate VMs
so as to decrease the operational cost without jeopardizing the Quality of Ser-
vice (QoS). In [4], a classification methodology is proposed with the objective to
maximize the data center’s efficiency, while the VM performance is kept at max-
imum. Similarly, in [12] the authors propose a discrete knapsack formulation,
where the objective is to maximize a global utility function that corresponds to
the operational cost with the constraint of respecting the SLAs. The authors
utilize a Constraint Programming approach to tackle the problem. None of the
above methods take into consideration user-defined scheduling policies.

Regarding the second category, we encounter two distinct problem formu-
lations. The first, involves a game-theoretic approach, in which each customer
is viewed as an agent that attempts to maximize utility. The objective of such
formulations is to achieve an equilibrium in the game, so that the players are
treated equally. For example, in [9], an approach is that attempts to provide
personalized prices to each customer is presented. The idea is that each cus-
tomer defines their workload and the provider needs to specify a price that is
fair among the customers and is also beneficial for both the customer and the
provider. Similarly, Xu et al. [15] present an approach that targets to provide
fairness among the clients and also increase the cluster utilization.

Alternatively, the policy-based VM placement is formulated as an SMP, in
which VMs are matched to the available hosts. This formulation entails the
extraction of a preference list for each entity (i.e., VM and VM slot) that reflects
the policies of the involved parties. [14] proposes a system that accepts user
policies and executes the Gale-Shapley algorithm to find a mapping between
VMs and physical resources while [11] uses the same algorithm to improve energy
consumption. The resulting match in both cases, however, is proposer (i.e., Cloud
provider)-optimal.

In our work, we utilize ESMA [8] to provide fair and stable solutions and
propose an enhancement thereof to deal with the quadratic expansion of memory

requirements as the instance size increases. Equality in SMP is also considered
in [13], where out of a number of different matchings constructed, the algorithm
selects the one that maximizes fairness between the opposing groups. Contrarily,
our approach produces a single fair solution, with performance comparable to
the non-equal Gale-Shapley algorithm. This renders our work more suitable for
real-time execution as new deployment requests arrive at the data center.

3 Preliminaries

An instance I of the stable marriage problem (SMP) consists of n men and n
women, where each person has a preference list that strictly orders all members
of the opposite gender. If a man m prefers w1 to w2, we write w1 �m w2; a
similar notation is applied to women’s preferences. A perfect matching M on I
is a set of disjoint man-woman pairs on I. When a man m and a woman w are
matched to each other in M , we write M(m) = w and M(w) = m. A man m
and a woman w are said to form a blocking pair for M (or to block M) when: (i)
M(m) 6= w; (ii) w �m M(m); and (iii) m �w M(w). A matching M is unstable
if a blocking pair exists for M , and stable otherwise. The SMP calls for finding
a stable matching M .

The standard algorithm for solving the SMP, proposed by Gale and Shapley
[7], goes through a series of iterations. At each iteration men propose and women
accept or reject proposals. The algorithm is guaranteed to terminate successfully
after a quadratic number of steps, providing a perfect matching which, in effect,
cater to the satisfaction of the proposers. Since many different stable matchings
may exist for any problem instance, it is reasonable to aim for a matching that
is not only stable, but also good by some quality metric.

3.1 Equitable Stable Marriage Problem

Past research has defined three quality criteria. Let prm(w) (respectively, prw(m))
denote the position of woman w in man m’s preference list (respectively, of m
in w’s list). The regret cost r(M) of a stable matching M is:

r(M) = max
(m,w)∈M

max{prm(w), prw(m)} (1)

On the other hand, the egalitarian cost c(M) is:

c(M) =
∑

(m,w)∈M

prm(w) +
∑

(m,w)∈M

prw(m) (2)

Finally, the sex equality cost is defined as:

d(M) =

∣∣∣∣∣∣
∑

(m,w)∈M

prm(w)−
∑

(m,w)∈M

prw(m)

∣∣∣∣∣∣ (3)

A stable matching that optimizes the sex equality cost satisfies a notion
of equity between the two sides of the involved stakeholders. Finding such a
solution to the so-called equitable stable marriage problem (ESMP) is NP-hard
[10], thus all proposed solutions use heuristics that either produce different stable
matchings and seek for the fairest at the cost of increased execution time, or
attempt to construct an equal approach by allowing proposers and acceptors
to interchange their roles. The execution time penalty of the former category
is prohibitive for our use case, since we need to be able to produce matchings
in an online fashion. The Equitable Stable Matching Algorithm (ESMA) [8] is
an algorithm of the latter category, that allows the opposite group members
to both propose and accept in different algorithm steps. It is experimentally
proven that ESMA, unlike its main competitor [6], (a) terminates on all tested
large problem instances, (b) generates equitable matchings of high quality and
(c) has an execution time similar to the Gale-Shapley algorithm, outperforming
other similar solutions.

ESMA utilizes a simple non-periodic function in order to assign the proposer
group. Each proposer proposes to their next preference and the acceptors eval-
uate their proposals and accept their most preferred choice rejecting the others,
as in the classic Gale-Shapley algorithm. When the acceptors become proposers,
they also start proposing to their most preferred choices only if the agents they
propose to are most preferable than their current fiancé. Each agent retains two
indices into their preference list: one that indicates their current fiancé and one
that indicates their current most desired agent. These indices change positions
while new proposals are issued and new marriages are established. The algo-
rithm terminates when all agents of both groups have concluded that they are
married to their most preferred choice that did not reject them, i.e., the two
aforementioned indices point to the same agent.

As discussed in [8], this alternating proposing scheme may introduce repeat-
ing proposal patterns since two agents from the opposite groups may establish
more than one engagements between them during the algorithm’s execution,
something which is not allowed in the Gale-Shapley algorithm due to the mono-
tonic preference list traversal of the agents, i.e., the proposers start from the
beginning of their lists and degrade as the algorithm evolves and the oppo-
site stands from the acceptors. Since such a repeating pattern may compro-
mise the algorithm’s termination by creating endless proposal loops, the non-
monotonic function utilized for assigning the proposer group seems to overcome
this challenge and leads to termination for all the tested problem instances. In
our work, we have not encountered any problem instance that lead ESMA to
non-termination due to repeating cycles. This feature, in combination with the
low per-step complexity (O(n)) and the short execution times, establish ESMA
as the basis for the VM placement scheme we propose at this work. Its applica-
tion for VM placement is straightforward: We assume that one side consists of
the clients’ VMs to be deployed and the other side consists of the available VM
slots. The final matching determines the slot that each VM will occupy.

3.2 Modeling preferences

The extraction of the preference lists from the policies defined by the user and
the cloud provider is a tedious task, tightly coupled with the policy model. Var-
ious transformation schemes exist, depending on the nature of the policy. For
example, [14] assumes that the users define their policies in a rule-based for-
mat, easily transformable to a serialized preference list for the available VM
hosts. Specifically, the user generates policy groups in which the preference for a
host is expressed in the form: 1/CPUfreq (the shorter the number the higher the
preference), meaning that the higher CPU frequency hosts should be preferred.
Composition of such simple rule-based policies would create a serialized prefer-
ence list for each user and the provider, that also creates policies on a similar
manner, based on data center metrics such as resource utilization, energy con-
sumption, etc. On the contrary, in [9], a different policy scheme is adopted, where
the user defines a graph that demonstrates the type of needed resources (e.g.,
cores, memory, etc.) and the timeline of their utilization. Obviously, such a policy
description would entail a totally different preference list extraction algorithm.
In this work, we mainly focus on what happens after the policy extraction. Since
different schemes could be adopted in different use cases, we assume a simple
policy mechanism like the one introduced in [14] and study various aspects of
our approach when policies produce preference lists of different distributions and
properties.

4 Dataset generator

To test our approach, we made use of synthetic data, i.e., preference lists gener-
ated using Reservoir Sampling. This is easy to implement and properly models
the case where all agents are of the roughly same quality/fitness. However, in real
life applications it is often the case that some portion of the resources available
are globally more preferable to others. This variation in quality can be discreet
(e.g., high quality agents VS low quality agents) or continuous. To incorporate
this possibility, we assume that a weighting function exists that maps each agent
to some global bias: agents with high global bias are more likely to end up in
(the top places of) the preference lists of their prospective suitors. Thus, we im-
plemented instance generation via Weighted Reservoir Sampling, following the
A-Res interpretation [5]: If the sums of all weights/biases is B, an agent with bias
bi has probability bi/B to appear in their suitors top preferences. Despite the
biases, each agent’s list is generated independently; randomness is provided via
an agent-specific 32-bit seed which is derived from a global seed. Instance gen-
eration is entirely portable and reproducible, as it is based on PRNGs available
in C++11.

Bias modeling happens through allocating different weights to different agents,
and feeding those weights to WRS. We studied three different weight distribu-
tions, namely uniform distribution, contested distribution and position-inverse
distribution.

In the uniform distribution (UNI) each agent is assigned the same, constant
bias. This produces preference lists that are selected uniformly from all K−
permutations.

In the contested distribution (CONT), the agents are partitioned into two
sets; one set comprises of higher-quality suitors that are globally preferrable,
whereas the other set is medium-quality suitors. Agents in the high-quality set
are assigned the same, constant weight that is 10 times larger than the weight
assigned to agents in the lower-quality set. A parameter p controls the fraction of
the agents that are considered high-quality. In our experiments we used p = 0.1.

Finally, in the position-inverse distribution (INV), each agent is assigned a
weight that is a falling function of its id in the set, i.e. i < j =⇒ bai > baj .
In our experiment, we used the function fa(i) = (i + 1)−a to map integer ids to
positive weights, for a = 1.0.

The reason for choosing these weight distributions is to model circumstances
arising in the VM placement problem. Two parametres are of particular interest:
the variation of a data center’s equipment as time passes, and the variability in
client’s performance demands.

A new data center usually contains machines of about the same overall qual-
ity, which corresponds to UNI. Doing a minor hardware upgrade or expansion
results in a small number of new machines becoming more powerful than the
rest, a situation that corresponds to CONT. The cumulative effect of many
such upgrades is a collection of machines with smoothly varying performance
characteristics, corresponding to INV. The 2 latter ways of bias modeling result
in preference lists that are not uniformly random K− permutations: we expect
the top fraction of those lists to be somewhat similar, creating a tougher problem
instance.

Similarly, clients of a data center may be diversified in the quality of service
they demand. The data center may provide only one level of QoS (modeled
as UNI). Alternatively, it may provide two levels, an economical plan and a
premium one (modeled as CONT). Finally, it may have some more refined
service program, where the client pays more according to a smoothly varying
parameter (“nines of uptime”), which we model with INV.

Out of the nine possible situations of biases, we have chosen those with the
same bias on each side. This is done for simplicity but is not detached from the
real world. A small scale data center would probably serve customers without
special needs. On the contrary, any large data center serving a diversified clientele
is probably old enough to have amassed equipment of varied performance.

5 Intuiting ESMP with trimmed lists

According to our formulation, achieving good VM placement reduces to solving
large instances of ESMP. Unfortunately, the data set scales quadratically with
N : an ESMP instance of 20k agents per set requires more than 6 GB of space.
Solving larger instances requires resources usually available only in very high-

end machines. Thus, our primary goal is to drastically reduce ESMA’s memory
footprint.

5.1 An interesting metric

While running ESMA over randomly generated instances with at least 5000
agents, we are surprised to obtain solutions of low regret cost, despite never
explicitly trying to optimize this cost. More importantly, the regret cost as a
fraction of N falls as N grows larger, or, stated in plain words, as the pool of
suitors expands, ESMA becomes increasingly effective at matching all agents to
their top preferences. This low regret cost could just be a (welcome) artifact of
the final matching, however, the statistics from our runs reveal a more systematic
cause. It turns out that in any successful ESMA run all agents propose solely
to their top preferences throughout the matchmaking. If we track the “proposer
regret cost” over all rounds, we see that its maximum is only slightly larger than
the final regret cost (the latter taken over all agents). So, although an agent
acting as an acceptor may get proposed by a unfit suitor, no agent acting as a
proposer does likewise. The following box-n-whisker plots are telltale.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

R
e
g
re

t
c
o
s
t
o
v
e
r

N

x 1000 agents

Regret cost over N when N = K

UNI
CONT

INV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20M
a
x
 p

ro
p
o
s
e
r

re
g
re

t
c
o
s
t
o
v
e
r

N

x 1000 agents

Max proposer regret cost over N when N = K

UNI
CONT

INV

Fig. 1. Regret cost and max proposer regret cost for complete preference list

While proposers behave in a way that guarantees a low regret cost, acceptors
may not necessarily do so: they may accept a low-ranking suitor as a partner.
However, such an arrangement is not satisfying to them: For an agent to be
satisfied according to ESMA, they must be matched to a partner that is within
the fitness range they tolerate, which in turn is specified by the suitors they have
been rejected from. As we noted already, an ESMA agent only proposes to (and
hence is rejected from) suitors high in their preference list. Thus, for an agent
to become satisfied when accepting a proposal, the proposer must be highly-
preferred. An unsatisfactory match cannot be permanent. Therefore, when all
agents are satisfied, it is because all are matched to a highly preferred partner.

5.2 Our approach

Intuitively, since no agent proposes to or forms a stable match with a lowly-
preferred suitor, a fraction of the preference lists is effectively irrelevant to the
solution: the ids of lowly-preferred suitors as well as the entries in the inverse map

that encodes the fitness of said suitors. We set out to investigate if it is possible to
solve ESMP instances successfully while restraining ourselves to using only the
topmost part of the preference lists, i.e. the part that encodes highly-preferred
suitors. Our results, outlined in a following section, reveal that this is indeed the
case; the majority of large instances can be successfully solved with at most 20%
of the full data set, without sacrificing the quality of the solution.

5.3 Proof of stability

We can prove that whenever the algorithm terminates properly, the resulting
matching is stable despite the incomplete lists. Consider an instance with N
agents per set, each of whom has trimmed lists of length K. If K = N , we can
rule out the existence of a blocking pair by invoking the stability proof cited in
[8]: once all agents are satisfied, the resulting matching is stable and no agent
can expect to be accepted by a more preferred suitor than their partner. In the
case where K < N , we can show that no extra blocking pairs can form once the
full lists are revealed, by reductio ad absurdum. Suppose such a pair (mi, wj)
materialises only when they get to know their full lists, and that mi prefers wj

to its current partner wmi
. For mi to sport such a preference only after the

full lists are revealed, wj must be among the trimmed preferences of mi. But
wmi

must rank lower than wj in his preference list, thus wmi
also lies on the

trimmed part, therefore mi could never have engaged with her, a contradiction.
Thus, no new blocking pairs form. Since all agents are satisfied, there were no
blocking pairs initially. Combined, these two arguments prove that no blocking
pairs exist at all; solving ESMP with trimmed lists produces stable matching
given termination.

6 Experimental evaluation

Driven by the previous plots of low regret cost, we set out to experimentally
investigate how much data can we ignore and still match agents successfully.
Our testsuite consists of ESMP instances that vary according to three main
parameters: number of agents per set N , fraction of preference list available
K/N and bias modelling. We test all combinations of the following with 500
different seeds each:

– N ∈ {1000, 2000, 5000, 10000, 20000}
– K/N ∈ {0.1, 0.2, 0.5, 1.0}
– uniform bias, contested bias for p = 0.1, position inverse bias for a = 1.0

6.1 Ensuring correctness

We declare an execution to be SUCCESSFUL if it terminates properly with a match-
ing within N

√
N rounds of matchmaking, otherwise it is declared a FAILURE.

The reason for choosing this particular round limit will be addressed in a later

section, along with an investigation of failed runs. In the following graphs, we
plot the percentage of successful executions for each combination of parameters.

We observe that for any given fraction and bias tested, the percentage of
successful executions increases with N or remains practically the same. This
means that our approach is better suited for large, memory-demanding ESMP
instances than for small ones. A most interesting finding is that the success rate
initially increases as the lists get smaller but becomes zero after a threshold is
reached, e.g., for 1k-5k agents in the Contested distribution case for K/N = 20%.
There appears to be a sweet spot for the list size, which depends on the problem
size and weights used. We interpret this result as follows: As discussed earlier,
no acceptor is stably matched to a suitor they prefer little. Reducing the list
size outright prevents an acceptor from entertaining such a temporary match
and forces the proposer to keep searching instead of idling. This reduces the
number of rounds required until a globally stable match is reached, hence more
executions terminate correctly within the given round limit. However, if the lists
are trimmed too much, there are not enough options to accommodate everyone
and hence the execution fails, as is expected in SMP with Incomplete Lists.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 5 10 20

S
u

c
c
e

s
s
fu

l
ru

n
s
 (

%
)

Agents (x 1000)

Uniform distribution

100%
50%
20%
10%

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 5 10 20

S
u

c
c
e

s
s
fu

l
ru

n
s
 (

%
)

Agents (x 1000)

Contested distribution (p=0.1)

100%
50%
20%
10%

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 5 10 20

S
u

c
c
e

s
s
fu

l
ru

n
s
 (

%
)

Agents (x 1000)

Inverse distribution (a=1)

100%
50%
20%
10%

Fig. 2. Regret cost and max proposer regret cost for complete preference list

Other experiments, omitted due to space constraints, revealed that the “sweet
spot” effect diminishes or even reverses completely if we allow for a very large
round limit, e.g. in the order of O(N2) In particular, all full-list instances ter-
minate if given enough rounds, while some trimmed-lists instances seem to run
forever. This phenomenon is interesting from a theoretical as well as a practical
viewpoint.

As expected, uniform bias produces the easiest instances, position-inverse
bias comes up second and contested bias is overall the hardest one. At N = 20000
and using only 20% of the full lists, we can solve more than 90% of instances
of uniform and position-inverse bias, and more than 80% of instances produced
via contested bias, using about 610 MB of RAM and at most about 2.8 million
rounds. This demonstrates the power of our approach. In terms of execution, our
approach needed approximately 15 seconds for the N = 20k, K/N = 100% case
whereas for the same number of agents and smaller preference list (e.g.,K/N =
10%) the algorithm only took 6.5 seconds. Both experiments were executed on a
Linux machine using a 24 threaded Xeon X5650 CPU at 2.67GHz. The observed
acceleration is attributed to the fact that shorter preference lists lead to faster
access to the data structures which are allocated to support them. For more
information, the reader can consult the Appendix A

6.2 Maintaining quality

Increased performance often comes at the price of quality. One would expect
that the reduced amount of information causes our algorithm to select a worse
matching. Fortunately, this effect appears to be quite mild, as detailed in the
following plots. The regret and egalitarian costs remain virtually constant. The
average sex-equal cost is negatively impacted, especially if N is small and we are
not using uniform weights, but the difference is quite small. The variation of seq-
equal cost increases the more we trim the lists. Again, the quality degradation
is more intense for smaller datasets, something that indicates that our approach
is more suitable for massive datasets, rather than smaller instances of ESMP
which are easily solved by commodity machines.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

10% 20% 50% 100%

R
e

g
re

t
c
o

s
t

Fraction of preference list utilized
1k
2k

5k
10k

20k

 50

 100

 150

 200

 250

 300

10% 20% 50% 100%

E
g

a
lit

a
ri
a

n
 c

o
s
t

o
v
e

r
N

Fraction of preference list utilized
1k
2k

5k
10k

20k

 1

 2

 3

 4

 5

 6

 7

 8

10% 20% 50% 100%

S
e

x
-e

q
u

a
lit

y
 c

o
s
t

o
v
e

r
N

Fraction of preference list utilized
1k
2k

5k
10k

20k

Fig. 3. Matching costs for different fractions of preference lists

6.3 Failing gracefully

As evidenced in the above graphs, no execution terminates successfully if prefer-
ence lists are trimmed too much. This reduces the usefulness of our approach, as
we cannot always predict the proper K for an instance a priori. We rectify this
defect by showing that ESMA fails gracefully: it succeeds in matching the vast
majority of agents to satisfying partners, even when a total matching is impossi-
ble. This happens even under extreme constraints: we run 500 ESMP instances
with N = 20000 agents and lists trimmed at K = 1000, and recorded how many
rounds passed until a sufficiently large fraction p of proposers are satisfied with
their current partners, for p ∈ {90%, 95%, 99%, 99.5%, 99.9%, 99.95%, 99.99%}.
Our results appear below.

Table 1. Matched agents vs number of runs

Percentile matched 90 95 99 99.5 99.9 99.95 99.99

Gracefully failed runs 500 500 500 500 420 2 0

While none of the executions terminated successfully, most were able to come
very close to complete stable matches in a surprisingly low number of rounds:
99.9% of proposers had been satisfied with their matches after about 30000
rounds, that is, within 1% of the allowed round limit. Since our instances used
extremely small preference lists, it is reasonable to assume that a similar amount

 1

 10

 100

 1000

90 95 99 99.5 99.9

R
o
u
n
d
s
 (

x
 1

0
0
0
)

Portion satisfied

Rounds for satisfying portion of proposers

Fig. 4. Matched agents vs number of runs

of acceptors were also satisfied by the same number of rounds. Thus, after only
few rounds of matchmaking, we can have a partial plan that places most VMs
in appropriate slots and keeps most customers satisfied. The few resources that
were not properly matched can be dealt with in an ad hoc way.

It should now be obvious that the arbitrary N
√
N round limit was chosen

out of pragmatic concerns. For large testcases, O(N2) rounds of matchmaking
(required by the GS algorithm to produce a complete stable matching in the
worst case) is a prohibitively large amount given the setting of our problem.
On the other hand, O(N) rounds seem to suffice for an almost complete partial
match. We chose an intermediate value, so that our results can be used to gen-
erate useful guidelines. Depending on the specific workload and balancing the
need for speed and completeness, a provider can choose their own round limit.

7 Conclusions

In this paper we revisited the problem of policy-based VM placement in a mod-
ern data center. In the equitable methodology we propose, an approximation
algorithm was utilized in order to find a stable and fair matching between the
VMs and the available VM slots, so as to honor the policies dictated by the op-
posite parties. Moreover, we developed an optimization of the original algorithm,
in which we trimmed the preference lists of both groups to enable its scaling to
hundreds of thousands of VMs, a typical case for modern data centers. Through
an extensive experimental evaluation we showcase that our approach is able to
find fair matchings for up to 20k VMs, which is an order of magnitude larger
than other competitive approaches. Simultaneously, we demonstrate that trim-
ming the preference lists is particularly effective for large cases, since both the
correctness and the quality of ESMA’s solutions, measured in terms of equality
and global happiness, are maintained. As a future work, we seek confirmation of
the results presented at this work with real-world workloads gathered in public
data centers. Furthermore, we envision to port our methodology into streaming
deployment requests so as to serve the needs of rapidly changing demands.

References

1. A. Beloglazov and R. Buyya. Energy efficient resource management in virtualized
cloud data centers. In Proceedings of the 2010 10th IEEE/ACM international
conference on cluster, cloud and grid computing, pages 826–831. IEEE Computer
Society, 2010.

2. N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti. Vm placement strategies
for cloud scenarios. In Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, pages 852–859. IEEE, 2012.

3. S. Chaisiri, B.-S. Lee, and D. Niyato. Optimal virtual machine placement across
multiple cloud providers. In Services Computing Conference, 2009. APSCC 2009.
IEEE Asia-Pacific, pages 103–110. IEEE, 2009.

4. C. Delimitrou and C. Kozyrakis. Quasar: resource-efficient and QoS-aware cluster
management. In ACM SIGPLAN Notices, volume 49, pages 127–144. ACM, 2014.

5. P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir.
Information Processing Letters, 97(5):181–185, 2006.

6. P. Everaere, M. Morge, and G. Picard. Minimal concession strategy for reach-
ing fair, optimal and stable marriages. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent systems, pages 1319–1320. In-
ternational Foundation for Autonomous Agents and Multiagent Systems, 2013.

7. D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

8. I. Giannakopoulos, P. Karras, D. Tsoumakos, K. Doka, and N. Koziris. An Eq-
uitable Solution to the Stable Marriage Problem. In Tools with Artificial Intel-
ligence (ICTAI), 2015 IEEE 27th International Conference on, pages 989–996.
IEEE, 2015.

9. V. Ishakian, R. Sweha, A. Bestavros, and J. Appavoo. Dynamic pricing for efficient
workload colocation. 2011.

10. A. Kato. Complexity of the sex-equal stable marriage problem. Japan Journal of
Industrial and Applied Mathematics, 10(1):1–19, 1993.

11. A. Kella and G. Belalem. VM Live Migration Algorithm Based on Stable Matching
Model to Improve Energy Consumption and Quality of Service. In CLOSER, pages
118–128, 2014.

12. H. N. Van, F. D. Tran, and J.-M. Menaud. Sla-aware virtual resource management
for cloud infrastructures. In Computer and Information Technology, 2009. CIT’09.
Ninth IEEE International Conference on, volume 1, pages 357–362. IEEE, 2009.

13. H. Xu and B. Li. Egalitarian stable matching for VM migration in cloud com-
puting. In Computer Communications Workshops (INFOCOM WKSHPS), 2011
IEEE Conference on, pages 631–636. IEEE, 2011.

14. H. Xu and B. Li. Anchor: A versatile and efficient framework for resource man-
agement in the cloud. IEEE Transactions on Parallel and Distributed Systems,
24(6):1066–1076, 2013.

15. X. Xu and H. Yu. A game theory approach to fair and efficient resource allocation
in cloud computing. Mathematical Problems in Engineering, 2014, 2014.

Appendix

A Implementation details

Our implementation is a rewrite of the one presented in [8], with a few changes
and additions to suit our purpose.

A.1 Languages & Frameworks

The original Java implementation was ported to C++11, as the later allows much
greater precision in handling memory resources. We took care to make as much
of the new code parallelizable and used the OpenMP framework to leverage any
multicore power during instance generation, loading and solving.

A.2 Proposer selection

We propose a minor modification to the proposer-selection heuristic used in [8]:
whenever all agents of one set are satisfied after some round, the other set is
granted the proposer role in the next round. This ensures there will be some
proposing action in all rounds save for the last one. It prevents idle rounds
in large instances, and is especially impactful once only a few agents remain
unsatisfied. Despite the tangible benefits, it is unclear whether this optimization
may force the proposer-selection algorithm to fall in a periodic cycle, though
none of our experiments indicate so.

A.3 Deterministic generation & subsetting

A problem instance generated by our framework can be reliably reproduced given
the quintuple (N,n,K, b, s, h), where N is the number of agents per set, n is the
size of the reservoir used, K is the length of the preference list, b is a function
mapping agents to positive weights (floating-point values), s is an initial seed
(64-bit integer) and h is a hash function. We use the 64-bit Mersenne Twister
(MT64) engine available in the Standard Library of C++11, a fast PRNG that
guarantees long periods.

We generate a preference list as follows. First, we hash the global seed s
together with the agent id to create an agent-specific seed s′, with which we
setup a MT64. We feed the engine and the function b together with N and n to
WRS and obtain a sample of suitors of length n, where n ≤ N . Each sampled
suitor is paired with the weight which put them in the reservoir. As a last step,
we extract the heaviest K suitors (where K ≤ n) in the sample and place their
ids in the preference list ordered according to their weight. Each agent’s list can
be generated independently; our OpenMP implementation takes advantage of
this.

Consider two instances occurring from the same (N,n, b, s, h) but differring
in the cut-off point: K1 < K2 ≤ n. The sampling phase is independent from K

and so will produce the same sample of length n for any two agents with the
same id. Since the suitors are placed in the preference list according to the order
of their weights, the list of an agent in the K1 instance will coincide with the first
K1 elements of the corresponding agent’s (longer) list in the K2 instance. This
effect enables us to generate instances that are proper subsets of other instances.
We can thus study with great precision the effects of limiting the preference list
at any desired fraction.

A.4 Compact representation of inverse map

The bulk of each agent’s dataset consists of two structures: the preference list,
which contains the suitors in order of preference, and the inverse map, which
maps a suitor’s id to their index in the agent’s preference list. When entire
preference lists are used, the inverse map can be represented as a plain array.
However, once the preference lists are trimmed, the array becomes sparse and
it is wise to represent it as a static dictionary in order to save space. We ex-
plored several concrete implementations built around stl::unordered map and
boost::flat map. The former one is very fast but the latter one achieves a
much better balance between performance and memory consumption. For our
experiments, we re-implemented boost::flat map from scratch to reduce unec-
essary overheads and augmented it with a summarizer cache that enables faster
searches.

