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AvtiIIpoAdyov

To keipevo tov Sidaktopikov eivat oxedov étopo. KabBopat pmpootd otov vtohoylot,
gxw éva aompo mapdBupo Tov NOOLTTAVT UTPOOTA 1OV, OKEPTOAL TIWG VA EEKIVI|OW

VA YpAQw TOV TPOAOYO KAl TO VNS LoV TANppvpilet Tpoowa.

dravovtag otny ohokAnpworn tov Sidaktopikol, PAETW OTL AVTO ATALTEL APKETO XPO-
Vo, TOAV Koo Kot avBpwmovs. Oa nheka Aomdv 6To onpeio avTO va EKPPAOW TIG V-
xaptotieg pov oe éva mAnBog avBpwnwv mov cuvéPatay, o kabévag pe Tov TPOTO TOU,

oTNV OAOKATpWOT TNG epyaciag avTng.

Katd tn Sudpketa Twv petantuylakwv omovdav pov, eixa tnv toxn va éxw ovvadéA-
QOVG KAl TIPAYHATIKOVG PIAOVG OTO EPYATTHPLO UEPIKOVG ATIO TOVG TTLO EVILAQEPOVTES,
{wvtavovg avBpwmovg mov éxw yvwpioet moté. Tovg evxaplotw yla Ty kabnuepvn
aAAnAemidpaon, TG oLVAPTIACTIKEG GL(NTHOELG TOOO EVTOG OO0 Kat EKTOG EpyaonTnpi-
OV, Yl TEXVIKA Kal OXL TO0O0 Texvikd Oépata. Oa nrav patato va mpoonabnow va Tovg
AVAPEP® EVAV-EVAY, TOVG EVXAPLOTW HETA aTtd TNV KapOLd LoV Kat eVXOpAL KAAT) ETLTV-

xla oTa TwPLVA Kal peANOVTIKA TOVG OXESLAL

Oa nbeka va evyxaplotiow TNy emTponn mapakolovdnong Tov didaktopikov, MpwTa
tov emPAénovta kaBnynt k. Nextapto Kolvpn, yia v emotnuovikn kabodnynon
TOv, TNV OpaAn ovvepyacia pag OAa avtd Ta Xpovia Kat TNV gukatpio Tov pov édwoe
Va amOKTHOW TOADTIUN EUTIELPIO PUE CLVAPTIAOTIKEG TEXVOAOYiEG katd TN didpkela TnG
¢pevvdg pov oto Epyaotrpto Ynoloyiotkwv Xvotnuatwy. Eniong, Oa 10ela va gvya-
plotiow diaitepa Tov k. Ayyeho Mmida, avam. kaOnyntr oto Iavemotro Kprtng

yta T 8tdBeom) Tov va polpacTtel o cL{NTNHOoELS TIG EKTIUNOELS TOV Yia TV e&EMiEn Twv

xi



xii

VTOAOYIOTIKWV CUOTNUATWY OTO HEANOV KAl VO GUVELCPEPEL TIOAD XPHOLpa OXOALA 0T
dovAeta pov. Télog, evxapiotw tov kaOnynty k. Tewpylo Manakwvotavtivov, n na-
povcia Tov onoiov VT pEe NOKO TPOTLTIO KaL TIYT| EUTTVELONG Yia Péva, OAa aUTA Ta

XPOVvIa OTO EPYACTHPLO.

H napovoa StatpiPpry Oa nrav oiyovpa modd ¢twyxdtepn Xwpig TIG pakpookeheis TEXVIKEG
ov(ntroeig pe toug Y.A. Tiwpyo Toovkald kat Kopvihio Kovptn, kabwg kat to Apa
Apn ZwtnpomovAo. H texvikn tovg katdption og cvuvovaopo pe tnyv mpobupia tovg va
[LE TPOOYELDVOLV ATOTOUA OTNV TPAYHATIKOTNTA [e EDOTOXT), KAAOTIPOAIPET KPLTIKT

ovvEBalay amoQactoTikd 0Ty OAOKATpwoT TNG SOVAELAG AVTHS.

Oa ndeha emiong va avagepbw etdika oto Apa Iiwpyo Tkodpa, yia tnv evBappuvon
TOU, TNV TOTN TOV 0NV TTPooTtdBeld pov, TNV aflofavaoTn KavOTITA TOV Va EUTTVEEL
avtomenoifnon oe dUoKOAEG OTIYHEG KAl VA KAVEL TA TIPAYUATA VA QaivovTal amAov-
otepa. O Tuwpyog eixe Tnv vopovn va dtaPaoet ToOAAEG apyikég ekdooelg TG StatpiPrg
Kat va poteivel alhayég mov Pedtiwoav kabBoploTikd tn Sopr Kat To mepLeXOUEVO TNG.

[Ipogavag, Tvxov Aabn kat mapakeiyelg amotehovv amokAeloTikd Sikr pov evOvVN.

Evxaplotw emiong tovg ¢ilovg pov amd Ta TpomTuXlakd Xpovia Kat Alyo apyotepa, To
Aevtépn, o Odvo, ™ Mapiva, to @wtn, To XproTo, yia TG oL{NTNoELS, Ta YéALa, TG

BoOATeg, TO XpOVO TOL Tepdoape Lali OAa aLTA T XpoOVvIa.

Televtaiot, aAA& ONUAVTIKOTEPOL, T} OLKOYEVELL poL: 1] UNTépa pov, Iavayiwta, o ma-
Tépag pov, Aswvidag, o Xpriotog, o Iavayiwtng, o Nikog. ITpogavwg dev pmopw va
XWPESW O TEVTE YPAUUEG TV AYATI HOV YUawTOVG, TNV EVYVWIOOVVN Hov Yia TN fo-
110e1d Tovg, TNV VAT kat O 0TAPLEN TOVG, TNV VTOLOVT| TOVG OTN — GUXVT| — YKpivia

Hov. Xe avtovg Ba nbeda va aglepwow TNV mapovoa StatpiPn).
Evxapiotw.

BayyéAnc Kovkng
Iavovéprog 2010



Abstract

Clusters have become prevalent as a cost-effective solution for building scalable par-
allel platforms to power diverse workloads. Symmetric multiprocessors of multicore
chips are commonly used as building blocks for clustered systems, when combined with
high-performance interconnection networks, such as Myrinet. SMPs are characterized
by resource sharing at multiple levels; Resources being shared include CPU time on
cores, levels of the cache hierarchy, bandwidth to main memory, and peripheral bus

bandwidth.

The increasing use of clusters for data-intensive workloads, in combination with the
trend for ever-increasing cores per processor die, poses significant load on the I/O sub-
system. Thus, its performance becomes decisive in determining overall system through-
put. To meet the challenge, we need low-overhead mechanisms for transporting large
datasets efficiently between compute cores and storage devices. In the case of SMP sys-

tems, this means reduced CPU, memory bus and peripheral bus contention.

This work explores the implications of resource contention in SMP nodes used as com-
modity storage servers. We study data movement in an block-level storage sharing
system over Myrinet and find its performance suffers due to memory and peripheral bus
saturation. To alleviate the problem, we propose techniques for building efficient data
paths between the storage and the network on the server side, and the network and pro-
cessing cores on the client side. We present gmblock, a system for shared block storage
over Myrinet which supports a direct disk-to-NIC server-side data path, bypassing the

host CPU and memory bus. To improve handling of large requests and support intra-

xiii
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request overlapping of network- and disk-I/O with minimal host CPU involvement, we
introduce synchronized send operations as extensions to standard Myrinet/GM sends;
their semantics support synchronization with an agent external to the NIC, e.g., a stor-

age controller utilizing the direct-to-NIC data path.

On the client side, the proposed system exploits NIC programmability to support pro-
tected direct placement of incoming fragments into buffers dispersed in physical mem-
ory. This enables end-to-end zero-copy block transfers directly from remote storage to

client memory over the peripheral bus and cluster interconnect.

Experimental evaluation of the proposed techniques demonstrates significant increases
in remote I/O rate and reduced interference with server-side local computation. A pro-
totype deployment of the OCFS2 shared-disk filesystem over gmblock shows gains for
various application benchmarks, provided I/O scheduling can eliminate the disk bot-

tleneck due to concurrent access.



[TepiAnyn

O1 ovorouyie (clusters) éyovv emkpatroer wG 01kOVOUIKH AV Yio THY KATAOKEVH KALpa-
KOUUEVWY TTAPIAANA WY apyITEKTOVIKWY, TXPEXOVTAG VTTOAOYLOTIKY 10X O€ TIOIKIAEG eQarp-
poyés. Zvothuata Zoupetpikhc Iodvenekepyaoiag (SMPs) amd molvmipnvouvs eneéepya-
0TEG YprolpomolovTal ovxva ws dopikoi Aifor oTnY KaTaoKEVY TLOTOLYIWY, 08 TVYOVXOUO
pe Siktva Sixavvdeons vynAng emidoors, onws To Myrinet. Ta ovothuate SMP yapaxty-
piCovrar amd Siapoipacud mépwv oe moAA& emimeda: aTOVG poLpalOueVOVS TOPOVS TTEPIA LY~
Bavovrar o ypévos CPU, emimeda THG LEpAPYinG KpUPWY UvHEY, T0 VP0G (WOVHG TIPOG THY

KUpLat uviun Kot 1o €0pog LWviG aTov TEPIPEPEIAKO OLAdpopo.

H avéavbuevn xprion Twv cvoTtoioy yia epapuoyés anautntikés oe dedopéva, oe ovvéva-
OUO UE THY TAON YIo TTEPLOTOTEPOVS VTTIOAOYIOTIKOUG TTUPHVES avd emeéepyaaty, avédver Tov
@bpto Tov vmoovatHpatos Eioddov/EE6Sov. H emidoot) Tov eivau kaBopiotiki) 0To ouvolikd
pvOud efvmnpétnong Tov cvothuatos. Iia o Adyo avtd, ypeialduacte unyaviouovs yaun-
A6 emBapvvons yi v amodoTiky petakivyon pueydAwv ovvorlwv Sedouévwy avaueoa oe
VTTOAOYIOTIKOUG TTUPHVES Kau amoOnkevTikg péow. Xtnv mepintwon twv SMP, 1 anaitnoy
avth petappdletan oe peiwpévy katavadwon ypévov CPU kau ebpovs {wvns oTov S1édpo-

UO UVHUNGS Kol TOV TiEpLPepelako Sicdpopo.

H napovoa Siatpiffty ekepevvd 116 emmTaoeLs Tov avTaywviouot yia popaopevovs mépouvg
oe eévmnpetnTés anobhkevons. Meletdue Tnv kiviion Twv SeSouévwy e cvaThua potpals-
pevys mpooPaons emmédov umhok mavw amo Myrinet ko Bpickovpe 0TL 0 Kopeauds Tov da-
OpOpov KUpLAG UVAUNG KaL TOV TIEpIPepeLakol Siadplpov emPapivel oUavTIKE TH AelTOVp-

yia Tov. [l THY avTIUETWTTION TOV IPOPANUATOG, TIPOTEIVOVUE TEXVIKES YPIX THY KATXOKEVH



2 INEPIAHYH

amoboTiK@V povomatiwv Sedouévwv aviueon oe amobnkevting péow ko To SikTvO, OTHY
nAevpd Tov elvmnpeTyTh, KA TO SIKTVO KA TOVG VTIOAOYLOTIKOUG TTUPHVES, OTHY TIAEVPX
Twv edatwv. Hapovardovue To gmblock, éva abornua poipalouevns npoofacns emmédov
pmdok to omoio vootnpiler anmevBeiog povomdt: SeSopévwy amo to dioko o€ mpooapuoyén
Myrinet, mapaxduntovrag tov emelepyaoty) kat 1o SikSpopo uviuns. Ia BeAtiwpévn vmo-
otipién cuthoewy peydAov unkovs ke voaTHpiEn EMKEAVYNG TWY PROEWY AVEYVWOTGS KoL
OIKTVAKHG amooToANG pe eAdyioTtn eumAokr TG CPU, eiodyovue ovyypoviouéves Aettovpyi-
£ amo0TOANG WG emekThoels 0To Myrinet/GM. H onpaciodoyia TovG emTpémer ovyypoviouo
NG KapTaG OikTU0V pe eéwtepikd mapdyovra, m.y. évay edeykti anobixevons mov xpyot-

UoToLEL TO AUEOO HOVOTIKTIL.

Ztnv mhevpd TV TEAKTY, TO TIPOTEWVOUEVO TUOTHUX EKUETAANEVETAL THYV TIPOYPAUUATION-
UOTHTA THG KapTAG SIKTVOV Y1ox ver vooThpiker dpeon TomoOéTnon eioepyouevwy Tepayiwv
dedopévwy oe amopovwtés Sikomaptovs oty puoiky uviuy. H oxediaon avth kabiotd dv-
VT THY Kivon UmAok amd dkpo o€ dkpo ywpis avtiypapa, amevleinas amo amopakpvouévo

anmoOnkevTIKG péoo oTo SikTVO KL TEMKK OTH Uviun Tov TEA&TH.

H meipapatin amotipnon Twv mpoTevopevwy Teyvikwy Seiyver onuavtiky avénon tov pvh-
pov amopaxpvouévys E/E kou peiwuévy mapepfols] otov Tomixd vmoroyioué otny mhevpd
Tov vnnpeTnTh. AT TV ekTéLeO SIpSpwY UETPOTIPOYPAUUGTWY OE EYKATROTAON TOU
napdAAndov ovothuatog apyeiwv OCFS2 mévw amd to gmblock mpokvnter Bertiwon THg
anm6d00G TOV OVOTHUATOS, pe THY TipoimoBean 0T1 ) xpovodpouoroynon E/E oty mhevpd
Tov ebvmnpetny ebadeiper Ty oTevwnd oTovg diokovs Adyw Tavtdypovis mpdoPacns amd

moAov¢ meddTec.

0.1 Ewaywyn

Ot vrohoyloTikég ovoTotyieg (clusters) xpnotpomotovvTal OA0 Kal GLXVOTEPA Yia TNV
TIAPOXT) VITOAOYLOTIKAG LOXVOG 0& TANOWpa eQappoywv and Sid@opa eMOTNUOVIKA Tre-
Sia. Qg dopukoi AiBot yla TNV KATAGKELT) CLOTOLXLOV XPNOLLOTIOLOVVTAL GLXVA ZVOTH-
Hata Zvppetpikng ITodvene€epyaoiog (SMPs) anotehobpeva and molvndpnvovg eme-
Eepyaotég (CMPs). H anautodpevn Stktvakr vodopn mapéxetat ano éva diktvo Sa-
ovvdeong vynAav emdooewy, 6Ttwg to Myrinet [BCF195], To Quadrics [PcFHT01] 1
to Infiniband [Inf00].



0.1. EIZXAI'QIH 3

Front Side Bus

| o

Main Memory

Chipset
PCI/PCI-X

Ixnua 1: Tomxs Sikradn SMP pe Sikdpopo ovoTHuaTog

To Zx. 1 mapovotdlet tnv tumikn dopn evog kopPov SMP. Evag apiBuog enefepyaotav
Staovvdéetan péow kovov dtadpopov cvotnparog (Front-Side Bus) pe tov eheyktn
HVHUNG, 0 omoiog mapéyel mpdoPaoct oe Yyneideg pvrpng. EmmAéov, to ovotnua dia-
Oétel yépupeg mpog £va 1) epLocOTEPOVG TepLpepelakovs Stadpopovg, PCI i PCI-X,
omov Bpiokovtat ovokevég E/E- amo Tiq onpavTikOTEPES €ivat 0 TPOsapUoYEag SIKTUOV

Kat 0 eEAeYKTNG pHéowv amobnkevong, m.x. eheyktrg RAID.

To kvptoTePO yvwplopa piag tétotag oxediaong eivat o Stapoipaouos mopwv oe dua-
gopa emineda: muprveg polpalovtar emineda TG tepapxiag KPLOWY UVNHWY, emegep-
YaoTég potpalovtal eVpog {dvng oTov SLASPOHO CUGTHUATOG, TIEPLPEPELAKEG CVOKEVEG
Hotpdlovtal ebpog {wvng oTov TepLPepelako Stadpopo kat avtaywvilovtal Tovg eme-
Eepyaotés yua mpooPaocn otn pvrun. O Stapopacpog mopwv anlomotei Tn oxediaon
Kat SLEVKOADVEL TOV TTPOYPAUUATIOUO TOV CLOTHHATOG, WOTOCO UTOPEL Va €XEL OHA-
VTIKN eMinTwon oTny enidoon Tov, avaloya e To eid0g TwV LTIO EKTEAEDT] EQAPUOYWV.
E@appoyég pe Kok TOTUKOTNTA avagopwy TEPVOVY HEYAAO THRUA TOV XPOVOL EKTE-

Aeorig Tovg xpnotpomoldvtag dedopéva otny kpven pviun (onpeio (a)), evw epappo-
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Y46 pe peydheg anartioelg ya dedopéva (1.y., [GKAT09]) emPapdvovy to povondtt
npog v kupta uvnun ((b)) kat, kabwg o 0ykog Twv dedopévwv avéavetat, To povomatt
TIPOG OVOKEVEG amoONKeVOTG. Xe CLOTOLKiEG VTTOAOYIOTWY, 1) TpOoPaot ot amobnkev-
TIKA p€oa TIapEXETAL CLXVA HEow evog dikThov amobrkevong (Storage Area Network)
1 Héow ToV SIkTVOV 1o HVEEONG TG OVLOTOLIAG, OTWG TTEPLYPAPETAL AETTOUEPEDTEPQL
ota emopeva kat 0to § 0.2.1, omote 1 emidoon e&aptdtat ano ta povonaria (c), (d) Tov

2x. L.

A@evog N avaykn ylo EKTENEOT) EQAPUOYDV AMAUTNTIKOV 0t Oedopéva KL AQETEPOD 1)
ovvexns avénon g Stabéotung VTOAOYLOTIKNG LOXVOG avd ene§epyaotn AOyw TOv av-
Eavopevou aplBpov mupr vy, avadeltkvoouy T onpacia Tov CLOTHUATOG anodrkev-
ong ot duvatoTNTA KAILAKWONG TOV CLOTHHATOG | amofnkevTIkn vVITOSOpT TTPETEL VAt
avteneEéNBet oty avaykn Twv mopnvev ya dedopéva [Gur09]. Xpetalopaote pnxa-
VIOHOUG Yot TNV anodOTIKY UeTakivyon Peyalov ouvOlov deSouévwy avapeoa oe amo-
OnkevTIKA Lé€oa Kat VTTOAOYLOTIKOUG TTVPTIVEG, HECW EVOG SIKTVOV SlacvvOeoTG, e ENd-

Xlotn emPapuvorn oTn AetTovpyia TOL CLOTNHHATOG.

[a v mapoyr kApakoOpevng anofnkevTikng vITodoung o€ CLOTOLXiEG X PN OLHOTOLOV-
VTaL OLXVA CUOTHHATA Yia Holpalopevn xpnorn amobnKevTIkwV CLOKEVWY OF emime-
do pmhox (block-level storage sharing). Eva tétolo ovotnpa emitpénet oe €vav apto-
1O amd kOUPovG-TEAATEG VA €XOVY TIPOGPACT) O€ ATOHAKPLOHEVOLG SioKOVG KOUPWV-
e§unnpeTNTWY, wg Tomkovs. H apxn Aettovpyiag Tov mapovotdletat 0to Xx. 2: AUTHOELG
E/E yta pmAok petaoynuatifovtal oe Siktvakd pnvopata, ta onoia tepvovv otov efu-
nmpetnTn. E@e&rg, Oa avagpepodpaote oe téTola ovotripata Kat wg ovotipata Siktva-

KWV 0VOKeELWV PAok 1 ovotripata nbd (network block devices).

block I/0
requests

requests
[networkstack} [ block driver J i
e )

network messages

[ local storage j Server

Ixfipa 2: Apyi Aertovpyiag ovothuatog nbd

Idavikd, éva ovotnua nbd mapéyel éva moAD Aentd oTpwua TIPOGPAONG OE ATOUAKPL-

OHEVEG OVOKEVEG, KALHAKOUUEVO e TOV aplOpd TovG, pe eAAxLoTn emPApuvoTn 0TOVG
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TEAATEG Kat Toug e§uInpeTnTEC. Xe ovotrpata SMP, i avdykn avtn petagpaletat oe
Hewwpévo @opto CPU kat HELWUEVO avTaywVIoRo yia potpalopevovg tdpovg, SnA. ev-

poG {wvng oto Stadpopo KVpLAG LVIUNG KAl TOVG TTEPLPEPELAKOG SLadpopovg.

Akoun kat o €va amopovopévo ovotnua SMP, o avtaywvioudg yia mpdofaon otn
HVHUN TTpoKaAel onuavTikn empPpdduvon Tng ekTEAEONG TWV EQAPHOYWY, Kabwg Siep-
yaoieg oe Stapopetikolg ene§epyaotés cuvaywvifovtal yia TpocBacrt oTo Hovomatt

(b) [Bel97, LVE00, ANPO03]. H tpoofaon oTn (vin ano mepLepelakes oVOKeVES (Sta-

dpopég (), (d)) emteiver To mpoPAnua- cvyxpova diktva Tpoo@épovy pubuodg TG Ta-
&ng Twv 10-40Gbps, av€dvovtag Tnv micon oto Stddpopo pvrpng kat apepnodifovrag
TOV VTTOAOYLONO OTOVG TOTIKOUG eme&epyaotés [Sch03], pe eppavr empBapuvon otnv
emidoon [KKO05, KK06]. H oxediaon evog ovotriuatog nbd ogeilel va otoxevel otnv
eAAXLOTOTIOINOT TOV KOGTOVG ATOUAKPLOUEVNG TTpOTBaong oe dedopéva, mov avave-
TaL OHAVTIKA AOYW TOV AVTAYWVIOHOV Yia VTTOAOYLOTIKO XpOvo kat eVpog {wvng oe

Hotpalopevovg Stadpopous.

Ta obyxpova cvotipata nbd votepovv and tnv droyn avtr. Zvxva Bacifovtal 6To
TCP/IP, ontote etodyovv onpavtikn enegepyacia otnv CPU tov koupov. EntmAéov, avi-
HeTWTI{OVV TNV KOpLa UVIN WG KEVTPIKO TTOPO: TO Hovomatt Twv dedopévwv Staoyilet
TIOANEG QOPEG TO SLAdPOUO UVIUNG KAl TOVG TEPLPEPELAKOVG SLadpOHOVG, aKOpN Kat
Otav xpnotpomotovvtat tponypéva SiktTua Stachvdeong pe SuvatdTnTa ATOLAKPLOE-

vng AnevBeiag IIpooPaong otn Mvnun [KKJ02, LPB04, LYP06]. Etot, emPapidvovy on-

HOVTIKA TOVG CUUHETEXOVTEG KOHPBOVG, evaw 1 amtddoor) Tovg meplopiletal Aoyw kope-

opol Twv Stadpopwv E/E. Tlepiocdtepa yia tnv TpéXovoa kataotaon ota § 0.2.1, § 0.6.

H napovoa StatpiPry Stepevvd Tig eMMTWOELG TOV avTaywviopov yia xpovo CPU, gv-
pog (wvng ato Stddpopo kbpLag Hvrung Kat e0pog Lwvng oTov epLPepelakod Stadpoyo,
oe koppovg SMP mov xpnotpomotovvtal wg anodnkevtikol e§unnpetntég. Meletd Tnv
kivnon twv dedopévwy oe éva ovotnpa nbd mavw and diktvo Myrinet kat avadetkviet
v enidpaoct) Tovg. IIpoTeivovpie TEXVIKEG Yl TNV KATAOKEVT) ATOSOTIKWY LOVOTIATLWV
dedopévwv avapeosa oe amobnkevtika péoa kat o diktvo, and Ty mAevpd Tov gfu-
TPETNTH, KL avApesa 0To SIKTVO Kal TOVG VTTOAOYLOTIKOUG TTUPTVEG, ATTO TNV TTAEVPA
Tov TeAdtn. Emkevipwvopaote o€ PEATIOTONOWOEIG AOYIOUIKOD OVOTHHATOG, [ 0TO-
XO TOV TIEPLOPLOUO TOV AVTAYWVIOUOD Yia TOPovG Kat TN BeAtiwon tng pubpanddoong

TOV OVOTHHATOG.
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[Tapovotalovpe T oxediaon kat vAomoinon tov gmblock, evog cvotrpatog Siapot-
paopoL amodnkevTikov Xwpov mov ekpeTallevetal T Stabeoipotnta enegepyaotikng
LloX0OG Kat povadwv uviung oTov mpocappoyéa Stktvov yla TNy kataokevn anevbeiog
povomatiov dedopévwy avdpeca oto anmodnkevTiko péco kat to diktvo. H vomoin-
of Tov Mavw amd Myrinet emtpénetl Ty dpeon petakivion dedopévwv amod to dioko
070 8ikTvo, XWwpIG eVALANETO aVTiypaPo oTn VAN TOL KOUBoL Kat Xwpig TNV eumho-
K1) Tov enefepyaotr| Tov. H mpooéyyion avtn petptalel Tov aviaywviopo yla potpalod-
HEVOVG TTOPOLG, PerTiwvel TN SuvaToTNTA KAUAKWONG Kat emTpénet avgnon tov pub-
HOV LETAPOPAG £wG Kat SVO QopEg, ae oXEoT e TG kablepwéveg Texvikés. EmmAéoy, o
amoOnkevTiKdg KOUPOG eV elval amapaitnTo va XprOLUHOTIOLEITAL ATTOKAELOTIKA Yia TNV
egunnpétnon artnoewv E/E- unopei va Aettovpyei emumpdodeta wg vtoloyloTikog KO-
Bog, kabwg n amopakpvopévn E/E Sev mapepPaiver otny e&€An Tov tomkov vrolo-
ytopov. H oxediaon tov gmblock ouvSvdlet vtdpXoVTEG UNXAVIOHOVG AQAIPEDTTIG TTIOV
napéxovral and To AX kat To dikTvo SlaoVVOEOTG, EMTPEMOVTAG TNV KATACKELT] TOV
HLOVOTIATLOV [E YEVIKO TPOTIO, XWPIG AAAAYEG CUYKEKPLUEVEG YLl TNV VPLOTAUEVT] apXL-
textovikn. Etol eivat aveEdptntn Tov eidovg tng amoOnkevtikig ovokevng kat Statnpei

TOVG UNYAVIORODG ATOHOVWONG KAl TTpooTaciog Lviung tov AX.

H apykn vhomoinon §emepva meptoptopog evpovg {wvng oo Stddpopo khpLag uvnung
Kal 0TOV TEpLPePELako Siadpopo, woToco vIoAeineTal Twv SLVVATOTHTWY Tov amodn-
KELTIKOV [HEGOV Kat TOV SIKTOOV Staocvvdeong, Adyw Tov TapAAANAoOL TPOTOL HETAPO-
pag dedopévwv and anobnkevtika péoa RAID kat Tov meploplopévov mToooy HVHUNG
nov StaBétet n kapta Suctvov. Ta TNy kakvTepn Mpooappoyn Tov gmblock oty vVeL-
OTAWEVT APXLTEKTOVIKT Kat TNV oo thpi&n peyalvtepwy artnoewy E/E xwpig epmAokr
Tov emelepyanTr) TOL KOWUPOV, TPOTEIVOULE LLta VEQ KATNYOpPia AELTOVPYLDY ATTOGTOANG
névw and to Myrinet, ov vtootnpilovy cvyypovioud- 1 onpactoloyia TOVG emITpE-
net 0t SikTvakn petagopa va egehicoetal eAeyyopeva, mapdAAnha pe T petagopa
dedopévwv and to dioko, enkalvntovtag TG dvo @doelg yia v idta aitnon E/E. H
EVOWUATWOT) TOVG OTO CVOTHHA PBEATIOVEL TEPAUTEPW TO PLOUO HETAPOPAG TIOV ETUTVY-

XAveTat GUYKpLTIKA e Tr Baotkr) ékdoor).

v mAevpd Tov TEAATN, Pact{OpAcTE OTNV TPOYPAUUATIOUOTTA TOV TIPOCAPUOYEQ
SutdoL Kat MpoTeivovpe TeXVIKES peTagopag dedopévwy pumAok and To dikTvo oe did-
OTIOPTEG TIEPLOXEG PUOLKNG UVAHNG XwpiG avTiypago kat xwpig epmAhokr g CPU. Xe

oVVOLAGHO [E TO TIPOTELVOHEVO HOVOTIATL antd TNV TAELPA Tov efummpetnTy), 1 oXedia-
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on auTr emTpémnel TN petakivon dedopévwv pe undevikd avtiypaga and dkpo o€ akpo.
H eyxatdotaon evog mapdAAnAov cvothpatog apxeiwy, Tov Oracle OCFS2 mdvw amod
™V vrtodourn emTpEneL TNV a§loAdyNnon TG emidoong e TPAYHATIKA HETPOTPOYPANL-
Hata. Bpiokovpe OtL 1 Xprjon Tov Apecov HOVOTATIOD YEVIKA eVVOEL TNV emidoon, pe
™V TpodndBeom OTL TO LTTOCVOTNHA ATOONKEVTIKWY HOVASWV TIapEXEL EAPKT pLOUO

HETAPOPAG WOTE Va UV YIVETAL I OTEVWTIOG TOV CLOTHUATOG.

H ovvelogopd tng StatpiPrig avtig ovvoviletat ota efng:

« IIpoteivovpe amevBeiag povomatia E/E avapeoa oe anobnkevTikég ovokevég kot
70 SiKTVO, HELWVOVTAG TNV EMIOpAOT) TOL KOPETUOD TOL SLAdPOHOV KUPLAG UVIUNG
Kat Tov mepLpepetakov Stadpopov oe anodnkevtikovg e§unmpeTnTéS. Agiyvovpe
TWG TETOLA LOVOTIATLO LITOPODY VO KATACKEVAOTOVV pe TPOTOo aveEapTnTo Tov

amoOnkevTIKoL [ECOV.

o ITapovaoidfovpe to gmblock, pa vAomoinon tov cvotnpatog mavw and SikTvo
Myrinet. AmoTipobpe melpapatika Ty enidoor) tov, deixvovtag 0Tt eMEpeL o-
HovTiKr avgnon tov puBpod amopakpuopévng E/E ki emttpénel 6Tov TOMmKO LTTO-

Aoylopo va ovveyiCet xwpig onpavtikn mapepBolr.

o AvaxadTTovpe TEPLOPLOUODG Oe SLAPOPa CLOTATIKA [EPT) TOV GLOTHUATOG, OL
omoiol pewwvovy v anodoon Twv anevbeiag petapopwv. Asixvovpe g n oxe-
Siaon pnopei va Eemepaoet avaloyoug mepLOPLORONG, XPIOLUOTIOLWVTAG EVOAAQ-
KTIKA LOVOTIATIAL [ EVOLAUEDT) ATOONKEVOT| O€ ATOUOVWTEG OTOV TIEPLPEPELAKO

Sadpopo, ouveyilovtag va mapakapunteL To SIASPOUO KOPLAG HVIUNG.

o IIpoteivovpe apXITeKTOVIKEG aANayéG WOTE 1) OLYKEKPIUEVT oXediaon va epap-
Hoetau o€ Siktua ekTOG Tov Myrinet. Zv{ntovpe aAlayég otn Swayeipton uvnung
and 1o AX, wote va vtooTnpilovtat SLakpLTég TMEPLOXEG UVIUNG, HEPIKEG KOVTV-

TEPA OTOVG EMEEEPYATTEG, LEPIKEG KOVTUTEPQ OTO OIKTLO.

« IIpoteivovpe ovYXpOVIOUEVEG AELTOVPYIEG ATTOOTOANG WG EMEKTACT 0TI ONUACLO-
Aoyia Tov oTpdpATOG avTalAayng Hnvupdtwy Tov Myrinet, ot omoieg ekpeTaA-
AebovTal TNV TPOYPAUUATIOIUOTITA TOV Yia Va PEATIWO0VY TO XELPLOHO HeYAAWY
artnoewv E/E, emtpénovrag kaAvtepn emkalvyn twv gdoewv E/E diktdov kat

dioxov.
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o ITapovotdfovpe PEATIOTOTO|OEL OTNV TTAEVPA TOV TIEAATT], e OKOTIO TNV [e-
Tagopd dedopévwy amod To SIKTLO 0 ATOUOVWTEG EQAPHOYWYV XWPIG eVELAETa
avtiypaga. Avtn n oxediaon eival, e§ 6owv yvwpiovpe, N TPWTN OV EMUTPEMEL
amod AKpo og AKPO UETAPOPEG HTAOK He undevikd avTiypaga, o€ cuvOLAOHO e

TO TIPOTELVOUEVO HOVOTIATL ATIO TNV TAELPA TOV e§UTINPETNTT.

» Meletdpe Tovg oVUPLPACHOVG TTOV YivOVTaL OXETIKA He TNV SuvaToOTNTA XPHONG
KpL@rG uviung (caching) kat tnv mpoavdktnon dedopévwv (prefetching) otnv
TAeVpA TOL LTI PETNTH, eYKABLOTWVTAG Eva TTapdAAnAo cVoTNpA apyeiwy TTd-

Vw amd TNV vtodoun Hag Kal ATOTIHWVTAG TNV eMid00T) TOL e Totkila opTia.

0.2 YnopaBpo

To pépog avtd mapovotdfet cuvomnTika To TEPLPAAAOV VALKOD Kot AOYLOKOD 0TO 0TI0i0
eoTialet n mapovoa StatpiPry. Apxikd, ov{ntdpe TIg Pacikég apxég Twv ovotnuatwy nbd
Kal GUXVA oevapla Xpriong TovG. XTn ovvéxela, e§etdletal n Aettovpyia Twv ovotnua-
TWV EMKOLVWVIAG XWPOL XPNOTH, He Eupaocn oto Myrinet, doTe va oploTel To MAAioL0

0TO 0OTI0{0 VAOTIOLOVVTAL OL TIPOTELVOHEVEG TEXVIKEG.

0.2.1 ZXvotnuata nbd kat epappoyég

H avayxn ya popalopevn npoopaocn emmédov pmhok o€ KOO amobnkevTikd xwpo
TIPOKVTITEL GUX VA O€ OVOTOLXiEG LTTOAOYLOTWY LYNANG emtidoong. Mepikd amod ta mio ov-
vnBopéva oevapla xpnong eivat: (a) H eykatdotaon evog mapdAAnlov cvotriuatog
apxeiwv potpalopevou diokov, Onwg to GPFS [SH02] xau to GFS [PBBT99] (b) H vro-
othpt&n TapIAANAWY eQAPUOYWV APXITEKTOVIKNG HolpaloevoL Siokov, OTiwG givat To
ovotnpa Oracle RAC kat (c) meptBAAAOVTA EKOVIKWV UNXAVWY, OTIOV OL EIKOVEG TWV
SloKWV TWV EKOVIKWYV HNXAVWV TOTOOETOVVTAL € KOLVO amobnKeLTIKO XWPO, WOTE Va
eivau duvatn n Suvapukn petakivnon (live migration) Twv elKOVIKOV UNxavay amo me-

PLEKTI] O€ TIEPLEKT).

[Mapadootakd, n anaitnon ya koo xwpo tkavomoteitat pe xprion e&etdkevpévon di-

ktOov amobnkevong (Storage Area Network - SAN) pe Baon tnv apyirektovikn Fibre
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Channel (Zx. 3(a)). Me tov tpomo avtd ot kotvoi Siokot epgavifovrat wg TomKA ouv-
dedepévol kat xpnotpomotovvtal avéhoya mpwtdkolAa, mt.x. SCSI yia v mpdoPaon o€

aUTOVC.

Avtr n mpooéyylon amattei T Statnpnon dvo diktdwy, evog yla mpooBaon ota amno-
OnkevTikd péoa ki evog yla TN SlaocvvOeon TG oLOTOLXIAG Kal TNV EKTEAEDT) TAPAN-
AnAwv epappoywv. To SAN ypetdletal va khipakwOei oe peydlo apBuod koppwy, v
avavetat to k6oToG avd kopPo. Emmhéov, To evpog {dvng Tpog Toug Siockovg mapa-
Héver otabepod kat dev avgdvetat kabwg mpootiBevtat véol kduPot oto ovotnua. Ia va
pewwOei To k60TOG akolovBeital ovxvd pia VRPSIKN TTPocéyylon: évag aplOuog kKO-
Bwv mapapével puoikd ovvdedepévog oto SAN (kopBot amoBnkevong) kat e§dyer Tovg
diokovg yla mpdoPaon emmédov punlok péow Tov SIkTVOL dlacvvdeong 0Tovg LITOAOL-
novg (Zx. 3(b)). Zvveyifovtag otnv idta Aoy, To SAN pmopet va e§alepbei evrelws,
OTIOTE TO GVUVONO TWV KOUPWV CUVELOPEPEL EPOG TOTILKA GLVOESeUE VWY amoONKEVTIKWY

HEOWV yla TN Snpiovpyia evog erkovikov, polpalopevov xwpov anobrnkevong (Zx. 3(c)).

O akpoywviaiog AiBog pag TéTolag mpooeyytong eivat éva oo TNHA SIKTVAKHG CLOKEV-
16 umAok (network block device - nbd) (Zx. 4) To omoio emtpénel mpooPaot oe amopa-
KPLOUEVEG aTOONKEVTIKEG GVOKEVEG PEow TOL SikTVOL Slachvdeong. Tétola ovoTrpa-
ta iepthapPdavovy to otpwpa NSD (Network Shared Disks), pépog tov GPES, to NBD
(Network Block Device), pépog tov muprva tov Linux kat to GNBD, pia Bektiwpévn
¢kdoorn tov yia to GFS ¢ Red Hat.

Ot vhomnowmoeilg avtég PaciCovtat oto TCP/IP, ondte gpmAékovy otoifa mpwTokOAAWY
TIOV eKTEAEITAL OTOV €MeEePYAOTN| TOL OLOTAPATOS Kat Oev ekpeTalAevovTat Tpony-
HEVA XAPAKTNPLOTIKA TwV SIKTVWV SlaohVdeong, Omwg TN SuvaToOTNTA Ylot AvTaAAa-
Y1 HNVOHATOV XWPIG avTiypaga Kot amopakpuouévn anevbeiag mpooBaong otn Lviun
(RDMA). Anté tnv aAAn TAevpd, VIIAPXOVV EPEVVITIKEG TTPOOTIAOELEG Yia TNV EKHETAN-
AEVOT) AVTWV TWV XAPAKTNPLOTIKWY, TOL avakbovTat Ste§odkdtepa ato § 0.6. Qotdo0,
TO TIPOPAN LA TTAPAUEVEL OTL TTAPOAO TIOV ATTAOTIOLEITAL OT)UAVTIKA 1] ATAULTOVEVT OTOPa
TPWTOKOAA WV, 1 kivion Twv dedopévwy anod Ta amofnkevTikd EcA GTOVG VTTOAOYLOTL-
KOVG TTVpTveG akolovBel povomdtia Tov avfdvouy TOV avTaywviopo yla potpalope-

VOUG apXLTEKTOVIKOUG TTOPOVG, ELOAYOVTAG OTHAVTIKT EMBapLVOT).
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Cluster Interconnect Cluster Interconnect
(Myrinet) (Myrinet)

Je Jg
Y T

L Storage Area Network Storage Area Network J

SSS S
S=S SSS

(a) OMot ot kOpPot ouvdedepévol oto SAN
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(b) Koupot amoBrikevong oto SAN

Cluster Interconnect
(Myrinet)

-(
-(
-(
a/a
-(

[ 8 [ &0
(c) Movo tomikég amodnkevTikég povadeg

Ixfpa 3: Aiwovvdeon koufwv ovotoiyiag pe ovokevés amobnkevons
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Ixnua 4: Ieviko ovotnua nbd

0.2.2 XvoTtnpara EMKOV@WVIAG XWPOL XPNOTN
Baowkég apxég

H npd080g o1ov Topéa Twv SIkTOwV LYNANG eMid00oNG EXEL EMIPEPEL ONUAVTIKT avEnon
OTOV TPOOPEPOEVO pLOUO pHeTapopdg dedopévmy, Tov PpiokeTal oTnV epLoxT TwV 2-
40Gbps kat peiwon 0To XpOVO apyIKNG ATOKPLONG, 0 0Toiog Kupaivetal and 0.3-1.04s,

avéhoya pe To péyefog Tov Siktvov.

Qotdoo, n mapoxn avdloywv emdocewv oTIG TeAkEG eQaproyég dvoxepaivetal anod
v vmapén molvmhokng otoifag mpwtokdAwy, énwg to TCP/IP gtov mupriva Tov
AZ. Tia va petwoovv tnv emPapuvon mov mpokalei n eumhokn Tov AX 610 Kpioto
HovoT&TL, TTOAAG ohyXpova Siktva, Omwg To SCI [Hel99], to Quadrics [PcFH101], to
Infiniband [Inf00] kat To Myrinet [BCF'95] axoAovBo0v apXITeKTOVIKY ETUKOVWVIAG
xwpov xpnotn (user level networking). To povtéAo avtd emtpémel Tov dpeco éleyxo

Tov mpooappoyéa SikThov and dlepyacieg xwpov xproT.

Eg@ooov 1o AX mapakauntetal, o porog Tov muprva avalapavetal ano éva cuvova-
opo6 PtPAodnkng xwpov XprioTn, kat VAtkohoytopikol (firmware) mov ekteleital mavw
otnV kdpta StkTOOoL- 1 eMIKOVWVia aAvAUEsd Tovg eykabioTatal and TPOVOHIODXO Kw-

dwka mov ekteleital wg dopkd otoiyeio (module) Tov AX (2. 5).

H epappoyn amoktd éAeyxo NG SIKTLAKAG SlemaPn§ HEOW ATEIKOVIOEWY GTO XWPO EL-

KOVIKNG Lvijung tnG. Epdoov to A kat o emefepyaotnq Tov kopBov agatpovvtatl ano
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TO KPIOLHO HOVOTIATL, 1] AELTOVPYIKOTNTA TOVG avalapPavetal and v idta TV Kap-
Ta, 1) omtoia xpetdleTat va givat mpoypappati{opevn oe kdmoto Pabpo, avaldyws pe to

TPWTOKOANO EMKOLVWVIAG XWPOL XPOTH TIOL XPTOLUOTIOLELTAL.

Katda tn oxediaon evog téTolov TpwTokOANov TpoKOITTOVV {NTAHHATA TIPOYPAHUUATIOTL-
KNG onpactoloyiag, petaxivnong dedopévwy, petdppaong dtevbuvoewv kat Tpootaci-
aG UVAUNG. ZTa EMOEVA, TTAPOLOLALETAL EV OLVTOWIA WG AVTA Ta Bépata avTipeTwmilo-
vtat 01N oxediaon Tov oTpwiaTog enmkotvwviag GM yia diktva Myrinet, ov anoteAei

Kat To TEPLPAANOV LAOTIOINOTG TWV TIPOTELVOUEVWY TEXVIKWYV ALTNG TNG StatpLPr.

YAomoinon emkowvwviag xwpov xprotn oto Myrinet/GM

To Myrinet eivau pa Stktvakn vtodop LVYNAOL PLOUOY peTaPoPAg Kat xapnAod xpo-
VOV aPYLKNG ATTOKPLOTG Yot CLOTOLYIEG VTTOAOYLOTWY, TIOV XPTOLUOTIOLEL TEXVIKEG ETIL-
Kotvwviag xwpov xpnotn [BRBISb] yia va agaipéoel to AX and to kpioio povomatt
g emkovwviag. H otoifa Aoyloptkod tov Myrinet 6tav xpnotlomoLeital To OTpwua

emkotvwviag GM [Myr03] mapovotdletat oo Zy. 5.

H e@appoyn anoktd tov éAeyxo Tov mpooappoyéa SIKTOOV HECW ATEIKOVICEWYV TNG
VNG TOV TTPOOAPUOYEQ 0TO SIKO TNG XWPO EKOVIKWDY SLlevBivoewy- 6Tav odokAnpw-
Oei n eyKATAOTAON TWV ATEIKOVICEWY, XPT|OLLOTIOLEL L) IPOVOULOVXEG EVTOAEG TTpOTPa-

ONG OTN UVAUN Yl va ekteréoel Aettovpyieg Siktvakng E/E.

O npooappoyéag diktbov Tov Myrinet cuvdéetal oTov mepLpepetakod diddpopo, aTny
vnodopn mov e€etalovpe tomov PCI/PCI-X. AwaBétet évav ene§epyaotr) tomov RISC,
nov ovopaletan Lanai kat éva uikpo mood (2MB) pvriung SRAM mnov xpnotpomoteitat
and to Lanai kat tpetg Stagopetikég pnxavég DMA: pia yia kivion dedopévwv amd
HvAun Tov kopBov otn pviun tov Lanai kat §00 yia avtallayn dedopévwv avapeoa

oTn pvnun Tov Lanai kat To uowKo peco.

To Zx. 6 mapovoldlet Ta kOpLa ototxeia piag kaptag Myrinet tonov M3F-PCI64B-2,
1 omoia Xpnotpomotel xwploTég Yyneideg yia kabe povdda. Ztn ovykekpiévn epyacia
xpnotpomotovvtat kapteg M3F2-PCIXE-2, 6mov 0An n AelTovpylkoTnTa EVOWUATWYVE-

Tat o¢ pio yneida LanaiX, n onoia vtootnpilet Sbo ouvdéopovg makétwy.

Ta va eivat @ikt 1) emikovevia Xwpic avtiypaga, 1o GM vrootnpilel TNy anetkovi-

on ano TG diepyaoieg pepwv TG Hvhung tov Lanai, mov ovoualovtat 8vpeg tov GM.
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[ Application ]

[ GM Library ]

[ GM firmware ]

Ixnua 5: Zroifoa Myrinet/GM

Fast Local Memory
(2MB SRAM)

Address and 64-bit data

N
*
PCI DMA Host RISC Packet > .
Host bridge ] [engine] Iface ] [ core } [ Iface Link
J
PCIDMA chip Lanai9 @ 133MHz

Ixfiua 6: Kvpiotepa uépy mpooapuoyéa Sixtoov Myrinet

KabBe B0pa amotelel dkpo emkowvwviog yia Tnv epappoyn. Anoteleitar and éva un
TPOVOLOVXO TUNA, TO OTIOI0 TIEPLEXEL OVPEG ATTOOTOANG Kat AfYNG OV TPOTOTOLOV-
vtat anevBeiag and tn Siepyacia ki €va TPOvOULOVXO THRHA, TTOV peTafdAleTat and To

VALKOAOYLOULKO Kal TOV 081y6 XWpOoL TTuprva.

To vAikohoytopikd Tov GM ehéyxet Teplodikd TIG OVPEG, EVTOTICEL VEEG AUTNOELG TWV
EQAPUOYWYV Kal XprotpomoLel Tig unxavés DMA ya va Tig e§unnpetrioet. To GM mapéyel
a&lOMOTN EMKOWVWVIa ONUEIOV-TIPOG-OTEL0 XWPIG OVVEEOT avapeoa oe SLaQopeTIKES
BVpeg, moAvmAékovtag dedopéva StagopeTikwy Bupwv Tavw and cvvdéoelg avdpeoa
oe Cevyn kopPwv. Eva mpwtokoAAo Siktdov «Go back N» xpnopomnoteitat ya tnv vho-

noinon a&lomotwv ouvdécewv.

H Aettovpykotnta ToU VAIKOAOYIOUIKOD OPYAVWVETAL OE TEGOEPLG UNXAVEG KATAOTA-
oewv, Ti¢ SDMA, SEND, RECV kat RDMA, ka0e piia and TG onoieg avahapPpdavet pépog
g enegepyaciag Tov Siktvakov TpwtokOAov. H unyavr) SDMA eléyxet Tig avorytég



14 INEPIAHYH

@

User
[ Application ] pinned-down buffer ]
[']
| s
[ GM Library @I] R GM event Q ]
Kernel '."'@
NC ~
o ort send )
PCIDMA , P Q ] Send >
. " - -
Englrs g packet descriptors 3‘@> DMA @
page hash entries
L
Se);, ©

Lanai SRAM

Ixnua 7: Amootods) unviparos oto Myrinet/GM

BVpeg, evromilet véeg autnioelg anootoig/ANyng kat tpoypappatiCet T unxavy DMA
Yl HETAQOPA aTd TN pvnpn Tov kopfov otn pvrun tov Lanai. H pnyavr) SEND déxetau
TakéTa Tov Tapayet i unxav SDMA kat tpoypappatiCet Aettovpyieg DMA yia mpo-
wOnon oto Quowkod péco. EmmAéov, mpowBel maxéta OeTikng 1) apvnTikng emiPePainong
(ACK/NACK) tov mpwtokoAov. H pnxav RECV xetpiletat eloepxopeva makéta and
10 SikTVO Kat Tapayet avaloya makéta emPePaiwong. Téog, n unxaviy RDMA déxetat
eloepyopeva makéta anod t pnxavr RECV, ta tatptdlet fle amopovwTég eL0EpXOHEVWY
Hnvupatwy tng Stepyaociag xwpov xprotn kat ekkivei docohnyieg DMA yia tn petaxi-

VIOT] TOVG OTIG TEALKEG TOVG BE0ELG, GTNV KVPLA VTN TOV GLOTHUATOG.

Zta endpeva, tapovotalovrat TepANTikd T facikd Prifata yia TV OAOKANpwoT UG
Sradkaciag amooToAng unvopatog péow tov GM (Zx. 7), kdvovTtag avagpopd aTtovg Ba-
OlKOVG UNXavIopHoUG eNEYXoV, kiviiong dedopévwy, petappaong dievbBvvoewy kat Tpo-

0TACLAG LVIHNG TTOV AUTO TIAPEXEL

Ot ovvexeig ypapupés agopovv IpoypappartiCopevn E/E (Programmable I/O - PIO), n

omoia epmAéket eite Tr) CPU tov kopPov eite To Lanai, v ot Stakekoppuéveg avapépo-
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vtat og docoAnyieg DMA.

H Baown kArjon amootolng tov GM gm_send_with_callback() ovvendyetat Tig e&ng

@aoelg eEumnp£Tnong, ot omoieg avTioTolyovy ata Pripata (a)-(e) Tov Zx. 7.

(a) A¢opevon Tov anopovwT, dnuovpyia aitnong anootodng Hegappoyn vrohoyi-
el To pnvupa mpog anootoAn og kabBnlwpévo (pinned down) anopovwtr Xwpov
XpPNoTn. Avto eaogaliletat pe katdAAnAn kAron npog tov 0dnyo tov GM, wote
oL avTioTotXeg oeNideg va v HETAKIVOUVTAL TTOTE A0 TNV KUPLAL V). 2TT) OL-
véxeta Snuovpyei kKatdAAnAo aitnpa amooToAnG, IOV TTEPLEXEL TNV EIKOVIKT) SLev-

Buvon Tov amopovwTr, o€ avaloyn ovpd oTn uviun tov Lanai.

(b) Metagpaon SievBvvoewv kat apxikonoinon DMA H pnxav) SDMA evtomilet
véa aitnon kat mpoypappatiCet T unxavy DMA ya petagopd twv dedopévwv
and v kOpla pvAun otn pvrun tov Lanai. H petagopd xpetaletal tn @uoikmn
devBuvon tov amopovwth. [ta Tn Statrpnon Tov UnXaviopol TpooTaciag uvn-
ung Tov AZ, to GM tnpei mivakeg oeAiSwV yla TN HETAPPAOT) EKOVIKDOV SLevBUV-
OEWV 0€ YUOIKEG, 1) omoia avalapfavetat €§ ohokAnpov ano Tov mpocappoyéa
Suctvov. Ot mivakeg Ppiokovtal otnv kOpLa pviun. H képta Siktoov kpatd pépog
Tovg anodnkevpévo otn puvnun tov Lanai (page hash entries), dote va peiwoet to

KOOTOG TTPOOPaong o€ avTovg.

(c) AocoAnyia DMA Ta dedopéva tov punvopatog épxovrat otn pviun tov Lanai, pé-
oa o€ KataAAnhovg meptypapntég pnvupdtwy. Otav n dtadikacia oAokAnpwoet,

evnuepwvetat n unxavn SEND.

(d) Ewcaywyn makétwv oto diktvo H pnyavi) DMA tn¢ Siemag@ng makétwv mpoypap-

Hotifetal va elodyet dedopéva amod tn uviun tov Lanai 0to guoikd ovvSeoo.

(e) EmpePaiwon anod tnv amopakpvopévn mhevpd Aappdavovrat makéta empPefaiwong
(ACK) amd tnv anopakpuopévn mAevpd, £wg OTOV TO GUVOAO TWV TTAKETWY TTOV
ag@opovv To prvopa éxet tapadobei. Tote, evnuepwvetal n Stepyacia HEow ovpag
oVUPAvVTWYV TOL TNpeitat oTny KVpla pviun Tov kopPov. H Siepyaocia pmopet va
eAéyxet meplodika tnv ovpd avtr (polling) 1 va (ntrioet va konOei péoa otov
TUPRVA. ZTNV TEPIMTWOT AVTH, 1] KAPTA SIKTVOL eviuepwvel pe Stakomm VAIKOD

Tov enegepyaontn yia tnv ohokArpwon tng Stadikaciog amooTtoAng.
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[Ipémetl va TovioTel OTL N AOOTOAN Kat Afjym unvopatwv pe to GM eivau Stadikacia dvo

Pnuatwv:

AocoAnyia DMA ané tn pviun tov kopfov oto Lanai: yivetou petagpaon Sievdovoe-
wv, evepyomoteitat i) punxavr) DMA yia Tov mepipepetarod diadpopo kat ta dedo-

HEva peTagépovTal amo Tnv kvpta pviun otnv SRAM tov Lanai

AocoAnyia DMA an6 1o Lanai 6to kaAdwdio: Aedopéva TaKETWV avakT@VTaL amod TN

pvrpn tov Lanai kat elodyovtal 6To SiKTVO e TPOOPLOUO TOV ATOHAKPVOUEVO

KopPo.

0.3 ZXxediaon kat vAomoinon tov gmblock

To uépog avtd mapovoialet t oxediaon kat vAomoinon tov gmblock. Zv{ntape v
emPdpuvon mov etodyovv kabiepwuéveg mpooeyyioelg Pactopéveg oto TCP/IP 1| oe Te-
xvikég RDMA kat mwg n oxediaon tov gmblock e€eliooetal and avtég. Itn ovvéxeta
napovotaovtat ot alayég mov amattovvtat 0to GM kat Tov uprva Tov Linux yia va
vnootnpi§ovv a mpdtunn vomoinon, n omoia anotdtat Tewpapatkd. Téhog, ovln-
Tovvtau Bépata mov agopodv T oxediaon Tov gmblock, 61w o dtapolpacog Sopnpé-
Vv 8edopEvwy, 0 OLVEVACUOG TWV TIPOTELVOUEVWY TEXVIKWYV e SikTva ekTOG Myrinet

KAt 1) XPioT TOvG yla oxeSIaoelg XapUnAng KatavaAwaong evEpyeLag.

0.3.1 Xxediaon tov pnxaviopov nbd Tov gmblock
IMapadooiarég oxediaoeig nbd

H Baowkn apyr micw and pa vAomnoinon nbd nehdrn-e§unnpetnti mapovotaletat 6to
Zx. 8(a). O mehdtng Ppioketat cuvrBws 01O XWPO TVPTVaL Kat e§dyel i EIKOVIKT OL-
okevr) 0To vrtolotro cvotnua. Ot artrioelg evBvlakwvovTal oe SIKTvaKd UnvopaTa Kat
npowBolvtal atov efunmpeTnTH, 0 OTOI0G EKTENEITAL OTO XWPO XPNOTN KAl XPNOLHO-

notel kaBiepwpéveg kAnoelg ovotnparog yia E/E pe tnv tomkn ovokevr) umlok.

O yevdokwdikag evog yevikov egumnpetntn @aivetat oto Zx. 9. EumAékovtal téooepa

Paotkd Prpata otny e§umnpeTnon pag aitnong: (a) Afjyn unvOopatog mov TepLEXeL TV
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Application

)
Linux blockdev layer : [Linux blockdev layer} j[POSIX
| semantics
nbd client ! [ block device driver J [ VFS ]
______ oo Kemel | 1 kemet__ F
Hardware / Hardware y : Concurrent access, distributed locking,
NIC [ Storage device j distributed caching, data partitioning
\___ Client system ) \___Server system ) Block device sharing over interconnect
(or real SAN)
(a) Teviko ovotnpa nbd (b) MapdAAnio cbotnua apyeiwv mavw

and nbd

Sxfipna 8: Extéleon mapdAAndov ovotipatos apyeiwv mavw amd vodoun nbd

aitnon (b) Evtomopdg twv avtiototywv pmhok, m.x. e lseek() (c) Metagopd twv

dedopévwy o amopovwTh xwpov xpnotn (d) amootolr otov mehdTn.

initialize_interconnect();
fd = open_block_device();
reply = allocate_memory_buffer();
for (55) {
cmd = recv_cmd_from_interconnect();
lseek(fd, cmd-»>start, SEEK_SET);
switch (cmd->type) {
case READ_BLOCK:
read(fd, &reply->payload, cmd->len);
case WRITE_BLOCK:
write(fd, &req->payload, cmd->len);
}
insert_packet_headers(&reply, cmd);
send_over_net(reply, reply->len);

Ixnua 9: Yevdokwdikas eEvmnpetntii nbd

H emPapuvvon twv Aettovpytwv eaptatat and to €idog Tov dtktdov Staovvdeong kat
™V Tpoo@epopevn Aettovpyotnta. Ta évav e§unnpetnt Pactopévo oto TCP/IP, n
HeTapopd oe Aoyiko eminedo mapovotdletat oto Xx. 10(a). Ot ovvexeig ypapuég vro-
Snlawvovv mpoypappatiCopevn E/E, ot Siakekoppéves E/E pe DMA: (a) Ewoepxopeva
mAaiola TooBetovvtat pe DMA otn pviun (b) Exteleitar ) otoipa TCP/IP, to prpvupa
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[ nbd userspace server ] [ user (reply) buffer J

POSIX 1/0 I ® @ User
- --F oo --E

[ TCP ] [ VFS "ﬂ@ﬁ‘page cache ]
@ P S@ [ block layer ]@

'
'
'
:
netdev drv blockdev driver :@ Kernel K Je====
H Memory Controller
'

. .
B b e e e Tt Tt

CR0 [ | S
NIC Storage Dt et b
A .
=

@: '® P :

(a) Movomndtt Sedopévwy oto Aoyko eninedo chipset

(b) Movomatt dedopévwy aTo Quotko eninedo

Xxnua 10: Eévrnpetntiic nbd faoioyévos oe TCP/IP

[ nbd userspace server ] [ user (reply) buffer J

7y ; ..
: ;P’osu 110 \© ™ User
- - -dESaT2 meemsmemene e S
HE O] -,
: E VFS page cache ] \‘
o \
@l .@ )
E E block layer ]@ :'
ol g
HE blockdev driver ‘kernel [ )e=e==
E E /." Kernel Memory Controller
:' Rl
'

____________________________________

Pid Hardware
NIC Storage - - | S _ _
.
ontroller
@ @ & :
(a) Movomdrtt deSopévwy oto Aoytko eninedo chipset

(b) Movomatt dedopévwy 0To Quotko eminedo

Exnua 11: E§vnnperntiic nbd Pfaciopévos oo GM

ovvTibeTal KaL AvVTLypAPETAL O€ ATTOUOVWTI XWPOL XPOTH, EvEpyoToLeiTal 1} Stepyacia
Tov e§ummpetnth nbd. O e§ummpetntig nbd ektelei pia kAo ovotiparog read() yua
T deSopéva, TN YEVIKT TIEPIMTWOT AVTT) XPNOLHOTOLEL TNV KPL@T) Hvrpn oeAidwy (page
cache) tov muprva (c) 0 08nNyOG cvokevng petagépet Ta Sedopéva pumlok pe DMA otnv
KpL@1| pvnun oedidwv tTov muprva (d) Ta dedopéva avtiypdgovTal amod eKel OTOV ATo-
HOVWTT XWPOL XPNOTN, woTe TEAKA (&) 0 e§umnpeTnTNS va {NTroeL TNV anooToAr TovG,
OMOTE AVTLYypapovTal Tow 0T Uvnun Tov mopnva, ekteleitat n otoifa TCP/IP, oxn-
natiovtal mhaiowa Ethernet, ta omoia (f) n k&pta Siktdov napalapPdavet pe DMA xat

TomoBetei oto KaAwdio.

Zto Zx. 10(b), mapovaialetar n idia Stadikacio oe oK eminedo- LLAPYEL AVTIOTOLXiA

éva-mpog-éva ota Pripata Twv oxnudtwv 10(a), 10(b).

To povomdtt dedopévwv mov meprypdyape mepLexel TOANATAA PriLaTa avItypagng Twv
dedopévwv. O aptBuog tovg Ba pmopovoe va pewwbdei pe didpopeg texviés, m.x. E/E e

anekovion Lviung (mmap()).
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nbd userspace server

rposn( 170 User

?

[ VFs ] [ page cache ]

@ block layer ]@

blockdev driver « NG
1
I R N ardviare i® p=——
® pci/pcl-x i ridge
.
1
NIC ===l 1/0 Controller
@i HO QLN

chipset

(a) Movomdrtt dedopévwv 0to Aoytko eminedo © . ] L
(b) MovomaTt dedopévwy 0To QuOLKo eminedo

Exnua 12: Ipotervéuevos eévnnpernthic gmblock

Eval\axtikd, Oa umopotoe va e§ahetpbel éva avtiypago mapakdpuntovrag tny kpuen
Hviun tov mopnva: o efumnpetntng nbd xpnotpomnotel T AettovpykdTnTa O_DIRECT
tov tpotVvTTov POSIX yia va {ntnoet petagopd twv dedopévwv ancvbeiag otovg amo-
HOVWTEG XwpoL xprotn. To oTpwpa cvokevwv pmAok Tov Linux mapéxet pua yevikn
vlomoinorn dueong E/E, n omoia mpoadiopilet Tig guotkég SievBuvoelg Twv anopovw-

TV Kat ektedel DMA o avtéc.

2y mapandvw oxediaot, akoun Kat [e éva avTiypago aTov muprva, ta dedopéva da-
oxiCovv 6V0 @opég Tov epLPepelard SLASPoo Kal TEOTEPLS TO SLASPOO KVPLAG WvT)-
NG, evw epmAéketat ki CPU ot petakivior tovg. To mpoPAnpa petpdletat av xpn-
otpomotnBei dikTvo pe SuvatdTNTA EMKOVWYVIAG XWPOL XPNOTI, OTIwWG To Myrinet. Xtnv
nepintwon avty (Zx. 11(a), 11(b)) propodv va efaletpBobv ta meplocotepa avriypa-
@a, woTo00 Kat TdAL Ta dedopéva Staoxiouv 00 Popég Tov Stddpopo KVpLaG UVANgG
Kat Tov mepLpepelakod Stddpopo, katavalwvovtag ebpog (wvng Kat ennpedovtag Tnv

e&€AEn Tov ToTKov LVTTOAOYLOUOV.

GMBlock: EvaAAakTIkO pOVOTIATL e TapaKapyn KUPLaG Hviung

[Ipoteivovpe éva GUVTOUOTEPO HOVOTIATL SEGOUEVWY, TTOV TIAPAKAUTITEL EVIEAWG TNV
KUpta pviun. Lo Ty efumnpétnon wag aitnong E/E, xpetaletat povo va petakivnboiv
dedopéva anod to anobnkevtikd péco oto diktvo. H kivion twv dedopévwv 610 uotko
eninedo mapovotaletar oo Xx. 12(b): (a) mapakafn aitnong and tnv kapta Stktvov (b)
ene€epyaoio g aitnong and tov e§unmpetnTn, He dpeon petapopd Sedopévwv anod to
Héoo otnv kapta Stktvov Tov Myrinet (c) amootoAr} dedopévwy GTOV ATOHAKPVOUEVO

Koppo.
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H vlomoinon tov povomatiov avtov ADVEL T TEPLOCOTEPA ATO Tat TTPOPAR AT TTOV
avagépOnkav ota mponyovpeva: ekueTAAeVETAL TTANPWG TO £DPOG (WVNG TOV TTEPLPE-
peLakov Sladpopov, epOcoV To HovomdTt Tov StaoyiCet pia @opd, Ta dedopéva dev armo-
Onkevovtal evdiapesa ot RAM tov kOppov, Sev katavakwvetat eVpog {dvng uvnung

Aoyw amopakpuopévng E/E kat e§aleipetat o avtaywviopdg yia tpocBacn atn wviun.

Emnpoofeta, avtn n oxediaon avayvwpilet 6Tt o povomart yia anopakpvopévr E/E
UTTOpel va efval xwpltoTod amod TNy KOPLA (VAN | AVAYK Yo ATIOPOVITEG OTNV KLpLa
VUM TIPOKVTITEL ATIO TNV TPOYPAUHATIOTIKH onpactoloyia Tov GM kat Tov upnva,
OxL amod eyyevelg 180T TEG TNG apyLtekTOVIKNG. [la Tv vtooTthpEn Tov TpoTEVOpEVOL
povomaTtiov, amautovvtal enekTacelg 010 GM kat Tov muprjva Tov AX £T0L WOTE va &i-
vat dvvatn ) anevbeiag peTagopd avdpeca oTo péco anobnkevong kat o dikTvo, XPN-
olpomolwvtag Tig NN Stabéoipes agaipeTikég dopég TG emkolvwviag xwpov XproTn
KaLL TOV HNXaVIoHOD KANOEWV GUGTAHHATOG, WOTE Vo EAAXLOTOTONO0DV Ol ATAUTOVHEVES

aAayég otov myaio kwdika Tov e§unnpetntn nbd.

Eektvapie amo tov kwdika tov Zx. 9. Ztnv nepintwon tov GM o anopovwTng deopedetal
OTNV KVPLA (VN WOTE va propet va xpnotpomnotnfei amevbeiag amd tnv kdpta SikTov
(gm_dma_malloc()), n petaPAntn reply mepiéxet Tnv ewkovikn Stevbuvon tov. Qoto-
00, av avTi va SeopevTel 0TV KOpLa HVIun, eixe Seopevtel emdvw otn puviun SRAM
TOL TIpooapuoyéa, 1 emBupuntn onpactoloyia Ba pmopovoe va eKPPACTEL pe TNV KAT-
on read() mov akohovBei, xwpig aAlayn: Ba ovvéxile va onpaivel «StdPace Ta dedoyé-
va umAok Kat anofnkevoé Ta 0Tov anopovwtr pe eikovikn Stevbuvon reply», wotdoo

Twpa 1o povomndtt dedopévwy Ba fTav StagopeTiko.

Na va e§aopatiorei 0tL Ta Sedopéva Sev Ba epdoovy and v kpuer pvrpn celidwvy
ToL TTVPTVa, 1 KANo™ read() mpénet va ovvdvaoTtei pe dueon E/E, xpnolomowwvrag To
unxaviopo 0_DIRECT tov POSIX. Ztnv mepintwon avtr, 0 TUPHvag TAPAKAUTTEL TNV
KPL@PN pviun, To vroovotnua apeong E/E petatpénet v etkovikn Sievbvvon oe guot-
k| dtevbvvon n omoia avrkel oto xwpo dievBvvoewv PCI tov mpooappoyéa Myrinet,
oTOTE 1) AiTNON TTPOG TOV 081 Y6 GLOKELVTG UTAOK agopd oty SRAM Tov tpocappoyéa.
H docohnyia DMA mov yivetat 0Tn cvvéyela amod To anofnkevTiko péco, Tpokalel Tnv
petakivnon Twv dedopévwv amevbeiog otnv kapta. Ita Ty anootoAn Twv dedopévwv
néow GM, mapaleinetat To TPAOTO UIOO, TO THIHHA TNG HETAPOPAS TwV dedouévwy amod

T RAM otnv SRAM Ttov mpocappoyéa Kot TpayuaTonoLeital Hovo To Prita TnG peta-
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@opdag and Tnv SRAM 070 PUOIKO HETO.

T tnv vAomoinon Tov povomatiod Sev anautobvtat aAlayég otov Kwdika Tov eEumnpe-
™. Zuvexifet va xpnotpomotei kAfoelg read()/write() kaw gm_send(), eva 1 emibo-
UNTT ONpactoloyia TPOKVTITEL AT TOV TPOTIO TTOL CLVSVALOVTAL TO CTPWHUA CLOKEVWV
HmAok Tov Linux, To vToovoTNHA EIKOVIKNAG UVAUNG Kal I SuvaToTnTA EMKOLVWVIOG

Xwpov xpnotn tov GM, yla va KaTaokevaoTel To ovoTdtt Sedopévwv.

0.3.2 Aentouépeleg vhomoinong

H vlomoinon tov mpotetvopevov povomatiov epmAékel dVo dakpitd vroovoTHpaTa:
TPWTOV, enekTeivovpe To GM woTe va VOO TNPICEL ATOUOVWTEG UNVVUATWY HECA OTNHV
SRAM tov Lanai, devtepov emekTeiVOVE TO UNXAVIOUO EIKOVIKNG UVAUNG TOV TTLPHVA
wote va vrootnpilet anevbeiag E/E pe meploxég pviung oto xwpo dievBuvoewv tov

PCL

YnootipiEn GM yia anopovwtég otnv SRAM

Enexteivovpe 1o GM woTe va emtpémel T O£0UELOT), TNV ATEIKOVLIOT KAL TO XELPLOUO
amopovwTwV 0Ty SRAM and epappoyég xwpov XproTn, SlaTnpwvTag TAUTOXPOVa TO

HNXAVIOPO amopHOvVWwaong Kat TpooTaciag uvrung tov GM kat Tov muprva tov Linux.

Ta tn 8éopevon TV AMOPOVWTAV EMEKTEIVOVLE TO VALKOAOYLOpIKO Tov GM woTe va
deopelel pia eviaio TEPLOXT TNG UVAKNG KATA TNV apxtkomoinon tov (2x. 13). Xtny met-
PAHATIKY pag TAaT@Oppa, prnopéoape va deopevoovpe péxpt 700KB and ta 2MB tng
KapTag yta xpnon tov gmblock.

heap
A
4 N\
i various | ¢onnection page gmblock
SRAM | global | ;5 —| hash buffer GM_PORT(0) |... | GM_PORT(N)
page fields entries in SRAM
OMB <« Physical address in Lanai SRAM » 2MB

Ixnua 13: Xdptye pviuns tov Lanai ye déopevon Tov amopovwty Tov gmblock

o TNV amelkdvion oTo XWpo Hvhung Twv diepyactwy enekteivovrat n PrpAtodnin xw-

POV XPNOTM KL 0 081 YOG 0VOKeELTG ToL GM, WOTE va eykaBioTATAL 1] ATTAULTOVHEVT) ATTEL-
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KOVIOT agov enaknBevtei n opBoTnTa TNG aAUTnoN.

Téhog, yla va eivan Suvathi 1) CUUUETOXT| TOV ATTOUOVWTT O€ AEITOVPYieG ATTOOTOANG/AYNG
unvopatwv petaparlovpe  PLpAodnkn xwpov xproTn Kal T0 VAIKOAOYIOWKO TOV
GM. H BipAioBrikn evtomilet mote pia aitnon agopd anopovwtr SRAM kat to emt-
onuaivet 0To VAKoAoytopkd. Av TpOKELTAL Yia AiTnOT ATOGTOANG, TO VAIKOAOYLOUIKO
napaleinet To apxkd otadio DMA and t RAM oty SRAM (pnxavr kataotacewv
SDMA), av mpokettat yia Ay, To vAtkoloytopkd oulAéyet Ta dedopéva oty SRAM

Kat eldomotel péow NG ovpdg ocvuPaviwy tn diepyacia-mapalnmrn.

Ynootpin muprva Linux yia anevBeiag E/E pe pviun PCI

Emnexteivovuple To unXaviopo EIKOVIKNG LVIHNG TOV TupTriva Tov A, WOTE TEPLOXEG UVT|-
NG Tov TepLPepetakov dladpopov va eival katdAAnieg yla ovppetoxn oe dadikaoieg
anevBeiog E/E (direct I/O). MetaPaAAovpe To 0TAS10 apXIKOTOIiNoNG TOL CLOTHHATOG
Slaxeiptong uvnng, wote va kataokevalet Sopég Staxeiptong pvrung (mAaioer pvijunc)
yta To 60VOAO TOL XWwpov Puatkav StevBvvoewv (m.x. 4GB yla v apxitekTovikn i386),
ave§dptnta anod to Stabéaipo mood RAM. Ot oxeTikéG Sopé struct page evowpatw-

vovtat o€ pta véa (wvn Hviiung, ZONE_PCIMEM Kol ONUELWVOVTAL WG SETUEVHEVEG.

O mpotetvopeveg allayég dev eivat amAd pia amekdvion oe uoikeg dlevBuvoelg: ago-
povV TN Slaryeipion Twv v AOyw TEPLOXWV ATIO TOV TVPTVA, Ol OToieg TTAEOV avTipe-
TomniCovtal wg Guotkn pviun Tov kopPov. Ot Aentopépeteg TnG vAomoinong kpvfovrtat
TOW Ao TNV aPaipeon Tov TAaloiov oeAidag: Ta LTTOAOTA VTTOCVOTHHATA TOV TTVPT VA

dev yvwpifovv tnv diaitepn @von Twv oeAMSwV avTwy.

0.3.3 Iewpapatikn amotipnon

o TV mOLOTIKN KAl TTOCOTIKT amoTiunon TG PeAtiwong amod Tn Xpron Tov TPOTEL-
VOEVOL HOVOTIATIOV, OLYKPIVOVUE TELpAPATIKA Tpia dtapopeTikd ovotripata nbd: tnv
npdTLTIN VAOTIOiNON Tov gmblock pe anopovwtég otnv SRAM (egelng gmblock-sram),
o kabepwpévn vhomnoinon névw and TCP/IP - to GNBD tn¢ Red Hat - kat té\og to
gmblock xwpig Ti¢ MpoTevopeveg PektioTonomoels. H emidoon tov eival avtimpoow-
TeVTIKT LAoTooewv RDMA pe povordtt mov Staoilet tnv kOpta pviun (gmblock-

ram).
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Server A Server B
Processor 2x Pentium III@1266MHz Pentium 4@3GHz
Motherboard Supermicro P3TDE6 Intel SE7210TP1-E
Chipset Serverworks ServerSet IIl HE-SL,  Intel E7210 chipset,
CIOB20 PCI bridge 6300ESB I/O controller hub
I/O Bus 2-slot 64bit/66 MHz PCI 3-slot 64bit/66MHz PCI-X
RAM 2x PC133 512MB SDRAM 2 x PC2700 512MB SDRAM DDR
Disks 8x Western Digital WD2500]S 250GB SATA II
I/O controller 3Ware 9500S-8 SATA RAID and MBL
NIC Myrinet M3F2-PCIXE-2

Mivakag 1: Ipodiaypagés vhikot twv ebvnnperntdv anobixevons

Ot petpikég mov xpnotponolovpe eivat: (a) pvOPOG HETAPOPAG YL ATTOUAKPVOHEVES
avayvwoelg dedopévwv (b) puOuog HETAPOPES Yia ATTOHAKPLVOUEVEG eYYPaPES Sedoié-
vV (¢) emPdpuvon oTny EKTENEDT) TOTIUKWY VTTOAOYLOTIKWV QOPTiwV 0TOV EUINPETNTN

amoOnkevong.

Xpnotpomotovpe Svo eidn egumnpetntwv (2. 1). To anobnkevtikd puéoco eiva eite pia
Stata&n RAIDO mov mapéyet évag eheyktng 3Ware 9500S-8 eite pia ovokevr| anobr-
KeVOTG oTepedg katdotaong (solid-state disk) mov vAomowoape pe xprion TG LvnuUng
evog debTepov mpooappoyéa Myrinet (Myrinet Block Device - MBL) kat e€etdikevpévo

VALKOAOYLOULKO.

IMeipapa la: Enidoon tomkwv péowv

Metpdyie T TOTIKA TIAPEXOUEVO pLOUO HETAPOPAG ATd Ta amobnKevTIKA HéoA Yo oV-
vexeig altnoelg HeTaPAnTol UKovg, 6TV ot amopovwTég eival eite 0t RAM eite otnv
SRAM (2. 14(b)). O eheyktng RAID éxet moAd kak0TEPT OLUTEPLPOPA YL pHeEYAAVTE-
PEG QUTNOELG, TNG TAENG Twv 128KB-256KB, kabwg avtég extehodvtat mapdAAnia and
nepLocdTepovg diokovg NG Statafng. Zmnv mepintwon tov e§unnpetnty B, n anoddo-
on tov gmblock-ram neplopiCetat and tn Stachvdeon Tov mepipepetakol Stadpopov e
v KOpla pviun, ota ~217MB/s, Aoyw meplopiopwv tov vAtkov. H yépupa PCI tov
egumnpetnT A epgaviCet kalvtepn ovpumepipopd (Zx. 14(a)).
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(b) RAID xou MBL, e€unnpetntng B

Ixnua 14: Tomxds pvOuds petagopds, Svo amobnkevtind péoa, efvmnpetnTéc A ko B

IMeipapa 1B: Enidoon aropakpuopévov avayvooewy

Metpape 1o puOud eumnpéTnong yla aTHOEG ATOUAKPLOUEVIG AVAYVWOTG, HE pia,

dvo 1N téooepig autrioelg oe eEEMEN ya av&non tov Babuod xpnoomoinong tov di-
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(b) PuBuog petagopés, MBL

Zxnua 15: PvOuos petagopds amopakpuouévwy avayvooewy, eEumnpetytig A
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KTLaKOL ovvdéopov (Statd&elg gmblock-ram-{1,2,4} kat gmblock-sram-{1,2,4}).

[t Aoyovg amAoTnTag Twv oXNUATWY, TAPAAEITOVE TIG KAUTOAEG Yo Ta gmblock-

{ram,sram}-2.
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local-ram —&—
- local-sram —<—
gmblock-ram-1 —O—
| gmblock-ram-4 —e—
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local-ram —4&—

- local-sram —v— et
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| gmblock-ram-4 —e— ~
gmblock-sram-1 —3— /.
gmblock-sram-4 —— [
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Request Size (KB)

256 512

(b) PuBuog petagopés, MBL

1024

Zxnua 16: PvOuos petagopds amopakpuouévwy avayvooewy, eEumnpetyhs B

To GNBD éxet moAb xapnAn anodoon, Aoyw tov vynlod k6oTovg enegepyaoiog Tov

npwtokOAAov TCP/IP kat kopeapod tov Stadpopov kvptag pvhpng (Zx. 15(a)).

H andédoon twv gmblock-ram-1 kat gmblock-sram-1 kaBopiletat and to xpovo apyi-
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KIG amoKpLong ytati povo pia aitnon eivat oe e§EMEN, omdTe 0 Pabuog xpnoiponoinong
TV TOpwV givat xapnAog. Me dvo 1| téooepig artroelg oe e&éNEn, PAémovpe 0L TO €b-
poG (VNG Tov oLVEESHOVL ATIO TOV TIEPLPEPELAKO SLASPOO TIPOG Tr pvnun yivetal n
OTEVWTIOG TOV CLOTHHATOG Kat kaBopilet T ovvolikr emidoor Tov gmblock-ram. Ao
™V AAn TAevpd, To gmblock-sram Sev epgavilet avaloyo meptoptopd, e ta gmblock -
sram-{2,4} va emtuyxdvovv oxeddv 10 90% Tov Tomikoy puOUOD HETAPOPES Yia aLTr-

oetg Twv 256KB kat 128KB avtiototya, oxeddv d0o gopég kalbtepa amod to gmblock-

ram.
2.2 -
tcpip-gnbd

gmblock-ram-2 e

2 gmblock-sram-2 mmm.
£

= 1.8

c
§e)
5
(&)
Q

X b P Y
i

T 14 ]
(&}
N

T EECTEE————————— e T MW N -

€ 12 b e M PR T
(@)

-2 W S ST T W W . —_—

1 2 4 8 16 32 64 128 256 512 1024
Request Size (KB)

Ixnua 17: Avraywviopds oto Sikbpoyo kipLag pviung

H Stagopa Ba fjrav meploodtepo eupavig yla peyalvtepa peyedn arnoewy, wotdoo
T0 péyeBog g Stabéoiung uvnung otov mpooappoyéa SikTvov TepLopilet Tov aptduo
Twv artnoewy oe eEEAEN kat To PéyeBog Tovg. Itn CLVEXELR, TIPOTEIVOVLE TIG GLYXPO-

VIOpEVEG AelTovpyieg amooToAng wg éva péco yia va apBel avtog o meploplondg (§ 0.4).

IMeipapa 1y: Enidpaon otov Tomiko vroAoylopno

To Zx. 17 mapovotalet Tnv emPdpvvon g anopakpvopévng E/E o Tomko vmolo-
youoé mov e€elicoetat mapdAAnha otov egunnpetntn anobnkevong. Ilaporo mov to

gmblock-ram agaipei T CPU and 1o kpiotpo povomdtt, ouveyiCet va katavalwvet £0-
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pog Lwvng oto Stadpopo pvrpng. Tpé€ape ta tcpip-gnbd, gmblock-ram-2 ko gmblock-
sram-2 padi fe £€va VTTOAOYLOTIKA ATALTITIKO TIPOYPALA, pia Stepyacia Tov Tpoypap-
HaTog ovuTtieong bzip2 og évav and Toug enefepyactég Tov efumnpetnty A. Ilapdro
mov dev vVIapyeL SLAOLPATUOG VTTOAOYLOTIKOD XPOVOU, 0TI XELPOTEPT TEPIMTWOT TO
bzip2 Tpéxet 67% apydtepa, OTav ekteleital TapaAAnAa pe to gmblock-ram-2 kat at-
toelg Twv 512KB, evd n emPapuvorn Tov eivan aperntéa otav ekteleital mapdAinia

ue to gmblock-sram.

IMeipapa 18: Enidoon amopakpuopévwy eyypapwv

AmnoTtipobdpe TV emidoon AeIToVpYLOV ATOHAKPLOUEVNG eYYPa@nG dedopévwy- Ta amo-
teléopata anewovifovtat oto Xx. 18. To gmblock-ram kat At meplopiletat Aoyw tng
didoxiong Tov dtadpopov pvrpng. Qotoéco, n enidoorn Tov gmblock-srameival onpavTt-
K& XapunAOTEPT amd Ta avapevopeva. Avakalvyape kal emBefatwoape pe T Myricom
OTLaVTO o@eileTal Oe ApXITEKTOVIKO TiEPLOPLOHO Tov emegepyaotn LanaiX, mov Sev éxet

[KAVOTIONTIKT andS001 wg 0ToX0G docoAnylav avayvwong and to PCIL.

[a va Tapakdyovpe TOV TTEPLOPLOUO AVTO ELOAYOVHE £va akOun povomdtt (gmblock-
pcimem), To omoio xpnotpomotei evdidpeon pviun emavw oto PCL Ot amopovwTég ma-

péxovTat amo évav mpocappoyéa Pactopévo oe enefepyaotn Intel XScale, Tov Cyclone

740 [Cyc).

0.3.4 Xv(tnon
IIpooPaon oe dSounuéva dedopéva

To mpotetvopevo povomatt dedopévwy gaivetat oto Xx. 12(a). Epdoov n CPU eumhéxe-
TAL KATA TNV E€YKATACTAOT) TOL HOVOTIATLOV, 0T QAOT) ApXIKOTIOINONG TNG HETAPOPAG,
to gmblock pnopei va xpnowonowmnOei yia to Stapotpacpd dounuévwv dedopévov. To
TPOTELVOUEVO OVOTNUA €0TLALEL 0TV Kivon TwV SeSopévwY, ATOUTAEKOVTAG TO LOVO-
T&TL EAEYXOV amd To povomatt dedopévwy, Xwpig va BETel epLopLopons TNV 0pydvw-
o1 Tovg. Oa pmopovoe yla mapadetypa va xpnotpomnotndei yia to Stapolpacpd apyeiwv
amno €éva kablepwpévo ovoTnpa ext2, T.x. yla xpron wg diokovg oe eninedo Umhok ano

ELKOVIKEG UNXAVEG.
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Xxnua 18: PvOuds petagopds amopaxpvouévwy eyypagwy, efvmnpetnthc B
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29

EmunAéov, i) xprion tov pnxaviopo O_DIRECT e§ao@alilel cuva@eta pe Tnv Kpuer| wv-

un oelidwv Tov Muprva kabwg Ta dedopéva HeTakvohvTal AVApESH OTO HEGO KAl TO

diktvo. O mMupnvag Tapapével 0To aTASI0 APXIKOTOINONG HETAPOPAG, OTIOTE PpoVTilel
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va ypagel miow oto dioko dedopéva mov Ppiokovtal 0TV KPLET HvHpn Kat {ntovvTtal
Yl ATIOUAKPUOUEVT] AVAYVWOT) Kat avTioTotxa va akvpwvel dedopéva mov Ppiokovrtal

OTNV KPLQN VAN OTav Ta avTioTolya HITAOK avVAVEDVOVTAL HECW ATIOUAKPVOHEVNG

EYYPAPNG.

Kpven pviun kot tpoavditnorn dedopévwv

H napaxapyn tng kbptag pvriung tov e§umnpetnth anobnikevong agatpei tn Suvatdtn-
TaL ylo XP1ion KPueng Hvipng kat mpoavaktnon dedopévwv (prefetching) otnv mhevpa
tov efummpetnT. H mpoavaktnon ovvexilet va eivat Suvatry, aAld mpémet va exkiveiton
ano v mhevpa tov ehartn (PA. § 0.5.3). Ilpoowpiviy anobrkevon dedopévwy yivetat
eMiONG OTNV TAEVPA TWV TEAATWY, OL OTIOIOL AVTIUETWTICOVY TO HOLPALOHEVO XWPO WG
ToTKkO Si0KO- TO GUVOALKO UEYEDOG VNG TWV TTEAATWV TIEPIHEVOVLE Vo EETEPVA KATA
TOAD T StaBéotun pvnun tov egunmpetnth anobrkevong. H npoowpvy anobrjkevon
otov egunnpeTnT pnopei va €xet BeTikn enidpaon o€ eappoyég Tov ekTENODY GUXVA
EYYPAPEG Kal avayvioelg o€ Kowva dedopéva, pe tov eEumnpetntr| va anotelel ovola-
OTIKA évav eVOLANETO ATOHOVWTN Yo HETAQOPEG amd mehatn oe mehdtn. [a tétowa

@opTia, 1 Xprion Tov cOVTOopoL povomatiov Tov gmblock dev eivat katdAAnAn emhoy.

Amé v aAAn mAevpd, 1 emimTwOoN TNG EVTOVNG KOV Xprong dedopévwy yla eyypa-
@1 KL avAyvwor| anoTeAel yvwoTo TpoPANUaA, ya TV AVTIHETWTILON TOL OTOIOL £€XOLV
TpoTadel TEXVIKEG IOV XPNOIHOTOLOVVTAL OTEPO € GLOTHHATA TIAPAYWYT|G, TOCO GTO
eninedo TG epapoyng 600 kat 0To eninedo Tov ovoTHpatog apxeiwv. H fdon Oracle 9i
vooTnpilet Tov punxaviopd katavepnpuevng kpueng uvrung «Cache Fusion» [LSCT01]
o omoiog emtpémnel anevbeiog petagopés dedopévwv and mehdtn oe MEAATN KL EKTe-
Aei E/E pe to amoOnkevtikod péco povo otav ta amartodpeva dedopéva dev Ppiokovrtat
TPOOWPLVE amoBnKeLPEVA OE KaVEVAY ATIO TOVG GUUHETEXOVTEG KOHPOoVG. Opoiwg, yia
epappoyég MPI pe évrovn kotvr xprion apxeiwv to GPES mpoogépet tn duvatdtnta
«data shipping» [PTH" 01, BICrT08], n onoia petagépet Sedopéva anevbeiag avapeoa

oe dlepyaoies, wote povo pia va ektelei E/E og ovykekpipévo Tpnipa tov kotvod apxeiov

Kata tnv ektéleon ovAloywkng E/E.
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Front-Side Bus

[ Memory Controller ]

€eee

[ PCI/PCI-X Bridge ]

“en- [ pai/PCIXBridge |

J
chipset

Ixnua 19: SRAM aviueoa otov mepipepetaxo Sikdpopo ke 10 SikTVO

Eg@appoyn og evallaxtikég texvoloyieg diktvwong

H vhomoinon tov gmblock Paciletat oto Myrinet, To omoio Tpoo@épet fa TARpwG Tpo-
ypappatilopevn kapta Siktdov. Tétowa Suvatotnta avéavet tnv eveliia Tov cvotrua-
TOG, WOTOCO OEV ELVAL ATAPAITNTI Yia TNV VAOTIOINOT] TOV TPOTELVOUEVOL LOVOTIATLO.
O tpoimoBéaelg yia TNV KATAOKELT] TOV HOVOTIATLOV €ival 1) Xprjon amodnkevTikov pé-
oov kat Siktvov Stacvvdeong pe Suvatotnta DMA kabwg kat ) vrap&n evog pkpov
TOGOV VNG, TTPooBactio péow Tov xwpov dtevbvvoewv Tov PCI, kovtd oto diktvo.
Etot, ya va givat ) mpooéyylon pag epapuootun oe evaAAakTikég Texvoloyieg SikTow-
ong, onwg to Infiniband kot o 10-Gigabit Ethernet, mpoteivovpe tnv mpoodrkn evog
HikpoV Tooov uviiung SRAM avapeoa otov meptpepelako Stadpopo kat tn Stemagr) Tov

Siktvov. To 2x. 19 anekovilet pua tétota Stdtaln.

O eneepyaotng Tov kOUPov exkivei pia SoooAnyic DMA and 1o anofnkevtiko péco
oto gVpog dievBvvoewv PCI mov avtiototyovv otnv SRAM. H egumhokn Tov 01N ovvé-
xeta e§aptatat and to €idog Tov Siktvov- TNV mepintwon Tov TCP/IP tpéxel n otoifa
TPWTOKOAA WV aAAd 1) kapTa SikTOov CLANEYEL Sedopéva makéTwy and v SRAM pé-
ow DMA, evw otnv nepintwon tov Infiniband SnAwvovtat ot avtiototxeg meploxég tng
SRAM yia xprion pe Aettovpyie¢ RDMA, 116 omoieg avalapPavel avefaptnta o npo-

oappoyéag SIkTvov.
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Eg@appoyn oe oxedidoeig xaunAng katavaAwong evépyetag

H npooéyyton tov gmblock eivat oxetikr pe v tdomn ya e§umnpetntés anodrkev-
0oNG XAUNANG KaTavaAwong evépyelag, BaoIOpHEVOVG O ApXITEKTOVIKEG OVOTHHATOG OF
yn@ida (System-on-Chip) [Mar]. Ot cvokevég avTéG Xpnotponolovy cuvhBwg poro-
yta g téa€ng twv 500MHz-1GHz kat ecwteptkovg Stadpopovg xapunhov evpovg {wvng
yta va kpatnOei apunAd To KOOTOG KATAOKELHG Kal 1 kKatavalworn evépyetag. H xpn-
OT] TOV TIPOTELVOUEVOL HOVOTIATIOV avTi yla evdiapeon amobrkevon oe kvpla Pviun
SDRAM 1} DDR 0a peiwve tov avtaywviopo ya mpéoPaon: n kbpta pviun Oa frav
Sabéoun yia emefepyaocia tov Siktvakod mpwtokoAov ot CPU, PeAtiwvovtag T
Sdvuvatotnra KAIPAKWOoNG TOL CLOTAHATOG O TIEPLOCOTEPOVG SIOKOVG KAl YpyopoTepa
Siktva Stacvvdeong. EmmAéov, n xprion neploxwv SRAM katdAAnAov peyéBovg pmopei
va emipépel onuavTikn Pertioon tng katavdlwong evépyetag [MACMO5, ACMMO7].

H peiwon Tov 9OpTOL 0TIV KOPLA HVIUN ETMUTPETEL TNV EQAPHOYT EMOETIKWY TEXVIKWY
egotkovopnong evépyetag: pia diatagn DDR266 yapnAov pubpod petagpopds katava-
Awvet Ayotepo amd 17% tng anautodpevng oxvog yia pa Stétafn DDR333 vynlov
pLOpOY peTagopdg [Jan01].

0.4 Zvyxpoviouéveg Aeirtovpyieg anootoing GM

0.4.1 Kivntpo

[Mapoho mov to gmblock emtvyydvet onuavtikn Pektiwon oto pvOUod petagopds de-
Sopévmv yla amopakpLOHEVEG AelTovpyieg avdyvwong/eyypagng, n emidoon tov dev
QTAVEL GTO OPLO TWV SLVATOTATWY TOV ATOBNKEVTIKOV PETOL Kat Tov StkThov Staovv-
deong. Avtod ogeiletar otnv alnAenidpaon g ovpumepipopds g Sdtagng RAID,
TIOV QUTTOUTEL QUTHOELG HEYANOV HITKOVG Yl Vo TTapéxel apKeTd vynAo puBuod petago-
PAG, e TO TIEPLOPLOUEVO TTOCO VNG TToL StabéTel 0 pooappoyéag SikThov, To omoio
dev emutpémel peydlo apBuo artioewv kavomontikod peyéBoug va eivar oe e§EhEn
TavTOXpOVa. ZTNV Tetpapatikn pag dwitafn dev pnopéoape va Seapedoovpe TaAvw anod
700KB pvrpung otov mpooappoyéa yia xprion tov gmblock, omote o aplBuog twv artn-
O€WV TIOL UTTOPOLV Va eivat o€ eEEAEN eivat To ToAD To ToAd 1 x 512KB, 2 x 256KB, 1} 4

x 128KB. Xpnotpomotwvtag ToANEG HKPOTEPEG AUTHOELG EXOVLE KAADTEPT) XPTOLHOTIOL-
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non twv StagopeTikwv otadinv enegepyaciog Tov ovothiparog (kakbtepo pipelining),
aAAd petwvetar i anodoon g Statagng RAID. EmmAéov, av€dvetal n emiPapovvon tng
enefepyaoiog, epooov To choTNHa £xel va StaxelploTel peyaAvtepo apliuod aitrhoewy

yta dedopévo puBuod petapopdg.

[a va dwoovpe TN SuVATOTNTA XPTIONG LEYAADTEPWV AUTIOEWYV [LE HIKPT) EMBAPLVOT) Kat
KaAO Baduo xpnotpomnoinong Tov anmofnkevTiko HEoov kat Tov StkTOOV, e0TIALOVE OF
TPOTIOVG EMIKANVYNG SLaPOPETIKWV PAoewy emeepyaoiag ya tnv idia aitnon. O 6Ttdx0g
elval pia aitnon avayvwong va Umopel va mepacel 6To 0TAdL0 SIKTLAKNG ATOOTOANG
TPtV akopn va €xet ohokAnpwBei n e§umnpétnon g and To SIKTVAKO HECO, ETOL WOTE
va eKUETAAAEVOpAOTE TATPWG TIG SUVATOTNTEG TOV ATOONKEVTIKOV HECOV AKOT KAl [LE

Kpo aptBpd artoswv oe eEENEN.

0.4.2 Xxediaon

H e§unmpétnon wag aitnong avdyvwong umlok mepthapBaver dvo Pruata: tnv ava-
KTnomn twv dedopé vy amd To amoOnKevTIKO HEGO GTN UVTUT TOV TTPOCAPHOYER SIKTVOV
KaL TNV amooTOAT SIKTVAK®V TAKETWY Ao T LVIUT TOL TPOCAPHOYEQ OTO PUOLKO [Lé-
oo. [a va yivet Suvatn n emkdAvyn tov doewy péoa otny ida aitnon, xpetdletat va
ovyypoviotei 1) SikTvakT anooToAn pe t Stadkacia avdyvwong and to dioko, eEaoga-
AiCovtag OtL povo ykvpa dedopéva anootéAlovtat oto Siktvo. Idavikad, n Stadkacia
TIPETIEL VAL ELOAYEL (ikpT) eTLPAPLVOT), Vat givat aveEapTnTn TNG AMoONKeEVTIKNG CLOKEVNG
Kat va givat oupPatn e T onpactoloyio Twv KAHoEWV IOV XPNOLLOTIOLOVVTAL ATTO TOV

egumnpetnt nbd yia E/E and to dioko kat Stktvakn emkotvwvia.

Mia tétota mpoogyylon Ba pmopovoe va vAonown el aptyws o Aoylopko: o e§umnpetn-
MG Stayetpietat peydheg altioels, TG omoieg Staomda og TpNpata yo tnv enegepyacia
Tovg anod 1o diktvo. O eumnpetntig wropei va Statpei k4Be peyakvtepn aitnon avé-
yvwong twv [ bytes (m.x. IMB) og pukpotepa tunpata twv ¢ bytes (.. 4KB), ta omoia
vnofaAlet mpog enegepyaoia and to anobnkevtikd péco. Qotdoo, avtr n oxediaon
€XEL ONUAVTIKE HELOVEKTNHATA: avEAvel TO pLOUO TV SIKTLAKWDY UNVURATWY, ELOAYEL
Heyalo KOOTOG eme€epyaiag TWV ALTHOEWY, EQOCOV Kat 0 eEUTINPETNTAG KAt 0 TEAATNG
gxovv va dtaxelplotovy LYNAO puOpd ovpBavtwv odokAnpwong atfoewv E/E and o
Sioko kat To SIKTLO KL ayVOei TO YEYOVOG OTL OL HIKPOTEPEG AUTHTELG APOPOVY GLVEXO-

Heva THRHaTa 0To amofnkevTikd péoo.
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[TpoTeivovpe éva HNYavioHd GLYXPOVIOHOV 0 0Toiog Aettovpyei anevBeiog avapeoa o
ovokevn anoBrkevong kat éva mpoypappatiiopevo tpocappoyéa SIKTVOL, OTWS TOV
Myrinet, ue tpdmo mov mapakdpmntet eviedws TNy CPU Tov kopPov kat To AX mov ekTe-

Aeitat og au T, TapapévovTag aveEapTnTog Tov eidovg TG amoBnKeLTIKAG CLOKEVTG.

Ag Bewprioovie To 0eVapLo 6OV 0 e§UTNPETNTNG EeKIVd [ia AetTovpyia amooToAng Se-
Sopévwv oTo dikTvo MPLY Antd TNV KARoN cvoTApatog read() mpog To otpwua E/E tov
A, 2V mepintwon avTh, eivat aiyovpo 0Tt ot S0 QPACELS EMKAANDTITOVTAL, WOTOCO TO
ovotnua mbavotata Ba amotvyel, yati dev e§aopalifetat n opotnTa TV Sedoé-
vV mov eloayovtat 1o Siktvo. [ta va Avoovpe to mpdPAnpa, elodyovpe Tnv ot
TOV OUYYPOVIOHOD OE AELTOVPYieG AOOTOANG emuméSov XproTn. Mia cuyxpoviouévn Aet-
Tovpyia Tov GM e§aoalilet 6Tt ta dedopéva mov mpdkettat va anooTalodv and Evav
ATMOHOVWTI €ival €yKvpa TPLV TNV KATAOKELT] TWV AVTIOTOXWV SIKTVAKWY TAKETWY.
Av xdmota otiypr dev vapxovv £ykvpa dedopéva, o mpooapupoyéag mapaleinet Ty

KATAOKELT] TTAKETWYV YLa TO CUYKEKPLUEVO AUTNHA ATTOOTOARG.

chunk
| e
Storage Read req. 0 Reiad reg. 1 Non-overlapped
— ' ' network /0
NIC $end req. G Send req. 1
t
—>{ tle— —> t3|<—
Storage 5 : z
Readreq. 0 [ | Readreq. 1 Synchronized sends for
NIC overlapped network 1/0
Send req. G Send req. 1
«——t2—>]

Ixfpa 20: Emxdloyn pdocwy yia Ty idio aitnon E/E

O mpooappoyéag evromiCet TV oAokAfpwon NG petagopdas dedopévwy oe TufpaTa

Twv ¢ bytes. H tir| tov ¢ enmpedlet o Pabuo emuwdhoyng (Zx. 20). To anobnkevtiko

C

Héoo petapépet Sedopéva yla Ti§ mpwteG by = XPOVIKEG HOVADEG, 0T CLVEXELA Yot

Tdisk
l—c . . o / . ,
to = ——< Kkal 1 kdpTa SIKTVOL Kal TO ATOBNKEVTIKO PECO eival evepyd kal TEAOG yia
2 = Taur 1 Kap n H PY Sy
t3 = == uovo 1 kapta SikTvoL peTaépel dedopéva. MikpoTepeG TIHEG TOV € 0dnyovV

Tnet

o€ ka\vTtepn emkdAvymn, alkéd avfdvouv to @dpTo oto Lanai.

Ot ovyxpoviouéveg AelTOVpYieG AMOOTOANG aipovLY TOV TIEPLOPLOPO OTL OAa Ta Sedopéva
npémel va eivat Stabéotpa mpLy amd Tnv ekkivinomn pag SIKTVaKnG anmooToAng. QoTtdoo,

OTWG idaple TEPAPATIKA KaL TTEPLYPAPETAL AVAAVTIKOTEPA 0TI GVVEXELa (§ 0.4.4), avTO
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dev apkel yta Tnv emitevgn kalr|g enidoong otny mepapatikn pag mhateopua. H oxedi-
aomn vtoBétel 0Tt Ta Sedopéva YpapovTal GELPLAKA GTOV ATTOUOVWTH, WOTOCO VT Ogv

oxveL yla amofnkevtikég Stataleig RAID (Zy. 21.

message buffer

4-disk RAIDO array <«— chunk —

Ixnua 21: Avayvwon Awpidas dedopévwv amd didtaln RAIDO teoodpwy Siokwy

Na va emtdyovpe kahd Pabpod emkdAvyng, xpetdletat va TpooaprOCOVHE TIG OLY-
XPOVIOHEVEG AELTOVPYIEG ATTOOTOANG TNV VTIAPEN TOAAWV SLAPOPETIKWY ELTEPXOUEVWY
pevpatwv dedopévav. [a To Adyo avTod emekTeiVOVLE TN AELTOVPYia TG ATTOOTOANG OTO
GM woTe 0 amooTohéag va €xet TN SuvatdTNTA Va Tapdyel TakéTa and onolodnmoTe
onpeio Tov amopHoVWTH. AVTIOTOIKA, O TTAPANATITNG EMEKTEIVETAL DOTE VA LTTOOTNPileL

€KTOG O€LpAg TOTOOETNON TWV ELOEPXOUEVWV TEHAXIWY TOV UNVOUATOG.

Emetdn to k607106 TOL evToTIopoD eloepXopevwy Sdocolnyuwv DMA omovdrnote péoa
OTOV ATOUOVWTI| TOV UNVUHATOG ELVAL ATTAYOPEVTIKO, LTTOOTNPIlOV(E GLYXPOVIOUEVES
Aettovpyieg TOANAMAWY peVHATOVY {NTWVTAG ATtO TOV XPHOTN va VITodelkVVEL TIG ap)L-
KéG B€oelg kat To unKkog Tov kabe pevpatog dedopévwy HECA GTOV ATOHOVWTT. TNV
TEPIMTWOT) HAG, OL THEG TTPOKVTITOLY antd To TAB0G TwV SioKWV IOV CLUUETEXOVY OTN

Statafn RAID kat To prjkog g Awpidag amobrnkevong.

[Taporo mov 1 mpdTLTN VAoToinon PaociCetat oto Myrinet/GM, 1 vAomoinon ovyxpo-
VIOUEVWV AELTOVPYLWV ATTOOTOANG Htopei va peTapepBei oe omolodrmote Siktvo e&dyet
TURAHA TNG UVAING TOL 0To Xwpo StevBvvoewv Tov PCI kau mapéxet Tov avaykaio fabuo
TPOYPAUHATIOILOTNTAG OTOV TpOTappoyéa SikTVov. O CUYXPOVIOUOG YiveTal amevbei-

ag Tavw amo Tov meplpepetako diadpopo, xwpig epmiokn tng CPU.

0.4.3 Ofpata vlomoinong oto Myrinet/GM

To kvploTepo Bépa vAoToinong mov mpokvmTel eivan Twg o Lanai Oa evrpepwvetat yia

v ohokArpwon docoAnyiwv DMA ané efwtepikod mapdyovta mpog tn pvApn tov. O
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npooappoyéag Myrinet Sev mapéxet vtooTNPLEN 0TO VAIKO Yla TETOLA AELTOVPYIKOTNTA,
yta apadetypa évav mivaka and bits mov Ba vrodeikvvav 6TL TO AVTIOTOLXO TUAKA TNG

SRAM petaAnOnke.

E@ooov 8ev vmdpyel vtootipién amod 1o VALK, VAOTIOLODHE avTIoTOLXN AEITOVPYLKOTNTA
07O VAIKOAOYLOHIKO: 0 Lanai ypdeel yvwotég Tinég Twv 32 bits oe taktd Staotripata
OTn Uvnun Kat evtomilet moOTe auTEG oL TIHEG aAlotdvovTatl, omoTe OAOKANpwONKe pia
Aettovpyia DMA o1o avtiototyo diotnpa. Oswpodue OTL ) eyypa@n Yivetal oetplakd
néoa oe kdbe tunua. H mbavotnra va xabei pa aldayn Aoyw tadtiong tng Tiung mov

YPAQETAL [e TNV apyIKn TIpr, ya TuoXaio dedopéva kat [ = 1IMB, ¢ = 4KB, eivat:

1z
Pno_om‘ =1~ <1 - 2732) <] — P =596 x 1078

Ta va eEaopaliotel 0Tt 1 Stadikacia ONOKANPOVETAL O€ AUTH TNV TEPIMTWOT), VTIAPXEL
€va [ aKOUn XapaKTNPLOTIKY TIUN, LETA TO TEAOG TOV AMOHOVWTT) TOV UNVOHATOG, TTOV
Tifetat and tov e§umnpetnT nbd 6tav To GhVOAo Twv Sedopévwy éxel peTapepBei. Ztnv
XELPOTEPN TEPIMTWOT), HE TUOAVOTNTA Py oy OL QACELG AVAYVWOTG KAl ATTOGTOANG O€V

ETMKAAVTITOVTAL AR PWS.

H vAomoinon twv ovyxpoviopévwy Aettovpyldv oto Myrinet/GM nepilapPavet tpia
0Tddta. ZTo oTASI0 APXLKOTIOINONG OTHELWVOVTAL Ol apXIKEG TIHEG evBuypapopéveg
e makéta tov GM péoa otov anopovwTh kat kakeital nj gm_synchro_send_with_-
callback(). ITpoatpetikd, 0 xprotng mapéxet LITOSEIEELS Yo TNV apyT| EMUEPOVG pev-
Hatwv Sedopévwy Héca oTov amopovwTh. ZT0 0Tddlo HeTddoong, Tov ekTeAeiTal Kd-
O @opd MOV TPOKELTAL VA KATACKEVAOTEL TTAKETO Ylot AMTOOTOAR 0TO SiKTVLO, 1 HNXA-
vi} SDMA tov vAikoAoyloptkov e§etdlet éva-€éva Ta etogpxopeva pedpata dedopévwv
Héxpt va Bpet kamoto pe éykvpa dedopéva. TéNog, 010 0TAd10 OAOKAPWONG TNG HETA-
Qopag, o eumnpetntrg nbd evnuepwvel To VAKOAOYLOpIKO OTL OAa Ta Sedopéva eival

TIAEOV €yKLpaL.

Ta v vrooTPLEN TOANATAWY peVpdTWYV TpoToToLoape To TpwTOkoAo Go Back N
Tov GM €101 DOTE Va LTTOOTNPICEL TNV KATACKELT) TAKETWY GTOV ATOOTOAEA KAt TOTIO-
Bétnon makétwv oTov TapanmTn ekToG oepds. Ta kabe makéto mov kataokevdleTal,

0 ATTOOTOAEAG KPATA TO pevpa amod To omoio ponAbe, wote va pmopel va 1o emava-
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Qépel o€ TepinTwon apvnTikng emiPePainwong. AvtioTolya, 0 TapaAfITNG XPNOLHOTOLEL
éva emumAéov medio h_synchro_ptr nmov mpocoBéoape otTnv ke@alida TwV TAKETWY TOV

GM, wote va kabopioel v tehikr BEon Tov 0NV TTEPLOXT) TTPOOPLOHOD.

0.4.4 IIewpapatikn amotipnon

To tunpa avtd Tapovotddet i TEPAUATIKT GVYKPLOT) avdpeoa oTn Pactkr €kSoon Tov
gmblock kat tTnv vAomoinon mov éxet enextabel WoTE Vo LITOGTNPILeEL CLYXPOVIOpEVES
Aertovpyieg. H avykpion yivetat oe e§unnpetntn tomov B, kabwg Stabéter ypnyopotepo

neptpepetaxod diadpoyto.

Ieipapa 2a: Zuyxpoviopéveg Aeitovpyieg amooToAng

H ¢xdoomn gmblock-synchro-single xpnollomoLel oLYXPOVIOHEVEG AELITOVPYIEG Yia EVa
pebpa Sedopévwv, pe pia aitnon oe e&éMln, evw n éxdoon gmblock-synchro-
multiple opilet moAamAd pevpata eloepxdpevwy dedopévay, 6oa kat o aplBuog Twv
Siokwv otn dtdtagn RAID. Ta anotehéopata gaivovtat ota Zx. 22(a), 22(b) ya ta dbo

amoOnkevTiKd péoa.

To gmblock-synchro-single ep@aviCet onpavtikd PeAtiwévo puduod petagopds, 77%
KaAOTepo Tov gmblock-sram pe xprion tng ovokevng MBL kat aitroelg Twv 256KB.
Yrapyxel pa awoBntr peiwon otny enidoon tov yla artrioelg Twv 512KB otny omoia emt-
KEVIPWVOHAOTE Tapakdtw. Ze avtiBeon pe tn ovokevry MBL, 1 Bektiwon yia tn didta-

&n RAID eivat pukpn, tng tagng tov 7%.

IMeipapa 2fB: Kivinon dedopévwv and datafeig RAID

T v katavonon g xaunAng emidoong pe xprion dwdtagng RAID kat yio autrioetg
Twv 512KB pe tn ovokevry MBL, xpetaletat Stepehvnomn Tov Tpdmov e Tov omoio ot §o-
ooAnyieg DMA and to anobnkevtikd péco egelicoovtal wg mpog to xpovo. Ipdyape
éva gpyaleio e1dtkov okomov, To dma_poll, To omoio tyvnAartei tnv kivnon twv dedo-
HEV@V, HE TEXVIKT TTapOUOLa TNG VAOTIOINONG GLYXPOVIOUEVWV AEITOVPYLWV ATTOGTOANG

(2x. 23). Bpiokovpe 6v0o Aoyovg yia T pelwpévn anodoon:
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local-sram ——
gmblock-sram-1 —(— Y
gmblock-sram-4 —&— /
gmblock-synchro-single —0— o
gmblock-synchro-multiple —e— //

2 4 8 16 32 64
Request Size (KB)

128 256 512 1024

(a) PvBuog petagpopdg, eheyktng RAID

local-sram —v—
gmblock-sram-1 ——
gmblock-sram-4 ——

gmblock-synchro-single —0—
gmblock-synchro-multiple /.

2 4 8 16 32 64 128 256 512 1024
Request Size (KB)

(b) PvBuog petagopis, MBL

Ixfua 22: PuOuds peTapopis amouakpuopévwy avayvwoewy pix ovyxpoviouéves Aei-

Tovpyie¢ GM

Xpnon datagng RAID To gmblock-synchro-single ayvoei To yeyovog ott ta dedo-

Héva tonofetodvrat mapdAinia oe Stapopetika Tupata TG uvhung (Zx. 23(b))

KAl ETUKAADTITEL AVAYVWOT] KAl ATTOGTOAT] HOVO Yl TO TIPWTO pevpa Oedopévwy.
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g ool fofopof : 553‘;%6000 ff;fff{f
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Fowoo bl i b L ] Fowo b i L b
A NN
woo b dfoff i b woo Lhf bbb B
SNy INSNENES
(a) RAID controller, AS (b) RAID controller, CFQ
10000 e 10000 e
9 e 3 A
g 8000/ =z £ so00 e
H -~ H -~
£ 6000 r/ £ 6000 pd
5 ~ H e
£ 4000 e £ 000 pd
/ /
2000 pd 2000 ~
pd pd
. ‘ ‘ ‘ “ ‘ N ‘ ‘ ‘ ‘
(c) MBL, AS (d) MBL, CFQ

Ixfua 23: Tyvy DMA yix tovs xpovodpoporoyntés E/E anticipatory xar CFQ, autijoeig
1024KB

AX\ayn ogpdg Tpunqpatwv To péyloto turpa mov vtootnpilet ovokev) MBL yia DMA
eivat prjkovg 256KB. [a autrjoelg peyalvtepeg avtod tov peyéboug, n oglpd vmo-
PoArig Twv Tunuatwy egaptdtal and to xpovodpopoloyntr E/E tov AX. Bprj-
Kape OtL pe xpnon tov xpovodpopoloyntr AS (anticipatory) ta dvo tunpata

evaAlaooovtat (Zx. 23(c)), onote o Pabuog emkalvyng eival pukpOTePOS.

To gmblock-synchro-multiple mapaxkdpntet kat Ta §00 mMPOPAHATA, EMTPETOVTAG
v ovAAoyn Sedopévwy yia e§epydpeva makéta and SLAPOPETIKEG TIEPLOXESG TOV ATTO-
HOVWTT, EMTLYXAVOVTAG pLOUOVG HETAPOPAG TTOAD KOVTA OTOV TOTIKO (92% TOL TOTIL-

KoV), 40% KkaAvTEPO amod To gmblock-sram-4.

Téog, oto XX. 24 mapovotdletal n KaTavour o€ SLaKPITEG PATELG TOV ATIAUTOVHEVOV

XpOVoL egummpéTnong avd aitnon.

Alakpivovpe TEVTE SLAPOPETIKEG PAOELG:
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4000 + I STATE_FINALIZE (return receive buffer)
[l STATE_SEND (non-overlapped send time)
[[] STATE_SEND_INIT (prepare buffer, post event)
- [l STATE_READ (block read)
£ 3000 B STATE_INIT (wake, unpack)
)
£
|_
2000
1000
0
4 8 16 32 64 128 256 512
Request Size (kB)
(a) RAID controller
4000 + I STATE_FINALIZE (return receive buffer)
[ STATE_SEND (non-overlapped send time)
[J STATE_SEND_INIT (prepare buffer, post event)
— Il STATE_READ (block read)
2 3000 - H STATE_INIT (wake, unpack)
)
£
|_
2000 -
1000 -

4 8 16 32 64 128 256 512

Request Size (kB)
(b) MBL

Ixfua 24: Aixipeon Tov xpovov xpxikhs amokpionG o€ p&oeis, yix T gmblock-{ram, sram,
synchro-single, synchro-multiple}

o STATE_INIT: ANy Kal amokwdlKomoinon tng aitnong.
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o STATE_READ: YnoPoAn aitnong E/E mpog to anoBnkevtikod péoo kat avapovi yia

oAoKApwOT TNG.
o STATE_SEND_INIT: YnoPoAn aitnong Siktvakng E/E mpog to Lanai.

o STATE_SEND: H avdyvwor éxet ohokAnpwbBei, n) Siktvakn anoctoAn eivat oe e&é-
Mén.

STATE_FIN: EmPefaiwon ohokAnpwong tng StkTuaknig anooToAn.

O xpovog 0TI @aoelg TANV Twv STATE_READ kot STATE_SEND rjtav apeAntéog. H gaon
STATE_SEND maptota Xpovo diktvaknig E/E mov dev emkalvnretat pe E/E ano to dioko
Kat vTodetkviel To Paduod emkdAvyng avayvwong Kat amooTOANG IOV EMTUYXAVETAL

v mepintwon tov gmblock-synchro-multiple oxedov e§aleipetal.

0.5 Zxediaon meAdTn Kot ATOTIUNOT ATTO AKPO GE AKPO

Ewg twpa, eotiaoape kupiwg oe BeAtioTomnoinomn Tov Hovomatiov dedopévwy oTny mhev-
pd tov e§umnpetnTr). To Mapdv puépog mapovaotalel To oxedtaopod Kat Ty LAOTOINOT TOV

gmblock otnv mhevpd Tov TEAATN.

EektvavTtag and éva Paotko meAdtn xwpov muprva, e§etalovpe Ty anddoomn evaila-
KTIKWV 0XeSIA0TIKWV eMAOYWV KaTd TN peTakivion dedopévwy. Ita tnv anodoTikoTe-
pn Aettovpyia Tov TEAATT), EKUETAAAEVOHAOTE TNV TTPOYPAUUATIOMOTHTA TOL Myrinet:
npoTeivovye enektdoelg 0to GM wote va vrootnpilet E/E pe Staomopd kat cuAloyn
dedopévwv (scatter-gather I/O) amevbeiag and kat mpog 1o Xwpo guokwv Stevbvvoewv
Kal EL0Gyovpe TN Xprion Tovg otov mehdtn tov gmblock. Tédog, eykabioTovpe éva ma-
paAAnho ovotnpa apxeiwv mavw and to gmblock, To onoio emtpénel TV amotipnon

NG eMid00NG TOV CLOTHHATOG ATIO AKPO OE AKPO [E PEANLOTIKA LLETPOTIPOYPAUHATAL.
0.5.1 Xxediaomn evog medatn nbd emmédov xpnot

Kivnon dedopévov otnv mhevpd tov meatn

Zto 2. 8(a) mapovaotaletal n Paoikn oxediaon evog cvotriparog nbd. O mehdrng nbd

xpetadetar va ovhéEet Sedopéva umhok anod anmopovwtés E/E péoa oe Siktvaka punvo-
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Hato (evTolEg eyypagng) kat va dtaomeipet dedopéva amod SikTvakd pnvopata oe amo-
novwtég E/E (eviohég avayvwong). Ze kdbe mepinTworn, oL amoUOVWTEG TTEPLYPAPOVTAL
ot Baon pag Aiotag Staomopdg-ocvAhoyng dedopévwy mov meptypdeet T 0éon Twv de-
Sopévov otn pvipn (2. 25). H emPdapuvon mov etodyetat 0to onpeio avto e§aptdrtal
amd Tig SuvaTOTNTEG TNG VPLOTAPEVNG SIKTVAKNG VITOJOUNG. AkOUn Kat dTav XpnoLyo-
Toleital €va SIKTLO EMKOLVWYVIAG XWPOL XPNHOTN, 1 HeTagpaon and aitroelg E/E mov
avaépovtal oe SLaKPLTEG TIEPLOXEG PUOIKNG UVAUNG e pnvopata Tov GM dev eivau
amAr). Yrdpyet acvp@wvia avapeoa oTig avaykeg evog mehdtn nbd xwpov moprva kat

T1G SuvaToTNTEG EVOG CLOTARATOG OTIWG To GM.

leng len1 lenz len3
> | > >

Physical address space

addr, addr

[T =

scatter-gather list

Ixfiua 25: Mia Aiota Siomopds-ovAdoyns meprypigpet évav anopovwty E/E Sidonapto
0TH QUOLKY UVHUY

To GM amautel n emkotvwvia va yivetal amd anopovwTég CUVEXOUEVOVG OTO XWPO EL-
KOVIKNG UVIUNG TwV Stepyactwy, e mpotepn ONAwon Twv avaloywv meploxwyv. Ad-
OTIAPTEG TIEPLOXEG PUOLKIG UVUNG vtooTnpilovtat péow g Stadkaciag HeTaAPpaong

elkoviKaV dlevfhvoewv o€ QUOIKEG.

And v GAAn mAevpd, o meAdtng nbd xwpov XprioTn déxeTal AUTHOELG TTOV APopPOLV
TUAHATO YUOIKAG UVAUNG. Ald@opeg Tpooeyyioelg umopovv va xpnotpononbodv yua

TNV AVTILETWTILOT TOV TTPOPARHATOG:

Evdiapeon anoBnkevon oe mpo-dnAwpévovg amopovwtég: O mehdtngnbd deopedet kat
dnhwvet oto GM évav aplBuod amopovotwy, katd Tnv apxtkonoinotn tov. Ola
Ta dedopéva pmhok anmodnkevovrat evdidpeoa oe avtovg:  CPU gvAdéyer dedo-
HEVa TIPLY amd aitnomn eyypagns, 1 Siaxomeiper eloepyOpeva dedopéva petd amod
aitnon avayvwong. Iapd tnv anhotntd TG, N oxediaon avtn euavifet onpa-
VTIKG pelovekTrpata:(a) eoayel onpavtikn emBapvvon otn CPU tov koppou
Aoyw avtypagwv, (b) katavaldver To TpmAdoto gVpog (wvng oto Stadpopo

HVHUNG o€ oxéon pe to puOpd amopakpvopuévng E/E mov emrvyyavetay, (c) xpetd-
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] User VM space

e.q., the page cache

] Physical address space,

[ Kernel VM space

standard
GM send/recv

[ Myrinet / GM ]

Ixnua 26: Ameikovion amopovwTwY o€ CUVEYOUEVES eiKovikéG S1evBUVaEl§ TOV TUpHVe

Cetau petaPolr| oTovg mivakeg oeNidwv TOL VPNV HECA OTO KPIOLO LOVOTIATL
agov xpnotpomoteital mpoypappatiiopevn E/E, pe anevepyonoumpéveg tig Sia-

KOTIEG Kat KAetdwpévn TNV etkovikn ovokevr E/E.

Anewcovion SLaoTapTwv QUOIKWY GEAidwV G€ CUVEXOUEVT ELKOVIKT] LVI|UT] TOV TTVPTva:
O meAdtng nbd ovvappoloyel didomapteg oehideg QUOIKNG HVAUNG OE pia OL-
VEXOEVT TiEpLoxT] elkovikwV StevBuvoewy, Tnv omoia dnAwvel oto GM Kat TN
xpnotpomotei ya Aettovpyieg diktvakng E/E. ITapddo mov 1 oxediaon eivau xw-
pig avtiypaga — 0 mpocappoyéag StkTOOoL Slaoyilel YPapLKA TO XWPO EKOVIKNG
pvAung kat kavet DMA oe aohvdeteg oelideg puoiknig vhpng — etodyet dSnAwoelg
TEPLOXWDV KAl AKVPWOELG Héoa aTo Kpiotpo povomatt. EmmAéov, tnpel avtiotol-
XLEG HVIHNG TTPOG TIG AVAPEPOHEVEG PUOIKEG OENIEG KAl EUTTAEKEL TNV KAPTA 0T
Sadikaoia HETAPPAONG, EVW AVTO Elval AMAPAITNTO LOVO KATE TNV ETMKOLV@WVIA
X@POUL XPHOTN. ZTNV VIO UEAETT IEPIMTWOT) O TTVPTVAG Elval 0K OTO KPIOLHO HO-
vomatt. MAAoTa, 0 KaAdV, TO OTPWHIA CVOKEVWY UTTAOK, £XeL ppovTioel va kadn-
Awoel (pin down) 60eg oelideg xpetaletar, dtav m.. yivetat E/E tomov O_DIRECT,

onote mapéxel anevbeiog pia Aiota dtaomopdg-ovAhoyng dedouévwy pe Quotka

TURpaTa.

Xpnon povomhevpwv Aetrtovpyuwv RDMA otnv mAevpd tov eummpetnt): O e&umnpe-

TNTAG XPNOLLOTIOLEL LOVOTIAEVPEG AELTOVPYIEG ATTOUAKPVOUEVTG AVAYVWONG Kal
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Physical address space,
e.g., the page cache

GM scatter-gather list

GM physical
scatter-gather send/recv

v
[ Myrinet NICI VI ]

Exnua 27: Ymootripién tov GM yia E/E pe TUHUQTE QUOIKHG UVHENG

eyypaeng dedopévwv (RDMA read/write) wote va tonofetei Sedopéva amevdei-
ag otn pvnun twv tehatwv nbd. Me avtov Tov Tpomo, ite 0 e§UMNPeTNTHG £xeEL
aneplopLoTn mpdoPaoct oTo Xwpo Quotkwv dtevBvvoewy, eite mapapével n ava-

YK yla SHAWOT TEPLOXDY UVHHNG ATIO TOVG TTEAATEG OTO KPIOLHO LOVOTIATL.

Kabwg ot mapandvw mpooeyyioelg eloayovv emPdpuvvon otn Aettovpyia evog mehdtn
nbd xwpov mupnva, mpokOITEL N} AVAYKN Yl CLVOVACUO TNG ACPAAOVG, AUPITAELPNG
emKovwviag Tov GM e pn OLVEXOUEVOLG ATIOUOVITEG 0T PLOLKI VN, OTIWG TIPOO-
SiopiCovtat and to vTEPKEiEVO OTPWHA CLVOKEVWY Hhok Tov AX. [a To oKOTod AVTO
TIPOTEIVOLLE EMEKTATELG 0TO Unxaviopd Tov GM wate va vrootnpilet E/E pe auAloyn
kat dtaomopd dedopévwv amevbeiag and anopovwTég 0pLopévovg e NioTEG PLOIKWY

devBvvoewv (Zy. 27).

Opifovpe pa véa KAAOT AEITOVPYLOV ATOOTOANG Kot AYNG Kat avTioToles aUTHOELG
yta 10 Xetplopo tovg. O oxeTikog§ anopovwtng kabopiletal wg pa Aiota Staomopdag-
ovAloyng puotkwv dtevBvvoewv. H kataotaon kabe Bvpag tov GM enekteiveTal wote
va vrootnpilet évav aplBuo AMotwv dtaomopds-cuAAoyng, kdbe pia anod Tig omoieg Te-
pLéxeL Evav aplpo guokwy tunuatwy, SnA. evywv {uotkr StevBvvon Turuatog, pn-
KOG TUAHATOG }.

Ta v mpaypatomoinon pag Aettovpyiag E/E, o kakwv:

1. apywomnotei pia AMiota Staomopdg-cvANoyng (gm_set_scatterlist()),

2. voPdaAAel pa aitnon anootoAng (gm_gather_send_with_callback())  Af-
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yng (gm_provide_scatter_receive_buffer_with_tag()) dedopévwv pe ava-

@opd ot AloTa,
3. nomolia avikel 0to Lanai, éwg 0Tov...

4. oxpnotngevnuepwOel yia tnv odokAnpwon tng dadikaciog HEow TNG oVPAG GUL-

Bavtwv.

H oyediaon dtatnpei tn onpactoloyia Tapldopatog pnvopdatwy tov GM, fdoet Ttov xa-
PAKTNPLOTIKOD size Tov StaBéTel kabe aitnomn emkovwviag pe Aiota Staomopdg-oLANOYT.
Etol, to taiplaopa yivetat e§ oAokApov otnv kdpta, 1 onoia tomoBetei ta dedopéva
KdBe makétov anevbeiag otny TeAkn B€on Tovg, xwpic SnAwoelg meploxwv uviung. H

CPU Swakontetat povo otav n Aettovpyia emkotvwviag ohokAnpwOel 610 cVvoAo Tng.

YMomnoinon Aettovpyuwv Staomopdg-ocvAloyng oto GM

H vlomoinon Aettovpytdv Staomopdg-cvuAloyng oto GM emnpedlet kat Ta Tpia THRHA-

té& tov. H BitPAtobnkn xwpov xprjotn epmhovtiletart pe Tig umnpeoieg gm_set_scatterlist(),
gm _gather _send _with_callback() kaigm_provide scatter receive buffer with_ -
tag(). O 0dnyog ovokevng Tov GM emekTeiveTal MOTE Vo VIOOTNPICeL XWPLOTEG AiOTEG
daomopag-ovAAoyng avd Bvpa tov GM. To mAnBog tovg kat o aplBpog Twv THNUA-
TwV oL propei va eptéxet kaOe pia eival otabepég xpovou petaylwttiong. AvEnuévog
aptOpdg Tunuatwy gvuvoel tn Staxeiplon peyaldTepwy aTioewVy TPOG TOV e§UINPETN-

™ nbd, aAld Seopedel peyalvTtepo xwpo otn wviun tov Lanai yia tnv amobrkevon
Twv Motwv. TéNog, To HeyaADTEPO TUNHA TNG LTTOCTAPLENG AEITOVPYIKWY SLAOTIOPAG-
ovAloyng vAomoteitat 6To VAtkoloylopko. H unxavry SDMA petafalletal dote katd

™ Stdoxion pag Aiotag GVANOYNG va TNpel TNV TPEXOVOA KATAOTACT] TOV UNVOHATOG WG
v tpLada {tpéxovoa guotkn SiedbBuvon, Tpéxov Tufpa ot Aiota GVANOYNG, TAB0G
bytes mov amopévouvv}. K&Be makéto Snuovpyeitar duesa and t guotkn StevBuvon
Xwpig petagpaot. Otav éva tpniua g Aiotag e§avtAnBei, o deiktng guotkng StevBuv-
ong apxtkomoteital pe Pdon To endpevo. OUoiwg eMEKTEIVETAL KAL O PNXAVIOHOG ETAL-
VATOOTOANG TAKETWY. TNV TAEVPd TOL TapaAnmtn, i unxaviy RDMA avalappdvet va
Satpéxet ya kdbe eloepydpevo makéto N Aiota dtaomopdg, wote va kabopioel Tnv
telkn StevBvuvon DMA. H Aiota dev Satpéxetat oeiplakd, kabwg mpémel va vootnpi-

Cetan 0 ovVOVAOUOG AYNG pe AioTa SLaoTIoPAG KAl ATTOOTOANG e OVYXPOVIOUO, OTIOTE
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Ta elogpyopeva Tepdyta dedopévwy pumopei va kataknfovy o onolodnmote oneio Tov
anopovwth. H tehkn SiebBuvon DMA vrohoyiletar pe fdon Tnv Tiur tov mediov kepa-
Aidag h_synchro_ptr tov makétov kat Tnv apyikn uotkn Stevbvvon Tov avriototyov

TUAHATOG TNG AloTag Staomopds.

0.5.2 TIIelatng gmblock xwpov muprva

v mAevpd tov mehartn to gmblock exteAeital wg 08nyo6G oLOKEVTG YWPOL TTVPTVA,
vlomotwvtag TNy Kabiepwuévn demapr ovokevwy Aok Tov AX. Me Tov TpoTo av-
10 T0 MpoTelVOpEVO oboTnpa nbd pmopei va xpnotponowmOei dpeoa eite anevdeiag wg
OVOKELT| UTTAOK, TLY. antd €va mapdAAnlo ZABA, eite o cuvdvaopod pe éva mapdAAnio

ovoTnpa apyeiwv potpalopevov diokov.

O melatng xpnowomotei Tig enektdoelg Tov GM Tov TePLYpAPNKaAY GTA TPONYOULLE-
va. KaBe aitnon E/E tov AX anewoviletatl yia mpaypatornoinon DMA kat n Aiota
Staomopdg-ovAhoyng mov tpokvTTEL TpowBeitat wg €xet 0to GM yia e§umnpétnon. Ta
opLa TG oVPAg alToewv Tov 0dnyov TibevTtal pe PAon TIG TAPAUETPOVG XPOVOL HETA-
yAwtTtiong tov GM: to prkog tng ovpdg kabopiletal and to mAnbog Twv AMoTwv Tov
GM kat 0 aptBpog twv tunudtwv ava Aiota kabopilet o péyioto apBuod acvvdetwy

TIEPLOXWV PUOIKNG UVIUNG ava aitnom.

2INV TEPIMTWOT AUTNOEWV ATOUAKPVOUEVIG AVAYVWOT|G, TO TAPLATUO TWV ELOEPYOLE-
Vo TakéTwV yivetat €€ oAokArpov oty kdpta Siktvov, xwpig mapéupaon tmg CPU. O
0dnYyo¢ xpnotpomoLei Slakptto optopa size yia kabe aitnon tov GM kat xwploti AloTta
daomopdg yia va to emrvyet avto. (Zx. 27). O cvvdvaopog avtig TG oxediaong pe To
TPOTEVOUEVO HovoTiatt Sedopévwy oTny Aevpd Tov e§umnpeTnTh emtpénet anevbeiag
petakivnon dedopévwy and to anodnkevTikod HEco 0To SiKTLO Kal 0g TEAIKOVG Amopo-
VWTEG XWPOL PO TN, pe pndevikd avtiypaga. E§ dowv yvwpifovpe, avtr eiva n mpwtn

oxediaon kat VAOT0INoMN oL LTS TNPILEL TETOLA AELTOVPYIKOTHTA.

0.5.3 Amotipnon TapaAAnAlov cVOTNNATOG apxeiwV

Eykataotnoape to mapdAinho cvotnua apyeiwv Oracle Cluster File System (OCFS2)

Tavw and polpalopevo xwpo anodrkevong vAonompévo pe xprion tov gmblock, wote
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Va amoTIUAoovpe TNV emidooT) Tov pe pealioTikd potifa mpooPaong Stapopwv gopTi-

wv.

H nelpapatikn eykatdotaon anoteheitat ano té0oepig kOUPovg THmov A Kat €va amo-
Onkevtkd eumnpetnt TOMOL B. Olot o1 kopPor popdlovtal mpdoPacn oe didtagn
RAIDO péow tov mehatn gmblock xwpov xpriotn. Tpéxovv tnv éxdoon OCFS2 1.5.0, n

omoia anotelei pépog Tov muprva Linux 2.6.28.2.

H xpnon tov mpotetvopevov povomatiov dev emTpénel TNV mpoavaktnon dedopévwv
Kat TNV Tpoowptviy anoBnikevor| Tov oty mhevpd tov e§ummpetnth. Meletovue Tnv
emidpaot| Tovg ovykpivovtag dvo ekdooelg Tov gmblock: tnv gmblock-ramcache, n
omoia mepvd kabe aitnon E/E anoé tnv kpuen pvrun oehidwv Tov muprva kat Ty gmblock-
sram, 1) omoia xpnotponotei apeon E/E kat kivei dedopéva pEcw Tov TPOTEVOHEVOD [O-
vorattov. Ot eyypagég ovvexilouv va mepvobv H€ow NG KOPLAG HVIUNG XWPIG TTPOow-
pLvn amoBnkevon, yla va Tapakdyovpe Tov eploptopd tov Lanai mov meprypdgetat

oto § 0.3.3.

Tpéxovpe tpia Stagpopetikd petponpoypappata: o I0zone [NCJ, éva goptio e§umnpe-
TN otooeidwv kat To mapdAinio mpoypappa MPI-Tile-I/O [Ros].

IMeipapa 3a: Enidoon tov I0zone pe évav koppo

To IOzone eivat €va PETPOTIPOYPALA Yo CLOTAATA apyeiwy oL Tapayet didpopa
HotiPfa mpooPaong. To extehovie O€ KATAGTAOT AVAYVWONG, EMAVAYVWONG KAL EYYPa-
¢n6. Ze kabe doxipn, o I0zone extelei oA amAd nepdopata, petaPaAAovtag To puéye-
00og g aitnong E/E ano 64KB é¢wg 4096KB. Xpnotpomnotodpe §0o StapopeTika gopTia:
gva «pkpo» apxeio unrkovg 512MB To omoio xwpd 0AOKANPO 0TV KPLPT} VAN EVOG
amo Tovg KOpPovug ki éva «peyalo» apyeio, unkovg 4GB, wote va yivel epgavng n emi-

Spaon TG KpLPNG LVHUNG 0ToV EEVTNPETNTI KAt TOVG TTENATEG.

2to Zx. 28 @aivetal n emidoon pe xpron evog mehdtn, pe anevbeiog E/E, Pactopévn
0TO UnXaviopod 0_DIRECT. To gmblock-ramcache meplopiCetat amod to ehpog {wvng Tov
ovVEopov HVHUNG-TiepLPepetakov dpopov ota ~93MB/s and ~160MB/s avtioTtorya.
H enidoon ywa 1o pukpd apyeio eivar aodntd kaAvtepn ylati To TpOTO TEPACUA TWV

64KB 10 @£pveL ONOKANPO GTNV KPLPT| LVHUN TOV eEUTNPETNTT).

To gmblock-sram KAHaK®VETAL YpApUKd pe TV avgnorn tov peyéBoug tng aitnong,
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Ixfipna 28: I0zone, évag med&TyG: ywpic kpvn uviuy, dueon E/E

epooov dev yivetal Tpoowptvr anobnkevon obTte oTov TEAdTn ovte atov e§umnpeTn-
. EmmA£ov, To gmblock-ram givat kakbtepo Tov gmblock-sram yia To apxikd mépa-
opa Twv 64KB, 10Tt 0 egumnpeTnTig Wtopei va mpoavaktroel dedopéva oty KpLEN
TOV pvnun, ektedwvtag artroelg Twv 512KB. To gmblock-sram Eemepva to gmblock-
ramcache peTd amo avTtd To Oplo Kat eivat ~1.64 kat ~2.9 PopEG KAADTEPO yla TO HIKPO

Kat To peydAo apxeio avtiotorya.

210 Zx. 29 @aivetal i) emidoom yla TO [KPO apyELo, [E EVEPYOTIONUEVT TNV KPLPT) LVTY-
1N oTovg TEAATEG Kat piikog poavdktnong 128KB kat 512KB. BAénovpe tnv emidpaon
NG TPOoWPLVNG anmobnkevong oTnv mAevpd Twv medatwy, kabwg kdbe évag amobn-
KEVEL XWPLOTA TO apxeio oTny kpu@r pviun oedidwv tov. H anotoun peiwon kabwg
avgavetat to péyeBog g aitnong ogeiletat oto péyebog tng kpLPrg uvAung L2 tov
ene€epyaotn: kabwg to péyebog tng aitnong avfavetatl, 0 ATOROVWTNG XWPOL XPHOTN
tov I0zone anoBnkevetal ekTdG TNG KPLPNG uvnung L2. BAémovpe emiong 011 n mpoa-
vaktnon dedopévwv eivan anapaitnTn ya TV enitevén tavomontikng anddoong. Me
XP1O1 TOL TTPOTELVOUEVOL povoTatiol dev eivat Suvatn n Tpoavaktnomn otov e§umnpe-
™, Hopel Opwg va pokAnBel otnv mAevpd Tov edrtn. Zta vitodowna, cuveyifovpe

He priKog mpoavaktnong 512KB otovg mehdreg.

Téhog, to Zx. 30 mapovaialel Ty emidoon yia To peydlo apxeio, 6mov o Pabuog xpnot-
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Ixnpa 29: I0zone, évag meA&THG: KpvQH Uvhun oTNY TALVPE TOV TEAGTH, piKkpo apyeio

HOTIOINOTNG TNG KPLPNG UVIUNG Efval HIKpOG.

Ieipapa 3B: Enidoon I0zone pe moAlovg koppovg

Enavalappdvovpe ta mponyodpeva TEPAUATA, AQUTT TI QOPA [Le TECOEPA OTIYULOTV-
na Tov I0zone va ektedovvtat mapdAAnAa, éva oe kdBe kouPo-nelarn. O ouVoAikog
pLOUOG peTapopdg mov emttvyyavetat yia apeorn E/E mapovotaletat oto Zy. 31. H eme-
Eepyaoia tov iStov apxeiov Twv 512MB 1| Twv 4GB givat ) PéXTIoT TEPinTWON YLt TO
gmblock-ramcache: epgavilet otabepd kalr emidoon, kabBwg dAot ot kOpPot enwe-
Aovvtat TawTtdxpova and kdbe petagopd amnd To Sioko oTNV KPLET| KV Tov e§umn-
petnTH), KaBwg KvovvTal pe mepimov Tov ido pvOud péoa oto apyeio. Amd Tnv GAAn
TAevpd, fTay SuokoAdTepO yia To gmblock-sram va éxet otabepr anddoon. Eywve ypni-
yopa @avepo otLn emhoyn tov xpovodpoporoyntn E/E oty mhevpd tov e§umnpetntn
fTav oA onuavtkn yla Ty enitevén kakng enidoong. Aokipdoape Le TOVG TEOOEPLG
StagopeTikovg xpovodpopoloyntég mov mapéxet o muprvag tov Linux, (AS, deadline,
noop, CFQ) kat mtapovotdfovpie yta Adyovg amAdtntag anoteAéopata and Tovg AS kat
deadline. H enidoon petaPaiAetat onpavtikd pe to uéyedog tng aitnong: otnv Kalv-
Tepn mepinTwon n anddoon Twv Siokwv RTav apketd vYNAn Wwote To gmblock-sram va

Eemepdoel To gmblock-ramcache katd 66%. Xtn Xelpdtepn mepintwon, to gmblock-
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Ixfina 30: I0zone, évag meA&THG: KpLQH UVHUN oTHY TAEVPE TOV TEAGTY, peydro apyeio

sram emTuyxdvet povo 1o 40% Tng emidoong Tov gmblock-ramcache, e ATHOELG TWV

64KB xat xprion tov anticipatory scheduler.

1o XZx. 32 @aivetal 1 emidoomn yla To LiKkpO apxeio. MeTd Tnv apxikr avdyvwaor] Tov,
Olot mehateg avaktovy dedopéva mapdAAnha amod T KpLQEG pvheg oedidwv Tovg, oTa

~2.4GB/s.

2to Zx. 33 @aivetat i) emidoon yia peydAo apyeio kat 512KB prikog mpoavaktnong. To
gmblock-sram givat otaBepd kaAvTepo Tov gmblock-ramcache, aAld 1 emidoor Tov
etvat evaioOntn oto péyebog tng aitnong, katt mov amodidovpe otnv aAknAenidpaon
TOV XPOVIOHOV TWV AUTHOEWV UE TO UNYaviopo xpovodpopoArdynong E/E otnv mhevpa

Tov e§umnpeTnTH.

Ieipapa 3y: Goprio e§umnpetnTi

Anotipovpe v enidoon tng eykatdotaong tov OCFS2 og goptia eEvmnpetnty. IIpo-
OOOLWVOVLE €£Va OEVAPLO OTIOV TéooePLS e&umnpetnTég Iotov StaPdlovv apyeia amod
TO KOV oVOTNHA apyxeiwv yia va ohokAnpwoovy Tny enefepyacia eloepxOpevwy attn-
oewv. Kdbe aitnon agopd tuxaia emheyuévo apxeio kat o aptuog Twv artnoswy mov

oloxAnpavovtal oe didotnua dVo AeMTWV XPNOILOTOLEITAL WG HETPLKT) EMIBOONG TOV
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Ixfipna 33: I0zone, moAAoi meddTes: Kpvh uvHun oTHY TAEVPE TOV TTEA&TH, peydAo apyeio

ovotrpatog. To péyeBog Tov cuvolov apxeiwv motkilel amod éva pikpd @opTio OV Xw-
pd otnVv kpuen pvhun (70 apxeia Twv 10MB 1o kabéva), éwg 1000 kat 10000 apyeia Twv
10MB 1o kabéva (Zx. 34(a)).

[a To gopTio OV XWpPA TNV KPLPT| uvrun, Ta gmblock-ramcache kat gmblock-sram
dev eiyav onuavtikn Stagopd oty emidoon (métvxav pvOpud ~7000 apxeia/Aento, &i-
vat ekTog Staypdppatog). OAot ot TeEAATEG £Pepay TO GVVOAO TWV APXEIWV OTIG TOTIKEG
KPLPEG Pvneg Tovg. Otav o apBuog Twv apxeiov avfndnke og 1000 kot 10000 apyeia,
10 gmblock-sram frav katd 12% kat 17% kakvtepo avtiotoxa. H enidoon tov mepio-
pietar and tnv anddoon twv Siokwv. Tia va emPefarwdei Sokipdoape pe Eva pkpod
ovvolo apyeiwv (70 apxeia) Xwpig kpu@n pvipn otovg mekdteg (mpdoPaon O_DIRECT).
KaBa¢ n avalitnon dedopévwy apopovoe pikpoTepn meploxn tov diokov, n anddoon
avgnOnke emmhéov kata 18% kat 26% oe obykplon pe TNV mepintwon twv 1000 kat

10000 apxeiwv avtioTorya.

Ieipapa 38: E@appoyn MPI-IO

Xpnotpomnotovpe 1o MPI-Tile-10, éva petponpoypappa ya tn BipAiodnxn MPI-I0 nov

eKTeNeL Un ovvexopeveg mpooPdoelg oto dioko pe otabepod Pripa, potifo mapopolo e
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(b) Egappoyr MPI-Tile-1/O

Ixnua 34: Enidoon yia o goptia e§vmnpetnth) Iotov ko MPI-Tile-1/0

AUTO TIOV TIPOKANOVY EPAPOYEG OTITIKOTIOINONG ATOTEAEOHATWY Kat aplOunTikéG epap-
Hoyég. To apxeio elcddov TG epappoyng xwpiletat oe éva Sidtaotato ovvolo and vro-

Tivakeg, kot kaBe pia amno tig Stepyacieg MPI extehel mpooneldoelg o€ Evav and avtovg.
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To mpdypappa TPOCOUOLWVEL TNV ATEIKOVLOT] HLaG EKOVAG amoTeAovpevng amd 4 X 4
neploxeg pe péyebog meproxng 512 x 512, 1024 x 1024 kou 4096 x 4096 otoryeia kot
32 bytes ava ototxeio. Zto Xx. 34(b) mapovotdletat 0 GVVOAKOG XPOVOG EKTENEOTG TOV
TPOYPAUHATOG. 2T PENTIOTN TepinTwon To gmblock-sram exteAeitatl o xpdvo 39%,
51% Kkat 57% TOV AMAUTOVHEVOL XPOVOUL Yia To gmblock-ramcache, av kat dev vapyet

emhoyn xpovodpopoloyntn E/E mov va odnyei mavta oe kaAvtepn enidoon.

2vvolikd, To gmblock-sram eixe kaAvTepn emidoom kat oTa Tpia opTia, woTdoOo 1 PeA-
Tiwon amo Tn XP1on TOL CLVTOUOTEPOL HOVOTIATION SedopévwY YiveTal @avepr) HOVO
otav n xpovodpopordynon E/E otnv mAevpd tov e§umnpetn T umopéoet va dpeL Tn oTe-
Vo6 enidoong 0tovg 8iokovg Adyw TavTtdXpovnG TPOoPacng o€ SlaQopeTIKA onpeia

TOV KOLVOU amoBnKkevTIKoL HéoOv.

0.6 XxeTiKEG epyaonieg

H napobvoa StatpiPr| meptypaget éva mhaioto yia E/E emmédov pmlok mavw amod gvgun
diktva Staovvdeong pe anevbeiag peTapopég avapeoa o anodnkevTIKA LEOoA KAl TO

dikTvo.

‘Etol eivat oxeTikn pe epyacieg amnd To xwpo TwV CLOTNHATWY EMKOLVWVIAG XWPOL XPT)-
0T, TNV anmodoTIKr XPron HOLPAlOHEVWY APXITEKTOVIKWV TOPWV 0 GLOTOLYIEG Ao
SMPs, ovotripata potpalopevng mpooPaong emmédov umhok, mapdAnia kat katave-

HNUEVA CLOTHHATA APXEWV KAl TPOYPAUHATITOUEVEG SIKTVAKEG APXITEKTOVIKEG.

210§ 0.2.2 yivetal cUVTOUN ava@opd G€ CLOTHHATA ETKOLVWVIAG XWPOL XPOTN KAl TO

Aoytopukd Myrinet/GM mov xpnoupomnoteitat wg 1 duktvakn vrodour tov gmblock.

[ToANéG epyaoieg emkeVTPOVOVTAL OTO TIPOPANUA TOV TiepLopLopévov ebpoug {wvng Sta-

Spopwv oe ovotrpata SMP [LVE0O, Bel97, Sch03], eotidlovtag otnv enintwon mov

€XEL O AVTAYWVIOUOG Yl TPOOPAOT) OTN UV OTO OLVOAIKO XPOVO EKTEAEOTG EQap-
Hoywy, evaw £xovv mpotabei texvikég xpovodpopoloynong [ANP03, WS06] mov oto-

XEVOLV OTNV AVTIHETWTILOT) TOV.

Ot epyaaieg [PSCO3, PSC05, PDZ00, WWPR04] eottdovv 610 tpoPfAnpa TG mepLTThg

avtypagng dedopévwv o eumnpetntég anmodrkevong kat mpoteivovv aAlayn otnv

0pYavwon Twv anopovwTtwv dedopévov wote va pelwbel To KOOTOG TNG peTaKivoNg
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dedopévov avapeoa oe amoOnkevtikd péoa kat to diktvo.

Meydalo pépog tnG amodnkevTikng LITOSOUNG yia peoaiag Kat HeYAAng KAigakag vo-
AoyloTtikég ovoTolyieg otnpiletat og mapdAAnha cvotrpata apyeiwv popaiopevou di-
okov, 6mwg Ta GPES ¢ IBM [SHO02], OCFS2 ¢ Oracle [Fas06], Global File System
(GFS) g Red Hat [SRO96, PBBT99] xau CXFS tn¢g SGI [SE04]. Ta epioodtepa Paoi-

(ovtat o¢ évav katavepnuévo Staxetplotn kAedwpdtwy mov akoAovbei TG apxég Tov
Sayxeploth kKA edwpdtwv Tov AX VMS [KLS86]. Avtd ta ovotipata apyxeiov eykadi-
otavtal eite Tavw ano egetdikevpévo Siktvo mpdoPaocng (.. Fibre Channel), eite mavw
amd £vav elKoVIKO potpalopevo amodnkevTikd xwpo OTwG TapéxeTal and éva GVOTNHA

nbd.

[ToAAég epevvnTikég epyaoieg [TML97, LT96, FLB08, FB05] éxovv emkevtpwei otnv

KATAOKELT] KATAVEUNUEVNG amoOnKeLTIKNG vTOSopnG, cuvdvalovTag amodnkevTIKA [Lé-
0a EYKATEOTNHEVA 08 SLAQOPETIKOVG KOUPOVG, KaBWG Kal 0TV KATAOKEVT) CVOTNUATWY

apxeiwv mov Aettovpyodv mévw amd pia TéTola vItodour).

ZNUavTIKT epevvNTIKN KatevOuvon eival emiong ot cVoKeVEG amoBnkevong Pactopéveg
oe avtikeipeva (Object-based Storage Devices), 6mov to avtikeipevo givai n oToxelwdng

Hovada amobrkevong ki OxL to uAok [0sd04, GNA198]. To Lustre [Sun08] eivat ¢va

EVPEWG XPTOLUOTIOLOVHEVO OVOTHHA apXelwV Pactopévo o avTtikeipeva. H texvikn mov
vlomoteital oto gmblock pmopei va epappootei 0t oxediaon evog anodoTikdOTEPOL
e§unnpetntn anoBrkevong (Object-Storage Server - OSS) yia to Lustre, emtpénovtag
ot Sayxeiplon Twv avtikelpévoy va yivetat ot CPU tov koppov pe pikpotepn emi-
Bapvvon Aoyw tng kivnong twv dedopévwv avdpeca oto amofnkevtikd péco kat To
dixTvo. OpoiwG, Ol TPOTEIVOHEVEG TEXVIKEG UTTOPOVV VA EQAPULOOTOVV Yla va BeATiw-
oovV TN SLVATOTNTA KALHAKWOTG EVOWHATWHEVWY CLOTNUATWY TTOV cuvdvalovTal pe
diokovg yta va vhomouoovy anoBnkevon Pactopévn oe avTikeipeva, OTWG To CLOTNUA

StorageBlade 1ng Panasas [NSM04, WUA™08].

To Network File System (NES) xpnotponoteitat mapadootakd yia amogakpuopévn npod-
oPaon apyeiwv oe cvotipata UNIX. H tedevtaia avabewpnor tov, 1o NFSv4.1, mept-
AapPavet vrootpién ya tapaAinio NES (pNES) [HHO5], Staxwpiovtag To Xetplopo
Twv peta-dedopévwv Twv apxeiwv and Ty avaktnon twv dedopévwv tovg and efu-
nnpetnTég anobnkevong. To gmblock Oa pmopovoe va evraxbei oe vapyovoa eykatd-

otaon pNFES wg tponog emkovwviag pe e§unmpetntég anobrkevong ot eninedo pmlok,
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emtpénovtag oe kabepwpévovg mehdteg pNES va aAAnAemidpolv pe amobnkevtikn

vnodopn mapexopevn ano to gmblock xwpig petaBorés otov KOdIKA TOVG.

Meydho pépog Siktvakdv cvokevwv pmhok Pacilovtat oto TCP/IP, 6nwg ot GNBD,
oe ovvdvaopo pe to GFS [PBBT99], ny Distributed RAID Block Device (DRBD) [ElI07]
kat To otpwpa Network Shared Disk tov GPES [SHO02]. YAomowoeig Paciopéveg oe
RDMA [KK]J02, LPB04, LYP06, MXPB06, MPB07] ana\eipovv 1o KOGTOG TNG TOAV-

TAOKNG OTOIPaG MPWTOKOAAWVY KAl HELWVOLV TOV aptOpd TWV AMAUTOVHEVWY aVTLYPa-

Qwv, aAld Pacilovtal oe eviidpeo amoBnkevon Twv dedopévwy GTNY KEVTPLKI LVAUN.

H SaBeoipotnra meploxwv pvipung mévw otov mpocappoyéa SIKTVOL €xel odnyroet

ot gpevvnTikeg mpoonddeteg [KPRO2, yKRP05, CKET 05, WYMG09, KPR02, CKE* 05,

WYMGO09] mov oToxevovv 0TN Xprjon Tovg Yla poowptviy anobnkevon dedopévwy oe

e§unnpetnTég anobnrevong.

H napovoa SiatpiPn dev eivar i povn mov efepevva tn duvatdtnta anevbeiog peta-
Qopwv dedopévwy avdpeca oe amoOnkevTikég GLOKEVEG Kal Tpooappoyeig Siktvov. To
¢pyo DREAD [Dyd01] meptypd@et £va unxXaviopo amopakpuopHEVOL EAEYXOV CUOKEVWY
SCSI mavw amd amopakpuopévn mpdoPfacn uvnung péow diktvov SCI. O oxediaopodg
Tov amattei alAayég otov 0dnyd ovokevng NG ovokevng SCSI kat emitpénel o €va
HOVO amopakpvopévo koppo va voPdiAet autrioeig E/E oe dedopévn ovokevny amodr)-
KEVOT|G, EVW ELOAYEL ONUAVTIKT EMPAPVVOT] OTO XEPLOUO ATOUAKPVOHEVWY SLaKOTIWY

VAWKOV.

To Proboscis [Han01, HL02] vhomotei éva ovotnua potpalopevng mpoopaong emmédov
pmhok mévw and SCI, 61ov ot cuppeTEXOVTEG KOpBOL Exovy SIMAO podlo, we e&umnpe-
TNTEG VITOAOYLOHOV Kat amoBnkevong. Emmhéov, avagépet T Suvarotnra anevbeiog
HETAPOPWYV AVAUET OE ATTOUAKPLOUEVA aToBNKeVTIKA péda Katl TO SIKTVLO VW amod
amneikovioelg SCL. Mia T€Tola Tpoo€yylon woTooo elodyel peyaleg Suokolieg 0To xel-
pLopd Aabav, kabwg dev vITdpyeL TPOTOG EVTOTIOUOV ATOTVXNUEVWY TIPOOPAoewy O
amopakpvopuéveg Béoelg Lvniung amod t ovokevn anobrkevong, evw dev mapéxel ovva-

@eLa pe TNV Kpuen pvrpn oeAidwv Tov moprva.

H epyaoia Off-Processor I/O with Myrinet (OPIOM) [Geo02] ftav n mpwtn vAomoinon
oe Myrinet angvBeiag petagopwv dedopévwv and Tomikd anodnkevtika péoa oto Oi-
KTLO. XNV mAevpd tov e&umnpetntr, 70 OPIOM vrootnpilet mpdoPaocn povo ya ava-

YVWOT), TAPAKAUTTOVTAG TOV EMEEEPYATTI) TOV KOUBOL KaL TNV KEVTPLKT wvnurn. QoTto-
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00, anautel alayég otn otoiPa 0dnywv SCSI tov muprva tov Linux, vtootnpilet povo
ovokeveég SCSI, dev mapéxet ouvagela pe TV Kpuer pviun oelidwv Tov mupriva kat dev

ETUTPETIEL TNV EKTEAEDT] AELTOVPYLWV ATIOHAKPVOUEVIG EYYPAPTG.

To READ? [CRU03] akoAovBei pua Sta@opeTiki Tpocéyylon yia T Helwon Tov KOO Toug
npdoPaocng o€ amopakpLopEva anodnkevTikd péoa, Tpoteivovtag Tov EAeyxo Twv Oi-
okwV pe anevbeiag ektéAeon Tov 081yoL cVOKeLTG TAvVW 0To Lanai, avti wg Tunpa tov
nopriva Tov AX. KdBe aitnon anopakpvouévng E/E veiotatat enefepyacia oto Lanai,
XwpiG eumAokr Tov enefepyactn Tov kOuPov. Mia tétola mpoofyylon eivat Svokola
eQappootn, kabwg dev emTpénel TALTOX POV TPOGPACT OTO PHEGO ATIO TOV TOTIKO KO-
Bo. EmmAéov, dev ekpetalleveTal TOVG EVOWHATWUEVOVG 001 YOV CUOKEVTG OTOV TTV-
priva Tov AZ, anatwvTtag eKTeTapEVeG HeTaforég otov kwdika kabe odnyov xwplota,
WOTE va eival eKTEAECLHOG 0TO TEPLOPLOEVO TepBarlov Aoyloptkod Tov Lanai, xwpig
VAL LTTOPEL VaL XPTOLHOTIOWOEL Tat ETTIES AL APAiPEOT|G TTOV TIPOCGPEPOVTAL ATIO TOV TTVPH VAL

Tov AX.

2ZXeTIKd e TIG PeATIOTOTOOELG TNV TAEVPA TOL TEAATT), ot epyacieq [WWPO03, YPO5]
e&epevvovv tn xprion Aettovpywyv RDMA yia v vootpién E/E pe xprion twv At-
0TV SlaoTopdg-oLVANOYHG TOL ovoTHRatog apyeiwv PVES [CCKLT02]. Emkevtpdvo-
VTaL oty emPEpuvoT o EL0AYOVY Ol ATAUTOVHEVEG AelTOVPYieg ONAwONG UViUnNg ot

Aettovpyia TOL GLOTAPATOG.

H epyaoia yia to ORFA [GP04, GPG04] Siepevva 10 k60TOG TpOTPaong o€ Katave-
Hnuévo ovotnua apyeiwv péow Myrinet, amo diepyacia xwpov Xprotn. AlamOTOVEL
npoPArpata avaloya pe avtd mov mapovotalovrat 6to § 0.5.1 kat TpoTEiveL ENEKTAOT
Tov GM woTte va xpnotponotel anevBeiag uotkég StevBuvoelg. QoTo00, N VITOoTHPLEN
APOPA HOVO ATIOPOVWTEG TUVEXOUEVOVG 0TI QUOLKT] VI, YEYOVOG TIOL Tieplopilet Tnv
epappoyr tne uebodov yia petagpopd dedopévwv HTAOK 08 XWPLOTEG TIEPLOYES TNG KPL-
QNG PvNunG oeAidwy, 1| o€ ATOHOVWTEG XWPOL XPNOTH SIACTIAPTOVG OTH QUOLKE KV,
H oxediaor| pag emtpénet E/E and/mpog Staomapteg meploxeg g HVRUNG, He Xpnon

AoTwv dtaomopdg-ocvAloyng dedopévwy.
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0.7 ZXZvunepacpata kot HEAAOVTIKEG kaTeVOUVOELG

Ta ovotrpata SMP xpnopomolovvtal ovxva wG SOIKEG LOVASEG Ylot THV KATACKEDT
VTOAOYLOTIKWV GVOTOXLWV. O SLAPOLPACHOG TTOPWY, EYYEVNG O€ TETOLA CVUOTHATA, ETTL-
dpd apvntikd otnv anddoon} tovg. EmmAéov, n Aettovpyia tov ovotrpartog E/E eivau
kaBopLoTiK ya TNV oLVOAIKT amdS00N TOL CLOTHUATOG KATA TNV EKTENEDT] EPAPHLO-

YWV anatnTikwy og dedopéva.

EeKIVOVTAG amd aUTEG TIG TTAPATNPTOELS, EOTIACAE O€ UNYAVIOHOVG amoSOTIKNG HETA-
kivnong dedopévwv amd ocvokevég amobnkevoNG 0g LTTOAOYLOTIKOVG TTVPNVEG péow Ot-
KkTOOVL SlaovvdeonG, oToxevovTag o€ xapunAr xpnotpomnoinon CPU kat petwpévo avta-
YWVIOUO 0TOV Stadpopo puvnung Kat tov mepipepelako diddpopo. Tia To okond avtd
EKUETAANEVTIKAE XAPAKTNPLOTIKA OTIwG pnxavés DMA kat emefepyaotikég povadeg

TIOV TPOOPEPOLY Ta oVYXpova dikTva Stachvdeong.

o ™ peiwon NG emPapuvong mov elodyovv oL anopakpvouéveg Aettovpyieg E/E o
efunnpetnTég anobrkevong, mpoteivape Tn xpron povomatwv dedopévwv anevbeiag
amo ta anonkevtikd péoa mpog to diktvo. [apovoidoape t oxediaon kat vAomoin-
on tov gmblock, evog ovotpuatog nbd nmov Paciletat o€ TETOL HOVOTATIA, L€ TPOTIO
ave&apTnTo NG ovokevng anodrkevong, CLVOVALOVTAG TN (VTN TOV TTPOTAPUOYEQ Ot-
KTOOVL pe To pnxaviopo dpeong E/E tov AX. H metpapatikn anotipnon tng enidoong tov
¢det&e onuavtikn Bektiwon tov puBpov anopaxpuopévng E/E, pe petwpévn mapepfoln

OTOV VTTOAOYLOUO O0TOVG eMeEepyaoTéG TOL KOpPBOL.

EmmAéov, mpoteivape pikpég mpoobrkes 0To VAKO TOL KOPBOV, CUYKEKPILEVA TNV TIPO-
o01Kn HiKpWV TOOWVY PVAUNG KOVTA 0To SikTLO, £T0L WOTE 1 Tpooéyylon Tov gmblock
va givat epappootpn yla diktva ektog Myrinet. Mia tétola oxediaon pmopei va emigépet
ONUAVTIKA OQEAT) OTNV KATAVAAWOT] EVEPYELAG O EVOWHATWUEVA CLOTHHATA, SlaXwpi-
{ovTag To HOVOTIATL EAEYXOV aTO TO HOVOTIATL KIV|OTG TV SeSOUEVWV KL ETUTPETOVTAG

0TOV KUPLO OYKO TNG HETAPOPAG VA GVUPALVEL EKTOG TNG KEVTPIKNAG LVIUNG.

I[Ipoteivape ouyxpoviopéveg Aettovpyieg anootolng oto dikTvo wote va eivat dvva-
T n eneepyaoia peydwv artnoewv E/E oto anevbeiog povomdrtt, xwpig eUmAOKH TOL
ene€epyaotni Tov kOUPov yia to cuvtoviopd g dtadkaciag. H xprion tovg odnyei o€
ETUKAAVYT TWV PACEWV AVAYVWONG A0 TO HECO Kat AMOOTOANG 0TO SikTLO, e ToAa-

TINEG poég dedopévwv and Stataeg RAID.
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2ty mAevpd Tov TENATT), eKHETAAAEVTAKAUE TN SLVATOTNTA TPOYPAUUATIOUOD TOV
Tpooappoyéa SIKTVOL yia va vrtootnpifovpe anevbeiag LeTaPopés amod Kat Tpog Sid-
OTIAPTEG TEPLOXEG TNG PUOIKNG UVIUNG Xwpic eviiapeoa avtiypaga. Téog, petprioelg
emidooNG e PEAAOTIKA HETPOTIPOYPAMIATA TTAVW aTtd TTapdAAnAo cvoTNHA apXeiwV
¢del&av 01t To gmblock pmopel va pewwoel TNy enidpacn Tov avTaAywVIoHOD yia pot-
palopevovg mopove, apkei n xpovodpopordynon E/E atny mhevpd tov efumnpetnth
Va TTaPEXEL LKAVOTIOLNTIKO pLOpoO HeTAPOPAG Ao Ta amoOnkevTiKd HEca OTAV XPNOLHO-

TOLOVVTAL A0 TOANODG TTEAATEG TAVTOXPOVAL.

Ztn ovvéxela, ou{ntape kKatevBHVoeLg ylo HEANOVTIKEG ETTEKTAOELG TNV TTApOVTa SOV-

Aeld.

[Ipdogatn épevva oto medio Twv eEumnpetnTwy anobrnkevong [PFB09] eotidlet oe amo-
dotikég TexVikéG xpovodpopoloynong E/E yia peydho aplbpo tavtoxpovwy pevpdtwv
dedopévov. Avaloyeg texvikég Oa pmopovoav va xpnotponombodv e cuvovaopo e
to gmblock ywa T BeAtiwon g anddoong Tov ovoThpaTog anmodrkevong, av kat Oa
ETIPETIE VA TIPOCAPUOOTOVV WOTE VAL XPT|OLLOTIOLOVV TO TEPLOPLOUEVO TTOCO HVTLNG TIOV
TIPEXEL O TPOCAPUOYEAG SIKTVOL Kt Vol artoBnkevovv SedopEVA 08 KPUPEG [LVIILEG 0TIV

TIAEVPA TWV TTEAATDV.

Q¢ pakpompdbeopo oToX0 yla peAlovTir dovheld PAETOVE TV EMEKTAOT) TV UNXa-
Viopwv Stayeiptong uvhpng Tov AX €tol wote va avayvwpilovv tnv vmapén xwpLotTwv
TEPLOXWV UVIUNG OTO OVOTNHA, He SLAPOPETIKO PONO: OPLOUEVEG KOVTUTEPA OF VTIO-
AoyloTikoDG TIVPHVEG, OpLopéves kovTiTepa oto Siktvo. H tpéxovoa oxediaon kata-
okevalet mhaiola oEASWV yia T KV ToL Tpooapuoyéa SIKTVOV, WOTOCO AVTA ON-
Hetwvovtal wg deopevpéva- kabotodv duvatn Tnv npaypatonoinomn dpeong E/E, alhd
dev vpiotavtat Saxeipton amo To VITOGVOTNHA UVHUNG TOL TTVPTVaA. O OTOXOG pag eivat
1] EMEKTAOT] TOV TIVPTIVA WOTE VA VTIOGTNPILEL TNV XPTIOT TOVG WG KPLPT) VN oeAidwy,
1 omoia Ba KatavépeTal avapesa oTny KVpLa (VAN TOV CLOTHUATOG KAl OE [IVIIUEG O€
npooappoyeig Tov Siktvov. O eUMAOVTIONOG TNG ONpacloloyiag AetTovpyldv S€opev-
ong pvnung Ba emTpéyel oe eQappoyég va vtodetkvoouy Tt eidovg Xprion avapévetat
va éxel £vag anopovwtig Sedopévwy, (NTWVTAG va AEKOVIOTEL Eval apyelo Og pviun

KOVTA 070 SiKTVO.

Ze eminedo apyITEKTOVIKNG, ALTO pmopei va emitevyOel pe Ty e§aywyn meploxwyv pviung

amo TIG 6VOKeEVEG 0TO XWwpo Stevbvvoewv Tov PCI.
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H enéktaon g kpu@ng pvipng oeAidwv wote va dtabétet Tr AeltovpylkdTnTa TOL TIE-
prypagetat Oa em@épel onpavtikn Bektiwon oTn Aeltovpyia TOL CLOTHHATOG, EMITPE-
novtag TNy npoavaktnon dedopévwv atny mhevpd tov efumnpetnT Kat vrooTtnpilo-
VTAG LEPAPXLKT 0pYAvwon TwV SLaBEIpwY TIEPLOXWY HVIHNG: OTAV 1 UVUN OTOV TTPO-
oappoyéa dev emapkei, To OVOTNHA HETATINTEL OTASLAKA TN XP1OT ATOHOVWTWY GTNV
KOpla pviun. Yrapyet évag oupBipacpos avdpeoa otny vnootipn peyakbtepov ov-
VOAOL gpyaciag oTnv KpLEr Hviun kat T otadakn abv§non tng mieong oto Stddpopo

HVHHNG TOL KOpPov.



Introduction

1.1 Motivation

Clusters built out of commodity components have become prevalent in the supercom-
puting sector as a cost-effective solution for building scalable parallel platforms. The
use of clustered systems has expanded to provide a high-performance computing in-
frastructure for various disciplines; clusters have been powering such diverse workloads
as cosmological simulations in astrophysics, weather forecast models in meteorology,
vehicle collision tests in the car industry, graph algorithms for web search engines, and

data mining applications for business intelligence.

Symmetric Multiprocessors (SMPs) of multicore chips (CMPs), are commonly used
as building blocks for scalable clustered systems, when interconnected over a high-
bandwidth, low-latency communications infrastructure, such as Myrinet [BCF95],

Quadrics [PcFH'01] or Infiniband [Inf00].

Fig. 1.1 displays the typical layout of an SMP cluster node. A small number of pro-
cessors are interconnected over a shared Front-Side Bus to a memory controller, com-
monly called the Northbridge in Intel-based designs, which provides access to a num-
ber of memory modules (Fig. 1.1). The memory controller is part of a chipset, also
containing bridges to one or more peripheral buses, commonly PCI or PCI-X. On the
peripheral bus lie a number of I/O devices; the most important are the Network Inter-
face Card (NIC), which enables communication with the rest of the cluster, and storage

controllers, e.g., RAID cards for access to mass storage devices.
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Front Side Bus

Memory Bus ’

Main Memory

PCI/PCI-X

Figure 1.1: Typical layout of an FSB-based SMP system

The most important architectural characteristic of an SMP system is resource sharing at
multiple levels. Inside a single chip, multiple cores often share access to some levels
of the cache hierarchy. Leaving the chip, all processors share bandwidth on the Front-
Side Bus and the bus to main memory. At the same time, I/O devices may access main
memory independently of the CPUs, using Direct Memory Access (DMA) techniques.
Thereby, a device takes control of the peripheral bus (bus mastering) and issues memory
access requests, which are forwarded through the bus bridge to the Northbridge, to
be serviced by main memory. Thus, I/O devices share bandwidth on their peripheral
bus and also contend with the CPUs for access to main memory. Finally, processes
running on the CPUs share access to mass storage devices and bandwidth to the cluster

interconnect.

Resource sharing simplifies the design of the system and facilitates its programming,
however it may have significant impact on overall system performance. The extent of
resource sharing and its performance impact depends on application behavior. Appli-

cations with excellent cache locality will spend a significant fraction of their execution
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time inside the processor, working with data in the cache (Fig. 1.1, point (a)). On the
other hand, data-intensive applications pose significant load on the path to main mem-
ory (Fig. 1.1, path (b)). Such applications are those with increased data to computation
ratio, e.g., sparse scientific computations [GKA109], graph algorithms and database
transaction processing. When the dataset to be processed no longer fits in main mem-
ory, as is the case for most enterprise workloads, execution efficiency becomes sensitive
to the performance of the path to storage. In clustered systems, access to a shared storage
system is commonly provided over a storage area network or over the cluster intercon-
nection, as described in greater detail below and in Section 2.1. Thus, such applications

are sensitive to the performance of paths (c), (d) in Fig. 1.1.

The need for high-performance I/O is also becoming prevalent outside the HPC do-
main. Traditional data-intensive applications such as Online Transaction Processing
and Web search engines are complemented by applications from areas such as social
networking, video streaming, and file sharing. A recent report by the International Data
Corporation [GCM T 08] estimates the amount of data generated and stored worldwide
to reach 1800EB (18 x 10 bytes) by 2011. A significant fraction of the data produced
will be accessible remotely. This trend is exemplified by the emergence of ubiquitous,
low-power embedded storage devices for network-based access to storage, based on a

System-on-Chip (SoC) architecture, e.g., [Mar].

At the same time, advances in microprocessor design have been fueling the trend for
multiple cores per processor die. The number of cores has been increasing and will most
probably continue to grow in the years to come, thus providing substantial processing
power on a single chip. Having this amount of processing power available poses tremen-
dous load on the I/O subsystem, which becomes a decisive factor in performance. For
applications to scale with the number of cores, the I/O subsystem must meet the chal-

lenge of feeding data fast enough to keep all cores busy. [Gur09]

The increase in available computational capacity, combined with the emergence of ap-
plications with heavy data-processing demands on SMP clusters, shifts the focus to net-
work I/0. We need efficient mechanisms for transporting large datasets efficiently be-
tween compute cores and secondary storage, over an interconnection network, with

minimal overhead.

Systems for block-level storage sharing over the interconnection network are commonly
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used to provide for scalable, yet cost-effective deployment of various services in high-
performance clustered environments. Such services include shared-disk parallel filesys-
tems for HPC applications, shared-disk parallel databases, and shared storage pools for

live Virtual Machine (VM) migration in virtualized data centers.

A block-level storage sharing system enables a number of clients to access storage de-
vices on a remote server as if they were local. Block read and write requests are encapsu-
lated in network messages to the storage server, where they are passed to the local block
device (Fig. 1.2). When the block operation completes, the server returns the resulting
data over the network. Throughout this dissertation, we refer to such systems also as
“network block device” systems, or nbd systems; storage exported by a storage server

appears to the client as a block device accessible over the network.

requests

network messages

lblock 170

requests

network stackj [ block driver J

')

{ local storage J Server

Figure 1.2: Operating principle of an nbd system

An ideal nbd system provides a very thin, low-overhead layer that allows remote use
of storage media with performance close to that of local access. Furthermore, it should
scale with the number of storage subsystems and network interfaces, without imposing
significant load on the storage servers and clients. In SMP clusters, the demand for low-
overhead access translates to reduced CPU load and minimal interference due to the use
of shared resources, i.e., bus bandwidth on the shared memory and peripheral buses;
bus capacity emerges as a valuable resource, limited under several realistic execution

scenarios.

Even when an SMP cluster node is viewed in isolation, memory contention can lead
to substantial slowdown; two or more memory-intensive applications, each on its own
dedicated processor, may interfere with each another during memory access, on path
(b), increasing the average cost per memory transaction. Various works in the literature
have focused on dynamic monitoring and scheduling of processes to mitigate the impact

of resource sharing and deliver predictable performance [Bel97, LVE0O, ANP03]. More
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information can be found in Chapter 6.

Peripheral devices, such as local storage controllers and Network Interface cards, exac-
erbate the problem of resource contention, since they also contend for access to main
memory (Fig. 1.1, paths (c), (d)). The evolution of cluster interconnection technology
has brought considerable increases in their link rate, currently into the 10-40Gbps range,
which is a significant portion of the available memory bandwidth. This leads to network
I/0 operations interfering with local computation on the system processors [Sch03], in-

creases memory pressure and has noticeable performance impact [KK05, KKO06].

Since the efficiency of the I/O infrastructure is pivotal to overall performance, the de-
sign of an nbd system needs to minimize the overhead of remote data access; CPU in-
volvement and contention on the path between processing cores and remote storage

aggravates this overhead significantly.

However, current nbd implementations are suboptimal in that regard; Often, they in-
voke heavy host CPU-based processing, being based on TCP/IP for the transfer of block
data. More importantly, they treat memory as a centralized resource and make use of
data paths that cross the memory and peripheral buses multiple times, even when em-
ploying advanced interconnect features such as user level networking and remote DMA

(RDMA) [KKJ02, LPB04, LYP06]. Thus, they impose high host overhead and their per-

formance is limited due to bus saturation. The current situation is analyzed in greater

detail in Section 2.1 and Chapter 6.

1.2 Contribution

This work explores the implications of CPU, memory bus and peripheral bus contention
in SMP nodes used as commodity storage servers. We study the data movement in a
block-level storage sharing system over Myrinet and show how its performance suf-
fers as the storage subsystem, the network and local processors all compete for access to
main memory and peripheral bus bandwidth. To alleviate the problem, we explore tech-
niques for building efficient data paths between the storage medium and the network
on the server side, and the network and processing cores on the client side. We focus
on system-level software optimizations to limit the impact of contention and improve

system throughput.
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To minimize CPU overhead and reduce the load due to redundant data movement on
storage servers, we look into how an nbd system can exploit a number of relevant fea-
tures provided by current cluster interconnects. Such features include various degrees
of programmability of their Network Interfaces (NIs), and the possibility of offloading

parts of protocol processing to dedicated cores and memories close to the network.

We present the design and implementation of gmblock, a block-level storage sharing ar-
chitecture over DM A- and processor-enabled cluster interconnects that is built around a
short-circuit data path between the storage subsystem and the network. Our prototype
implementation uses Myrinet, allowing direct data movement from storage to the net-
work without any host CPU intervention and eliminating any copies in main memory.
This alleviates the effect of resource contention, increases scalability and achieves an
up to two-fold increase in performance compared to standard approaches. Moreover,
this means that the storage server no longer needs to be used exclusively for servicing
I/O requests; it can have a dual role, as a compute and storage node, since remote I/O
follows a disjoint path and does not interfere with computation on the local CPUs. The
design of gmblock enhances existing OS and user level networking abstractions in or-
der to construct the proposed data path, rather than on relying on architecture-specific
code changes. Thus, it is independent of the actual type of block device used, can sup-
port both read and write access safely, and maintains the process isolation and memory

protection semantics of the OS.

Experimental evaluation of the base gmblock implementation shows that although it
works around memory and peripheral bus bandwidth limitations effectively, its perfor-
mance lags behind the limits imposed by raw disk and network bandwidth. By breaking
down request processing in phases and studying each individually, we find this is due
to an interplay between the data movement characteristics of real-world, RAID-based
storage systems and memory limitations of the Myrinet NIC. To better adapt gmblock
to the inherent parallelism in request processing by RAID storage and to enable process-
ing of large I/O requests with reduced host CPU overhead, we propose a new class of
send operations over Myrinet, which support synchronization: their semantics allow the
network transfer of block data to progress in a controlled way, concurrently with disk
1/0, overlapping disk with network I/O for a single block request. A working prototype,
based on custom modifications to Myrinet’s GM message-passing middleware, shows

significant improvement for streaming I/O, compared to the base version of gmblock.
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We study data movement on the client side and propose techniques which exploit NIC
programmability to support zero-copy block transfers to application buffers dispersed
in physical memory with minimal host CPU involvement. Combined with the pro-
posed server-side data path, our system can support end-to-end zero-copy block trans-
fers, from remote disk to local memory. We deploy a shared-disk parallel filesystem,
Oracle’s OCFS2 on top of this infrastructure to evaluate the performance with applica-
tion workloads. We find that using the direct I/O path generally leads to performance
improvement, provided incoming I/O requests can be scheduled efficiently, so that the

disk subsystem does not become the bottleneck.

The contribution of this thesis can be summarized as follows:

« We propose direct I/O paths between storage devices and the network, to allevi-
ate the effect of memory and peripheral bus contention on commodity storage
servers. We show how such paths can be built in a block device-independent
manner, exploiting NIC-based memory areas and generic OS mechanisms for

direct I/O.

» We present gmblock, a prototype implementation over Myrinet. Experimental
evaluation shows it eliminates memory and peripheral bus contention, deliver-
ing significant improvements to remote read/write I/O bandwidth. We demon-
strate how bypassing main memory enables local computation to progress with

negligible interference from remote I/O.

» We discover limitations in hardware components of the system which reduce
the efficiency of peer-to-peer data transfers. We show how our design can work
around these limitations by employing an alternate data path using intermediate

buffers on the peripheral bus while still bypassing main memory.

» We propose architectural modifications to make the approach of gmblock appli-
cable to interconnection technologies other than Myrinet. We argue for changes
to the semantics of memory allocation in the OS, to support management of dis-
tinct memory areas: some closer to processors, some closer to the Network In-

terface.

» We propose synchronized send operations as an enhancement to the semantics of

Myrinet’s message-passing layer. They exploit NIC programmability to improve
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handling of larger requests, with intra-request overlapping of network and block
I/0, without host CPU involvement. Their operation is adapted to the multiple-

stream nature of request servicing by RAID-based storage.

« We present client-side optimizations to support zero-copy block transfers be-
tween the network and application I/O buffers. Integration with gmblocK’s opti-
mized data path on the server side allows for end-to-end zero-copy transfers be-
tween client-side userspace buffers and remote storage. To the best of our knowl-

edge, this is the first such implementation.

« We explore the tradeoffs of using the proposed data path with regard to server-
side caching and prefetching, by deploying a production-quality shared-disk par-
allel filesystem over our prototype implementation and evaluating its performance

with various workloads.

1.3 Outline

This dissertation is organized as follows: In Chapter 2 we present the basic operating
principles of nbd systems and how their deployment can enable scalable clustered stor-
age in various contexts. Then, we discuss briefly the core concepts of user level network-
ing and its implementation in Myrinet/GM and conclude with a brief description of the
Linux block layer, to highlight the parts of its functionality pertinent to our work. Chap-
ter 3 describes the proposed server-side data path and its implementation in gmblock.
Chapter 4 concerns our work on extending GM with synchronized send operations. In
Chapter 5 we explore client-side optimizations and evaluate the performance of a par-
allel filesystem deployment over our storage infrastructure with realistic workloads. In
Chapter 6 we compare our approach to related work in the literature, while Chapter 7

summarizes our conclusions and provides directions for future work.



Background

In this chapter, we provide background information on the hardware and software en-
vironment targeted by this work. Initially, we discuss the basic operating principles be-
hind nbd systems and present common usage scenarios for their deployment in clusters.
The next section contains a short introduction to the essentials of user level networking
and its implementation in Myrinet/GM, to gain insight on the infrastructure used as
the communications substrate of the nbd system which is the focus of this work. The
chapter concludes with a short description of the Linux block layer, to understand the
basic concepts behind block device management in a modern Operating System, and

thus the context in which the client-side portion of an nbd system operates.

2.1 nbd systems and applications

The need for shared block-level access to common storage arises often in clustered envi-
ronments. Some of the most common scenarios include (a) the deployment of shared-
disk parallel filesystems, (b) support of parallel databases based on a shared-disk ar-
chitecture, such as Oracle RAC, and (¢) virtualized environments, where disk images
of virtual machines are kept in common storage, so that live migration of them among

VM containers is possible.

In the first case, parallel filesystems are deployed to meet the I/O needs of modern HPC
applications. They allow processes running on cluster nodes to access a common filesys-
tem namespace and perform I/O from and to shared data concurrently. There are vari-

ous implementations of cluster filesystems which focus on high performance, i.e., high
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aggregate I/O bandwidth, low I/O latency and high number of sustainable I/O opera-
tions per second, as multiple clients perform concurrent access to shared data. At the
core of their design is a shared-disk approach, in which all participating cluster nodes
are assumed to have equal access to a shared storage pool. The shared-disk approach
is followed by filesystems such as IBM’s General Parallel File System GPFS [SH02], Or-
acle’s OCFS2, Red Hat’s Global File System (GFS) [SRO96, PBB*99], SGI's Clustered
XFS [SE04], and the VERITAS Cluster File System [Sym], which aim to provide a high-

performance parallel filesystem for enterprise environments.

In the second case, instances of a shared-disk parallel database execute on a number of
cluster nodes and need concurrent access to a shared disk pool, where table data, redo

logs and other control files are kept.

Finally, in the case of virtualized environments, a virtual machine runs on a cluster
node acting as a VM container and performs raw block-level access to a storage vol-
ume, which it treats as a directly-connected hard drive. For reasons of load balancing
and maintainability, it is desirable to be able to live migrate the VM among VM con-
tainers. Thus, the storage volumes must be viewable by all VM containers, to ensure
uninterrupted access by a VM to the virtual disk images associated with it when migra-

tion occurs.

Traditionally, the requirement that all nodes have access to a shared storage pool has
been fulfilled by utilizing a high-end Storage Area Network (SAN), commonly based
on Fibre Channel (as in Fig. 2.1(a)). An SAN is a networking infrastructure providing
high-speed connections between multiple nodes and a number of hard disk enclosures.
The disks are treated by the nodes as Direct-attached Storage, i.e., the protocols used are

similar to those employed for accessing locally attached disks, such as SCSI over FC.

However, this storage architecture entails maintaining two separate networks, one for
access to shared storage and a distinct one for cluster communication, e.g., for message-
passing between MPI peer processes. This increases the cost per node, since the SAN
needs to scale to a large number of nodes and each new member of the cluster needs to
be equipped with an appropriate interface to access it (e.g., an FC Host Bus Adapter).
Moreover, while the number of nodes increases, the aggregate bandwidth to the storage
pool remains constant, since it is determined by the number of physical links to the

storage enclosures. Finally, to eliminate single points of failure (SPOFs) on the path to
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Figure 2.1: Interconnection of cluster nodes and storage devices
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the shared storage pool, redundant links and storage controllers need to be used, further

increasing total installation costs.

A hybrid approach can address these problems; shared-disk filesystems are commonly
deployed in such way that only a small fraction of the cluster nodes is physically con-
nected to the SAN (“storage” nodes), exporting the shared disks for block-level access
by the remaining nodes, over the cluster interconnection network. In this approach
(Fig. 2.1(b)), all nodes can access the shared disk pool, by issuing block read and write
requests over the interconnect. The storage nodes receive the requests, pass them to the
storage subsystem and eventually return the results of the operations back to the client
node. Taken to extreme, this design approach allows shared-disk filesystems to be de-
ployed over shared-nothing architectures, by having each node contribute part or all of
its locally available storage (e.g., a number of directly attached Serial ATA or SCSI disks)
to a virtual, shared, block-level storage pool (Fig. 2.1(c)). This model has a number of
distinct advantages: first, aggregate bandwidth to storage increases as more nodes are
added to the system; since more I/O links to disks are added with each node, the perfor-
mance of the I/O subsystem scales along with the computational capacity of the cluster.
Second, the total installation cost is drastically reduced, since a dedicated SAN remains
small, or is eliminated altogether, allowing resources to be diverted to acquiring more

cluster nodes. These nodes have a dual role, both as compute and as storage nodes.

The cornerstone of this design is the network disk sharing layer, implemented in a client-
server approach. The main principle behind its operation is portrayed in Fig. 2.2. It runs
as a server on the storage nodes, receiving requests and passing them transparently to
a directly-attached storage medium. It also runs as a client on cluster nodes, exposing
a block device interface to the Operating System and the locally executing instance of
the parallel filesystem.This way, it can service block I/O requests by exchanging data
with a suitable server instance over the interconnection network. There are various
implementations of such systems, facilitating block-level sharing of storage devices over
the interconnect. GPFS includes the NSD (Network Shared Disks) layer, which takes
care of forwarding block access requests to storage nodes over TCP/IP. Traditionally,

the Linux kernel has included the NBD (Network Block Device) driver ' and Red Hat’s

'nbd in all small letters will be used to denote generic client-server implementations for network
sharing of block devices. NBD in all capital letters denotes the TCP/IP implementation in the Linux
kernel.
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Figure 2.2: Generic nbd system

GFS can also be deployed over an improved version called GNBD.

However, all of these implementations are based on TCP/IP. Thus, they treat all modern
cluster interconnects uniformly, without any regard to their advanced communication
features, such as support for zero-copy message exchange using DMA. Employing a
complex protocol stack residing in the kernel results in very good code portability but
imposes significant protocol overhead; using TCP/IP-related system calls results in fre-
quent data copying between userspace and kernelspace, increased CPU utilization and
high latency. Moreover, this means that less CPU time is made available to the actual

computational workload executing on top of the cluster, as its I/O load increases.

On the other hand, cluster interconnects such as Myrinet and Infiniband are able to
remove the OS from the critical path (OS bypass) by offloading communication proto-
col processing to embedded microprocessors onboard the NIC and employing DMA
engines for direct message exchange from and to userspace buffers. This leads to signif-
icant improvements in bandwidth and latency and reduces host CPU utilization dra-

matically.

As explained in greater detail in the chapter on related work, there are research efforts
focusing on implementing block device sharing over such interconnects and exploiting
their Remote DMA (RDMA) capabilities. However, the problem still remains that even
though the protocol layer may be greatly simplified and the number of copies reduced,

the data follow an unoptimized path. Whenever block data need to be exchanged with



74 CHAPTER 2. BACKGROUND

a remote node they first need to be transferred from the storage pool to main memory;,
then from main memory to the interconnect NIC. These unnecessary data transfers
impact the computational capacity of a storage node significantly, by aggravating con-
tention on shared resources as is the shared bus to main memory and the peripheral
(e.g., PCI) bus. Even with no processor sharing involved, compute-intensive workloads
may suffer significant slowdowns since the memory access cost for each processor be-

comes significantly higher due to contention with I/O on the shared path to memory.

2.2 User level networking

2.2.1 Basic concepts

Recent advances in high-performance networks have brought significant increases in
the available bandwidth at the physical layer. Available solutions have evolved to pro-
vide bandwidth in the 2-40Gbps range. At the same time, hardware and wire latencies
have decreased and are in the 0.3-1.0us range, depending on the size of the network.
Delivering this kind of performance to the application layer has proven difficult, how-
ever, mainly due to the use of complex in-kernel protocol stacks, such as TCP/IP. In
this case most of the latency is in software; the application invokes system calls in order
to manipulate the interconnect, which brings the OS in the critical path of communi-
cation. Typically, this involves expensive CPU mode switching when trapping into the

kernel and CPU-based data copying between userspace and kernelspace buffers.

To mitigate the overhead of OS involvement, most modern cluster interconnects, such
as SCI [Hel99], Quadrics [PcFH'01], Infiniband [Inf00] and Myrinet [BCF95] employ
user level networking [BRB98b] (ULN) techniques in order to remove the OS from the
critical path. In this model, the application process is allowed to control the Network
Interface (NI) directly. Since the OS is no longer invoked for communication, its role
is undertaken by a combination of application level libraries and firmware executing
on the NIC; the capability for data exchange between the two entities is established by
privileged code inside an OS kernel module (Fig. 2.3).

The application is allowed direct control of the NI by mapping part of the NI regis-

ter or memory space into its own virtual memory; following that, it uses unprivileged
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load/store instructions into the relevant VM segments in order to communicate.

Removing the OS and CPU from the critical path of communication means certain
functionality is implemented on the NIC itself, which undertakes parts of the user level
networking protocol. This requires an intelligent NIC, with a certain degree of pro-
grammability. However, exactly how programmable a NIC needs be is a matter of de-

bate and depends on the design of the user level networking protocol employed.

There is a number of important issues to be considered in designing network architec-
tures supporting operations in userspace, creating an array of possibilities. Past research
in the field has focused on the design and implementation of user level networking pro-
tocols, each of which offers different programming semantics and make different per-

formance tradeofts. Some of the design considerations are:

Programming Semantics ULN Protocols differ on the programming semantics offered
to applications and can be divided in three categories: shared-memory proto-
cols, send/recv-based message passing protocols and protocols based on 1-sided
remote memory get/put operations. Shared-memory protocols include SISCI
[GABT], VMMC and VMMC-2 [DBC*97]. Active Messages II [CMC98], Fast
Messages [PLC95], RWC’s PM [TOHI98], LFC [BRB98a], U-Net [VEBBV95],
Hamlyn [BJM*96] and BIP [PT97] offer explicit message passing with receive-
side matching. Finally, interfaces offering 1-sided Remote DMA (RDMA) se-
mantics include the uDAPL (User Direct Access Programming Library) [LPSS03]
for RDMA-enabled interconnects and implementations of the Infiniband Verbs
specification, itself an evolution of the Virtual Interface Architecture [VEV9S,

DRM*98].

Data movement To communicate, message data needs to be moved from application
buffers—usually residing in host RAM—to some part of NI local memory or
other staging buffer. This can be done using Programmed I/O (P10O); the appli-
cation uses loads or stores to transfer all of the message content to mapped NI
memory. The downside is that this method wastes host CPU cycles for data move-
ment, may pollute the host CPU cache and incurs the overhead of a large number
of peripheral bus transactions, since data is transferred in units of one or two

words at a time. A possible optimization is write-combining: the results of store
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instructions are stored in special write-combining buffers on the CPU so they can

be written to NI memory in a single transaction.

Modern cluster interconnect NICs oftload data movement from the CPU by us-
ing Direct Memory Access (DMA) engines to access message data in host RAM in
large bursts over the peripheral bus. This allows the creation of zero-copy proto-
cols, where the CPU is removed completely from the critical path and is left free
to perform computation, enabling computation-to-communication overlapping.
However, DMA initialization incurs significant DMA startup overhead, so there
is a tradeoft; for small enough messages, PIO with write-combining may outper-

form DMA.

Thus, some implementations (FM, LFC) perform PIO exclusively while others are
DMA-based (PM, VMMC-2, U-Net). A hybrid approach is also possible (AM-II,
Hamlyn, BIP), where PIO is only used for small messages, even merging message

data into the request descriptor being written into NI memory.

Another issue rising from the use of DMA is the need for memory registration.
Message buffers lie in application VM space and may have been swapped out by
the OS when an application issues a send request or an incoming message arrives.
DMA operations refer directly to the physical address space. Since the kernel is
no longer in the critical path there is no guarantee that the requested VM page
actually exists in physical memory or that it will not be swapped out in the mid-
dle of the transfer, leading to memory corruption. In the case of PIO, the first
application reference to a swapped out page would cause a page fault, trap into

the kernel and cause it to be fetched back into RAM.

In the case of DMA, the relevant pages need to be wired or pinned, so that they are
marked as unswappable by the OS. Memory registration with the OS is an expen-
sive operation that requires a system call, thus it must be avoided in the critical
path of communication. A simple solution would be to register all the needed
buffers at application initialization, which is not always possible, however. First
because there is an upper limit imposed by the OS on the number of pinned pages
to ensure system stability. Second, because the addresses of the bufters involved
in network operations may not be known beforehand due to the semantics of

the upper layers, e.g., when implementing MPI over a ULN-based interconnect.



2.2. USER LEVEL NETWORKING 77

Solutions include using fixed, pre-allocated DMA staging areas and incurring the
overhead of memory copying (as AM-II and Hamlyn do), or managing a cache of
pinned-down memory areas with performance dependent on the degree of buffer

reuse [TOHI98].

Address Translation The application uses references in a virtual address space to spec-
ify message buffers for communication operations. However, the NI is a physical
device; at some point, it needs to know the actual physical addresses of the rele-
vant pages in RAM, in order to setup the needed DMA transactions. When using
PIO, the processor's MMU does the necessary translation whenever a load or a
store takes place. In case of DMA, if the kernel is in the critical path, it can con-
sult the corresponding page table entries. Hence, in a ULN scheme, an address
translation mechanism becomes necessary. There are many different alternatives
to implementing such scheme which depend on the hardware resources available
on the NI, the data movement modes supported by the protocol and whether
memory protection is required. Design decisions have significant performance

implications as well [SH98].

There are two main issues: who will be responsible for performing virtual to phys-
ical translations, the CPU or the NI itself, and who will be responsible for han-

dling misses in the corresponding cache.

If protection can be sacrificed, then the application can perform CPU-based ad-
dress lookups using an interface exposed by the kernel, then provide the NIC with
physical addresses directly (this approach is followed by LFC and BIP).

A simple solution would be to use special DMA areas for transfers, for which
a permanent mapping may be setup on the NIC. Then, all requests can refer
to offsets in this area. Although this approach is very simple to implement and
requires very little hardware on the NIC, it is very limited because every transfer
incurs the cost of memory copying in and out of these areas (AM-1I, Hamlyn, FM

in the receive path).

A better solution is to keep a small translation cache for virtual to physical address
mapping on NI memory, and perform address lookup on the NIC using either
special hardware or a software implementation running on a programmable mi-

crocontroller (e.g., the Lanai on Myrinet NICs). However, this translation cache
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can only hold a limited number of translations and cannot cover all of the user

addressable space, so the issue of handling misses arises.

Handling of misses can be undertaken by the NI itself, by the host CPU, or it
may happen in a combined manner, with various degrees of host CPU involve-
ment. Quadrics QsNetII is at one end of the spectrum; its NIC is based on the
Elan thread processor which features its own MMU. However, extensive kernel
patching is needed to keep the Elan4 MMU synchronized with the host-based
pagetables. The NIC processor is treated as a peer to the host CPU, propagating
pagetable updates to it as new VM areas are created and destroyed. This approach
has the advantage of supporting zero-copy communication from pageable mem-
ory, but this comes at the expense of a fully-fledged microprocessor on the NIC,

and heavy kernel patching.

At the other end, the NIC may interrupt the host CPU whenever a valid trans-
lation cannot be obtained from its cache, causing a trap to the device driver’s
handling routine. The driver can then wire down the relevant pages, update the
NIC-based cache and allow the operation to continue (U-Net/MM). This incurs

the overhead of trapping into the OS inside the critical path, however.

Other approaches allow the application to use a kernel interface to pin down and
manage references to virtually addressed message buffers, which are then cached
on NI memory (VMMC-2). Similarly, Myrinet/GM requires explicit system calls
to the kernel in order to register communication buffers with GM-specific pageta-
bles held in kernel memory. The NIC keeps an LRU cache of these tables in
NIC memory and updates its contents in the critical path, DMAing the neces-

sary translation data whenever there is a miss.

Protection To be able to integrate a ULN architecture in a real-world operating en-

vironment, it is imperative that it respects the memory protection and process
isolation semantics of the host OS. This means that no process will be allowed
to read or write to memory regions belonging to other processes or access the
contents of their messages. When using a protocol stack inside the kernel, this is

ensured via a combination of CPU and OS support.

Some ULN schemes assume only trusted processes will be able to use the interface

and do not offer protection (FM, LFC, BIP).
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To be able to support protection, the protocol needs to provide a virtualized view
of the interface to the application layer with multiple processes issuing network
requests simultaneously. Since the kernel is no longer involved in the critical path,

the NI itself needs to verify the validity of these requests.

The common solution is to implement virtual communication endpoints in NIC
memory, which are then mapped independently by processes. Mapping virtual
memory regions to I/O regions is a privileged operation and is done at interface
initialization time using the network’s device driver, ensuring protection. After
that, a process can only access request descriptors and other resources of its own

virtual interface.

The issue of protection is closely related to that of address translation, since the
virtual to physical translation step ensures that any invalid references are caught

and handled appropriately.

Network endpoints are commonly created via static allocation of the available NI
memory, which means the maximum number of concurrent contexts is limited
by its size. Another approach (implemented in AM-II) is to only have a limited
number of endpoints cached in NI memory and dynamically swap endpoints be-
tween NI memory and host memory, as appropriate, suffering the corresponding

performance hit.

Control transfer and completion notification A way is needed for applications to be
notified whenever a network operation completes, e.g., a send operation com-
pletes successfully or a new incoming message has been received. Since the de-
sign of ULN architectures is driven by the need for low latency, most eschew
interrupt-based host notification for polling. Flags or event queues residing in NI

or host memory are used to notify the application of network events.

The application polls the queue at regular intervals. Storing the completion queues
in NI memory may lead to high volume of I/O operations. Keeping them in host
memory is very efficient if the architecture supports coherent DMA; this way
memory contents are cached and the corresponding lines are invalidated when
the NI DMAs a new descriptor into the queue. Otherwise, these memory areas
must be uncacheable and the application will always go to main memory in order

to poll the queue.
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Polling has the disadvantage of wasting CPU cycles and is avoided in multipro-
grammed environments. Thus, most ULN architectures support interrupts in
addition to polling; the application can enter the kernel and block, releasing the
CPU, but incurring the latency of interrupt handling in the critical path. When a
new event happens, the NIC interrupts the host, the device driver interrupt han-

dler runs, and wakes up any waiting processes.

Finally, hybrid approaches may be used, in which the application spins for a short
time, while the NIC has interrupts disabled, then enters the kernel, where it blocks

and interrupts are enabled on the NIC.

2.2.2 Implementation in Myrinet/GM

Myrinet is a low-latency, high-bandwidth interconnection infrastructure for clusters.
Two generations of Myrinet are currently available: Myrinet-2000 and Myri-10G. The
physical layer of Myrinet-2000 uses full-duplex, point-to-point 2+2Gbps fiber links.
Nodes are interconnected over crossbar switches, in a Clos topology. Myrinet uses
source routing: the network is mapped, so that each participating node knows how
to reach every other node using up*/down* routing and every packet contains the full
route to its destination, as a series of ports to be traversed at each switch. This way, low-
latency cut-through switching is possible. Myri-10G, the newer generation, is based on
the same physical layer as 10-Gigabit Ethernet to increase the link rate to 10Gbps, and
can use either the source-routed Myrinet protocol or 10-Gigabit Ethernet at the Data

Link Layer.

To reduce the overhead of OS involvement, Myrinet employs user level networking tech-
niques [BRB98b] in order to remove the OS from the critical path of communication.
In this model, an application process is allowed to control the Network Interface (NI)
directly; since the OS is no longer invoked for communication, its role is undertaken by
a combination of application level libraries and firmware executing on the NIC, while
data exchange between the two is setup by privileged code inside an OS kernel module.

The Myrinet software stack is displayed in Fig. 2.3.

The application is granted control of the NI by mapping part of the NI memory space

into its own virtual memory; following that, it uses unprivileged load/store instructions
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Figure 2.3: Myrinet/GM stack

into the relevant VM segments in order to communicate.

The Myrinet NICs reside on the peripheral bus of a cluster node, PCI/PCI-X in the
case of Myrinet-2000 used on our testbed. They feature a RISC microprocessor, called
the Lanai, which undertakes almost all network protocol processing, a small amount
(2MBs) of SRAM for use by the Lanai and three different DMA engines; one is respon-
sible for DMA transfers of message data between host memory and Lanai SRAM over
the half-duplex PCI/PCI-X bus, while the other two undertake transferring data be-
tween Lanai SRAM and the full-duplex 2+2Gbps fiber link. To provide user level net-
working facilities to applications, the GM message-passing system is used [Myr03]. GM
comprises the firmware executing on the Lanai, an OS kernel module and a userspace
library. These three parts coordinate in order to allow direct access to the NIC from
userspace, without the need to enter the kernel via system calls (OS bypass) while main-

taining system integrity and ensuring process isolation and memory protection.

In Fig. 2.4 the main components onboard a Myrinet M3F-PCI64B-2 NIC are displayed,
i.e., the DMA engines (one on the PCIDMA chip and two on the packet interface), the
Lanai and its SRAM. This older version of the Myrinet-2000 NIC uses distinct chips
and is displayed for clarity. Our testbed is based the on latest version of the NIC, the
M3F2-PCIXE-2. It is built around a newer version of the Lanai, the Lanai2XP, which
integrates all of the described functionality in a single chip and supports two packet

interfaces.
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Figure 2.4: Main components onboard a Myrinet NIC

Zero-copy user level communication is accomplished by mapping parts of Lanai SRAM
(called GM ports) into the VM address space of an application. This is a privileged oper-
ation, which is done via system calls to the GM kernel module during the application’s
initialization phase. Each port acts as a communication endpoint for the application.
Each port has an unprotected part, which is mapped to userspace and contains queues
of send and receive descriptors to be manipulated directly by the application. There is
also a protected, trusted part which contains internal port state information and is only

accessible by the kernel module and firmware.

The GM firmware polls the port queues periodically, in order to detect any newly posted
request. In case of a send operation, it uses DMA in order to transfer the required data
from host RAM to Lanai SRAM, then from Lanai SRAM to the NIC of the receiver node,

while the reverse happens during a receive.

GM offers reliable, connectionless point-to-point message delivery between different
ports, by multiplexing message data from multiple ports over connections kept from
each host to every other host in the network. A “Go back N” protocol is used, trading

bandwidth for reduced latency and software overhead.

The GM firmware (or Myrinet Control Program) is organized in four state machines,
called SDMA, SEND, RECV and RDMA, with each state machine being responsible for

a specific part of protocol processing.

The SDMA state machine polls all open ports for new send events posted by the appli-
cation, creates the relevant send tokens and inserts them in the appropriate connection
queue, based on the target node. It also notices when an application posts a new buffer
for incoming messages and creates the corresponding receive token. The SDMA engine

initiates read DMA transactions to transfer packet data (“chunks”) from host memory
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Figure 2.5: Sending a message over Myrinet/GM

into packet buffers in Lanai SRAM and enqueues the packets to the SEND state machine
for injection into the network. To ensure reliable packet delivery, an associated “send
record” is created whenever a new packet is enqueued. It contains information on the
origin of the packet payload inside the message buffer and the sequence number of the

packet, to be acknowledged by the receiver later on.

The SEND state machine receives packets prepared by the SDMA machine and any
pending (N)ACK packets prepared by the RDMA machine and injects them into the
network by programming the Send DMA engine of the packet interface.

Incoming packets from the wire are received by the RECV state machine. Those con-
taining data for incoming messages are passed to the RDMA state machine, while con-
trol packets are handled by the RECV machine, manipulating the relevant send records
directly. For an acknowledgment packet, the relevant send records are freed and the
sequence number of the last ACKed packet is recorded. If the last packet for a pending
send token is completed, the token is freed and a “send complete” notification event is

passed to the userspace application. For a negative acknowledgment packet the send
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records are freed but the connection is also rewound so that data are resent, by restor-
ing message send pointers to the values stored in the send records (the “Go back N”

property of the communications protocol).

The RDMA state machine accepts incoming data packets from the RECV state machine
and tries to match them with a pre-posted application buffer (a pending receive token)
based on its tag (“size” in GM parlance). If it succeeds, it initiates a write DMA transac-
tion to transfer the chunk into host memory. When all of the message has been received
into the buffer, the application is notified by DM Aing an event record into its GM event
queue. The RDMA state machine is also responsible for generating (N)ACK control
packets, by comparing the sequence numbers of incoming packets for each connection

with their expected values.

As with any other user level networking architecture, the design of GM needs to address
the issues of data movement, address translation, protection and completion notifica-
tion described in the previous section. To understand how GM fits in this design space,
we present the basic steps that need to take place for a standard GM send operation to

complete successfully, as displayed in Fig. 2.5.

In all similar figures, the solid lines lines correspond to Programmable I/O (PIO), in-

volving either the CPU or the Lanai. The dashed lines correspond to DMA operations.

The basic GM send primitive gm_send_with_callback() entails the following steps,

which correspond to (a)-(e) in Fig. 2.5.

(a) Buffer allocation, creation of send event The application computes the message to
be sent in a pinned-down userspace buffer. In GM all message data movement
happens using DMA, without any coordination with the kernel. Thus, to en-
sure that a GM userspace buffer remains in memory and is not swapped out to
disk, the relevant memory pages must be registered with the kernel. Allocation of
DMAable memory cannot be completed in userspace; GM-specific memory reg-
istration calls to the GM kernel module are used beforehand, so that the buffer
resides in DM A-able host memory is never swapped out by the kernel’s VM sub-
system. Afterwards, the application uses the GM user library to construct and
place a “send event” structure that contains the virtual address of the buffer to be

transferred in the send queue of an open port, in mapped Lanai SRAM.
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(b) Address translation and Send DMA The SDMA state machine of the GM firmware
notices the send event as it polls the send queues of open ports periodically. It
constructs the corresponding send token and places it in the queue of pending
send tokens. From there, it is picked up when the PCIDMA engine becomes
idle and a new chunk can be prepared for injection in the network. The SDMA
engine needs to program the PCIDMA engine using physical addresses in order to
fetch packet message data into SRAM, so it needs to perform virtual-to-physical
address translation. To maintain process isolation and memory protection, GM
keeps track of virtual to physical mappings in private, GM-specific pagetables
residing in kernel host memory. They are updated at page registration time by the
privileged kernel module. To mitigate the cost of translation, the firmware keeps
a cache in Lanai SRAM (the “page hash entries” region) and fetches the needed
translations from the host-based pagetables using DMA in case of a cache miss. If
no translation is found, even after consulting the host page tables, bogus data are
fetched from a specially allocated page in host RAM. The SDMA engine allocates
a new Myrinet packet descriptor structure, fills the header field and programs the
PCIDMA engine to fetch the packet payload from host RAM. It also creates a

send record for the packet.

(c) Transfer of payload using DMA Message data are brought via DMA into the Lanai
SRAM. The packet descriptors are queued as pending for transmission over the

wire and passed to the SEND state machine.

(d) Injection of packets into the network The SEND state machine programs the Send
DMA engine of the packet interface to retrieve data from Lanai SRAM and put it
on the link.

(e) Acknowledgment by the remote side An ACK packet is received by the remote side
and picked up by the RECV state machine. The relevant send record is freed. As-
suming it was the last for the message, the firmware needs to notify the applica-
tion by placing an appropriate “receive complete” event in the application’s event
queue, residing in host memory, using DMA. The application takes notice of the
event by polling the queue periodically. Alternatively, it can enter the kernel, re-
questing to be woken up when a new event arrives. In this case, the firmware will

interrupt the host, so that the GM module unblocks it.
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The process is similar in the case of receiving a message. In this case, the RDMA state
machine takes over, matches the incoming data with a posted message buffer and gen-

erates ACK packets to be transmitted back to the sender.

It is important to note that sending — and receiving — a message using GM is in fact a

two-phase process:

Host to Lanai DMA: Virtual-to-physical translation takes place, the PCIDMA engine
starts, message data are copied from host RAM to Lanai SRAM

Lanai to wire DMA: Message data are retrieved from SRAM and sent to the remote

NIC by the Send DMA engine.

2.3 The Linux Block Layer

This section provides a short description of the Linux block layer. We are concerned
mainly with its functionality and core data structures, in order to gain a better un-
derstanding of the context in which a block device driver operates. As can be seen
in Fig. 2.2, the client-side portion of an nbd system commonly resides in kernelspace,
implementing a virtual block device driver for use by the rest of the system. Thus, a
short discussion of the interaction between an OS kernel and block device drivers is

necessary.

The Linux block layer is a representative example of a modern, production-quality I/O
infrastructure supporting a variety of I/O optimizations, such as request coalescing,

request scheduling, and scatter-gather DMA.

Although the various implementation details are Linux-specific, the basic concepts re-
main constant for all modern Operating Systems. The following discussion is valid as

of kernel 2.6.30.

2.3.1 Main functionality

The Linux block layer lies between kernel code which needs to perform block I/0, e.g.,
filesystems, and the actual block device drivers (Fig. 2.6). For reasons of efficiency, re-

quests are not handled by device drivers directly. They are placed in queues inside the
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Figure 2.6: Position of the block layer inside the Linux kernel

Linux block layer, until they are extracted by block device drivers for processing. The
block layer aims to transform requests while in the queue, to improve performance; it
may merge incoming requests for consecutive sectors and coalesce references to neigh-
boring memory segments. These requests can then be presented as a single unit of work

to the device driver and underlying device.

The block layer may re-order requests before presenting them to the driver, a process
known as I/O scheduling. 'This is done to minimize disk seek operations, since they
dominate service time for spindle-based storage, or to enforce I/O prioritization among
processes. The block layer supports a plug-in architecture, which enables per-queue
setting of the scheduling algorithm dynamically. A number of different I/O schedulers
is provided with the Linux kernel, namely the no-op, CFQ, deadline and anticipatory
[ID01] schedulers.

Finally, the block layer provides an interface for device drivers to report completion of
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Figure 2.7: The Linux block layer servicing an 1/O request

I/0O operations, when the requested data transfer operation has been carried out by the
storage device. These completion events are then propagated to the originators of the

requests, and may trigger state changes in userspace processes.

Thus, the functionality of the block layer comprises request submission, queuing, merg-
ing, memory segment coalescing, I/O scheduling and I/O operation completion. In the
following, we refer briefly to each step of I/O request processing, by following the course
of an I/0O request from creation to completion (Fig. 2.7). We also provide a description

of the most important data structures implicated at every step.
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2.3.2 Servicing a block I/O request
Request submission - The bio structure

The bio structure is the core data structure of the Linux block I/O layer. It represents
a block request from the point of view of a kernel entity doing disk I/O. Such entities
include filesystem code traversing on-disk structures, the VM subsystem issuing page
fill and page writeback requests to swap pages in and out of the page cache, or a software

RAID device servicing requests by distributing them to underlying storage devices.

The bio is the basic unit of I/O submission; whenever a part of the kernel needs to move
data from and to secondary storage, it allocates a bio structure, fills it properly, then
submits it to the block layer for further processing using the submit_bio() interface
(Fig. 2.7, step (a)). Similarly, the bio is the basic unit of I/O completion; each bio may
define a completion callback function, which is called upon completion of the related
block transfer. Thus, the originator of the bio has a chance to perform any necessary
bookkeeping as bio completion is reported by the block layer, e.g., awaking blocked

userspace processes.

A bio defines a block I/O operation as a group of consecutive sectors that need to be
read or written to dispersed memory segments. For this discussion, the fields which are

of interest are:
« unsigned long bi_flags: A set of bits describing various bio attributes, among
them the direction of data transfer, whether the bio reads or writes data.
« sector_t bi_sector: The first 512-byte sector to be transferred for this request.

e unsigned int bi_size: The amount of data to be transferred in bytes. The

macro bio_sectors(bio) is used to convert this into sectors.

e struct block device *bi_bdev: The block device this bio will be serviced
from. A stacking block driver, e.g., software RAID, may modify this field to redi-

rect this bio for service by a different device.

 unsigned short bi_phys_segments: The number of disjoint physical memory

segments referenced by this bio.
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« struct bio_vec *bi_io_vec: Pointer to an array of vectors into physical mem-
ory. Each vector of type bio_vec describes a contiguous area in physical mem-
ory as the tuple {page of physical memory, length in bytes, offset into page}. The
physical page is defined as a pointer to the associated page frame, the struct

page used by the kernel for managing a single page of physical memory [Gor04].

« bio_end_io_t *bi_end_io: Pointer to a callback function, invoked by the block

layer upon completion of this bio, in interrupt context.

Essentially, the bi_io_vec array implements a scatter-gather list. Note that it points to
physical memory locations directly; The kernel may have to establish mappings in its

virtual memory space, before code on the CPU can refer to the actual data.

Request queueing and merging, I/0 scheduling

At the bottom end of the processing hierarchy, lie the block device drivers and the actual
hardware devices. Block device drivers do not generally receive bio structures directly;
they service block requests received as struct requests, which emerge after the bio

structures have undergone processing by the Linux block layer.

When a new bio arrives, the block layer first tries to merge it with a pre-existing request,
or creates a new struct request for it and inserts it in the queue for the corresponding
block device (Fig. 2.7, step (b), function make_request()). To determine whether a
bio is eligible for merging (i.e., it refers to locations adjacent to those of a pre-existing
request), the block layer calls into the I/O scheduler (elv_merge()). This allows the

scheduler to enforce further scheduler-specific constraints.

While organizing bios in struct requests, the kernel maintains a number of restric-
tions: (a) The request must continue to refer to a contiguous area on the storage device,
(b) All bio structures must be of the same direction, describing either read or write op-
erations, (c) The request must not exceed hardware limits imposed by the underlying

block device, such as the maximum length of DMA segments supported.

To satisfy the third requirement, the block layer offers a rich set of functions to device
drivers, through which they may fine-tune the process of request merging and schedul-

ing by setting hardware and driver-imposed limits. These limits include the maximum
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number of sectors which may be included in a single request, the maximum number
and length of disjoint memory segments supported, and the maximum physical ad-
dress that the hardware device may perform DMA with. These tunables are maintained
as per-queue attributes and are consulted by the block layer before allowing a merge

operation.

I/0O requests are queued by the block layer and dequeued by device drivers to be ser-
viced. To allow a number of sufficiently large requests to be built before the driver has a
chance to retrieve and pass them to the hardware, the block layer supports queue plug-
ging; when a queue is plugged, the I/O scheduler is actively adding and merging requests
in the queue. When the queue becomes unplugged, because it has remained plugged for
a predetermined, tunable duration, or the number of requests exceed a certain thresh-
old, the queue switches to the unplugged state. At this time, the block layer activates the

driver, by calling the request function associated with the queue.

Request extraction, servicing and completion

The driver’s request function is responsible for extracting the next request from the
queue and passing it to the storage device for servicing, until the queue becomes empty
or the maximum number of outstanding requests is reached. To retrieve the next re-
quest, the request function calls into the scheduler (Fig. 2.7, step (c), elv_next__re-
quest()). Servicing a request commonly entails initiating a DMA transaction for the

associated memory segments.

When the driver is notified that all of the data have been transferred, either via polling
the device or via an interrupt, it needs to complete the request with the block layer, usu-
ally by calling end_request () for the related struct request. When a request com-
pletes, its associated bios are completed; if a callback function has been defined for this
bio, it gets to run at this point. Thus, completion notification reaches all the way up to

the originators of the individual requests.
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Design and implementation of

gmblock

This section presents the design and implementation of the gmblock nbd system over
Myrinet/GM. We begin by discussing the overheads involved in standard TCP/IP and
RDMA-based approaches, and how gmblock’s design evolves from these. Then, we
present the necessary changes to GM and the Linux kernel in order to support a proto-
type implementation. Experimental evaluation of the proposed path shows significant
improvement in sustained throughput and reduced interference on the host’s memory
bus. The chapter concludes with a discussion of various aspects of gmblock’s design,
namely its ability to serve structured data, the effect on server and client-side caching
and prefetching, proposed architectural changes to support similar functionality with
interconnects other than Myrinet, and its applicability to low-frequency, low-power em-

bedded storage servers.

3.1 Design of gmblock’s nbd mechanism

3.1.1 Traditional nbd designs

The main principle behind an nbd client-server implementation is portrayed in Fig. 3.1(a).
The nbd client usually resides in the OS kernel and exposes a block device interface to
the rest of the kernel, so that it may appear as an ordinary, directly-attached storage

device. The requests being received from the kernel block device layer are encapsulated
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Figure 3.1: A parallel filesystem executing over an nbd infrastructure

in network messages and passed to a remote server. This server is commonly not run in
privileged kernelspace. Instead, it executes as a userspace process, using standard I/O

calls to exchange data with the actual block device being shared.

The pseudocode for a generic nbd server can be seen in Fig. 3.2. For simplicity, we
will refer to a remote block read operation but the following discussion applies to write
operations as well, if the steps involving disk I/O and network I/O are reversed. There
are four basic steps involved in servicing a read block request: (a) The server receives
the request over the interconnect, unpacks it and determines its type — let’s assume it’s
a read request (b) A system call such as 1seek() is used to locate the relevant block(s)
on the storage medium (c) The data are transferred from the disk to a userspace buffer

(d) The data are transmitted to the node that requested them.

The overhead involved in these operations depends significantly on the type of inter-
connect and the semantics of its API. To better understand the path followed by the
data at the server side, we can see the behavior of a TCP/IP-based server at the logical
layer, as presented in Fig. 3.3(a). Again, solid lines denote PIO operations, dashed lines
denote DMA operations. (a) As soon as a new request is received, e.g., in the form of
Ethernet frames, it is usually DM Aed to kernel memory, by the NIC (b) Depending on
the quality of the TCP/IP implementation it may or may not be copied to other buffers,
until it is copied from the kernel to a buffer in userspace. The server process, which

presumably blocks in a read() system call on a TCP/IP socket, is then woken up to
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initialize_interconnect();
fd = open_block_device();
reply = allocate_memory_buffer();
for (55) {
cmd = recv_cmd_from_interconnect();
lseek(fd, cmd-»>start, SEEK_SET);
switch (cmd->type) {
case READ_BLOCK:
read(fd, &reply->payload, cmd->len);
case WRITE_BLOCK:
write(fd, &req->payload, cmd->len);
}

insert_packet_headers(&reply, cmd);
send_over_net(reply, reply->len);

Figure 3.2: Pseudocode for an nbd server

process the request. It processes the request by issuing an appropriate read() call to
a file descriptor acquired by having open()ed a block device. In the generic case this
is a cached read request; the process enters the kernel, which (c) uses the block device
driver to setup a DMA transfer of block data from the disk(s) to the page cache kept in
kernel memory (d) Then, the data need to be copied to the userspace buffer and the
read() call returns (e) Finally, the server process issues a write() call, which copies
the data back from the userspace buffer into kernel memory. Then, again depending on
the quality of the TCP/IP implementation, a number of copies may be needed to split
the data in frames of appropriate size, which are (f) DM Aed by the NIC and transferred

to the remote host.

In Fig. 3.3(b), we can see the actual path followed by data, at the physical level. The labels
correspond one-to-one with those used in the previous description: (a, b) Initially, the
read request is DMAed by the NIC to host RAM, then copied to the userspace buffer
using PIO (c) The disk is programmed to DMA the needed data to host RAM. The
data cross the peripheral bus and the memory bus (d) The data are copied from the
page cache to the userspace buffer by the CPU (e) The data are copied back from the
userspace buffer to the kernel, to be sent over the network (f) The data cross the memory

bus and the peripheral bus once again, to be sent over the network via DMA.

This data path involves a lot of redundant data movement. The number of copies needed

to move data from the disk to the TCP/IP socket can be reduced by allowing the kernel
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Figure 3.3: TCP/IP based nbd server

more insight into the semantics of the data transfer; one could map the block device
onto userspace memory, using mmap (), so that a write() to the socket copies data di-
rectly from the page cache to the network frame buffers, inside the kernel. However,
depending on the size of the process address space, not all of the block device may be
mappable. Thus, the overhead of remapping different parts of the block device must be

taken into account.
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Figure 3.4: GM-based nbd server

A different way to eliminate one memory copy is by bypassing the page cache altogether.
This can be accomplished by use of the POSIX 0_DIRECT facility, which ensures that
all I/O with a file descriptor bypasses the page cache and that data are copied directly
into userspace buffers. The Linux kernel supports 0_DIRECT transfers of data; the block
layer provides a generic 0_DIRECT implementation which takes care of pinning down

the relevant userspace buffers, determining the physical addresses of the pages involved
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and finally enqueuing block I/O requests to the block device driver which refer to these
pages directly instead of the page cache. Thus, if the block device is DM A-capable, the
data can be brought into the buffers directly, eliminating one memory copy. Still, they
have to be copied back into the kernel when the TCP/IP write() call is issued.

The main drawback of this data path is the large amount of redundant data copying in-
volved. If only one kernel copy takes place, data cross the peripheral bus twice and the
memory bus four times — one per DMA transfer and twice for the CPU-based memory
copy. When forming virtual storage pools by having compute nodes export storage to
the network, remote I/O means fewer CPU cycles and less memory bandwidth are avail-
able to the locally executing workload (path (g)). Moreover, doing CPU-based memory
movement leads to cache pollution, evicting parts of the working set of the local work-

load.

The problem is alleviated, if a user level networking approach is used. When a clus-
ter interconnect such as Myrinet is available, the OS kernel can be bypassed during the
network I/O phase, by extending the nbd server application so that GM is used instead
of TCP/IP. In this case, some of the redundant copying is eliminated, since the steps
to service a request are (Fig. 3.4(a)): (a) A request is received by the Myrinet NIC and
copied directly into a pinned-down request buffer (b) The server application uses O_-
DIRECT-based I/O so that the storage device is programmed to place block data into
userspace buffers via DMA (c) The response is pushed to the remote node using gm_-
send(), as in Section 2.2.2. In this approach, most of the PIO-based data movement is
eliminated. The CPU is no longer involved in network processing, the complex TCP/IP
stack is removed from the critical path and almost all CPU time is devoted to running
the computational workload. However, even when using GM for message passing, main
memory is still on the critical path. At the physical layer (Fig. 3.4(b)), for a read opera-
tion, block data are transferred from the storage devices to in-RAM bufters, then from
them to the Myrinet NIC. Thus, they traverse the peripheral bus and the main memory
bus twice; pressure on the peripheral and main memory buses remains, and remote I/O

still interferes with local computation (d), since they contend for access to RAM.
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3.1.2 GMBlock: An alternative data path with memory bypass

To solve the problem of redundant data movement at the server side of an nbd system,
we propose a shorter data path, which does not involve main memory at all. To service
a remote I/O request, all that is really needed is to transfer data from secondary storage
to the network or vice-versa. Data flow based on this alternative data path is presented
in Fig. 3.5(b): (a) A read request is received by the Myrinet NIC (b) The nbd server pro-
cess services the request by arranging for block data to be transferred directly from the
storage device to the Myrinet NIC (c) The data is transmitted to the node that initiated

the operation.

Implementing this path would solve most of the problems described above:

o The critical path is the shortest possible. Data go directly from disk to NIC or

vice-versa.
o The full capacity of the peripheral bus can be used, since data only traverse it once.

o There is no staging in buffers kept in RAM, thus no memory bandwidth is con-
sumed by I/O and code executing on local CPUs does not incur the overhead of

memory contention.

Most importantly, this design would acknowledge the fact that the remote I/O path
may be disjoint from main memory. The inclusion of RAM bufters in all previous data
paths is a necessity arising from the programming semantics of the mechanisms used
to enable the transfer - GM and Linux kernel drivers — rather than from the intrinsic
properties of remote I/O operations; GM programs the DMA engines on the Myrinet
NIC to exchange data between the Lanai SRAM and RAM buffers, while the kernel
programs storage devices to move data from/to page cache or userspace buffers kept
in main memory. Thus, to support the proposed data path, we need to extend these
mechanisms so that direct disk-to-NIC transfers are supported. At the same time, the
architecture-dependent details of setting up such transfers must be hidden behind exist-
ing programming abstractions, i.e., GM user level networking primitives and the Linux
I/0 system call interface. In this approach, only minimal changes to the the nbd server

source code will be required to support the enhanced functionality.
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Figure 3.5: Proposed gmblock server

Let’s assume a GM-based nbd server servicing a read request similar to that of Fig. 3.2.
In the case of GM, the server would have used gm_open() to initialize the interconnect,
and gm_dma_malloc() to allocate space for the message buffer. Variable reply contains
the virtual address of this buffer, dedicated to holding the reply of a remote read opera-
tion, before it is transferred over Myrinet/GM. If this memory space was not allocated

in RAM, but could be made to reside in Lanai SRAM instead, then the read() system
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call could be used un-altered, to express the desired semantics; It would still mean “I
need certain blocks to be copied to memory pointed to by reply”, this time however

referring to a buffer in SRAM, mapped onto the process’s VM space at location reply.

However, if standard, buftered I/O was used, using this call would first bring the data
into the kernel’s page cache, then a CPU-based memcpy () would be used to copy the
data from the cached page to the mapped SRAM buffer. This chain would still invoke
PIO; the whole of Lanai SRAM is exposed as a large memory-mapped I/O resource on
the PCI physical address space. Thus, every reference by the CPU to the virtual address
space pointed to by reply during the memcpy () operation, would lead to I/O transac-
tions over the peripheral bus. The situation would be radically different, if POSIX 0_-
DIRECT access to the open file descriptor for the block device was used instead. In this
case, the kernel would bypass the page cache. Its direct I/O subsystem would translate
the virtual address of the buffer to a physical address in the Myrinet NIC’s memory-
mapped I/O space and use this address to submit a block I/O request to the appropriate
in-kernel driver. In the case of a DM A-capable storage device, the ensuing DMA trans-
action would have the DMA engine copying data directly to the Myrinet NIC, bypassing
the CPU and main memory altogether. To finish servicing the request, the second half
of a GM Send operation is needed: the Host-to-Lanai DMA phase is omitted and a
Lanai-to-wire DMA operation is performed to send the data off the SRAM buffer.

Conversely, in the case of a remote write operation, the DMA-capable storage device
would be programmed to retrieve incoming data directly from the Lanai SRAM bufter

after a wire-to-Lanai DMA operation completes.

It is important to note that almost no source code changes are needed in the nbd server
to support this enhanced data path. The server process still issues read() or write()
and gm_send() calls, unaware of the underlying transfer mechanism. The desired se-
mantics emerge from the way the Linux block driver layer, the kernel's VM subsystem

and GM'’s user level networking capabilities are combined to construct the data path.

3.2 Implementation details

The implementation of gmblock’s optimized data path involves changing two different

subsystems: First, the user level networking infrastructure provided by GM must be
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extended to support GM buffers in Lanai SRAM. Second, the Linux VM mechanism
must include support for treating Lanai SRAM as host RAM, so that direct I/O from
and to PCI memory-mapped I/O regions is possible.

3.2.1 GM support for buffers in Lanai SRAM

The GM middleware needs to be enhanced, as to allow the allocation, mapping and
manipulation of buffers residing in Lanai SRAM by userspace applications. At the same
time, it is important to preserve GM semantics and UNIX security semantics regarding
process isolation and memory protection, as is done for message passing from and to

userspace buffers in host RAM.

The described changes were tested on various combinations of GM-2.0 and GM-2.1 on
an Intel i386 and an Intel EM64T system. However, the changes affect the platform-
independent part of GM, so they should be usable on every architecture/OS combina-
tion that GM has been ported to.

This is the functionality that needs to be supported, along with the parts of GM that are
affected:

o Allocation of buffers in Lanai SRAM (GM firmware)

» Mapping of buffers onto the VM of a process in userspace (GM library, GM kernel

module)

« Sending and receiving messages from/to Lanai SRAM using gm_send() and gm_

provide_receive_buffer() (GM library, GM firmware)

For the first part, the firmware initialization procedure was modified, so that a large,
page-aligned buffer is reserved for gmblock’s use (Fig. 3.6. The buffer is allocated oft
the firmware heap, between the growing GM connection array and the GM ports. Our
testbed uses Myrinet NICs with 2MB of SRAM, out of which we were able to allocate at
most 700KB for gmblock’s use and still have the firmware fit in the available space and

execute correctly.

The second part involved changes in the GM library, which tries to map the shared

memory buffer. The GM kernel module verifies that the request does not compromise
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Figure 3.6: Lanai memory map after allocation of gmblock’s SRAM buffer

system security, then performs the needed mapping. The Lanai SRAM buffer is shared

among processes, but different policies may be easily implemented, by changing the

relevant code in the GM kernel module.

Finally, to complete the integration of the SRAM buffer in the VM infrastructure and al-

low it to be used transparently for GM messaging, we enhance the GM library so that the

requirement for all message exchange to be done from/to in-RAM bufters is removed.

At the userspace side the library detects that a GM operation to send a message or to

provide a receive buffer refers to Lanai SRAM, and marks it appropriately in the event

passed to the Lanai. There, depending on the type of the request:

« For asend request, the SDMA state machine omits the Host-to-Lanai DMA oper-

ation, constructs the needed Myrinet packets and passes them to the SEND state

machine directly, without any intermediate copies.

o Things are more complicated when incoming data need to be placed in an SRAM

buffer by the RDMA state machine, since incoming packet data are placed in pre-

defined message buffers by the hardware before any message matching can take

place. In the common case of receiving into RAM, they are moved to their final

destination during the Lanai-to-Host DMA phase. When receiving into SRAM

buffers this is replaced by a copy operation, undertaken by a copy engine on the

Lanai. The memory arbitration scheme of the LanaiX ensures that the copy pro-

gresses without impacting the rate at which concurrent, pipelined packet receives

occur.
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3.2.2 Linux VM support for direct I/O with PCI ranges

To implement gmblock’s enhanced data path, we need to extend the Linux VM mech-
anism so that PCI memory-mapped I/O regions can take part in direct I/O operations.
So far, the GM buffer in Lanai SRAM has been mapped to a process’s virtual address
space and is accessible using PIO. This mapping translates to physical addresses be-
longing to the Myrinet NIC’s PCI memory-mapped I/O (MMIO) region. The MMIO
range lies just below the 4GB mark of the physical address space in the case of the Intel
i386 and AMD x86-64 platforms.

To allow the kernel to use the relevant physical address space as main memory transpar-
ently, we extend the architecture-specific part of the kernel related to memory initial-
ization so that the kernel builds page management structures (pageframes) for the full
4GB physical address range and not just for the amount of available RAM. The relevant
struct page structures are incorporated in a Linux memory zone, called ZONE_PCIMEM
and are marked as reserved, so that they are never considered for allocation to processes

by the kernel's memory allocator.

The proposed modification does not constitute mere mapping of physical addresses;
rather it concerns the management of physical memory by the kernel. With these mod-
ifications in place, PCI MMIO ranges are treated by the Linux VM as host RAM. All
complexity is hidden behind the page frame abstraction, in the architecture-dependent
parts of the kernel; even the direct I/O layer does not need to know about the special

nature of these pages.

3.3 Experimental evaluation

To quantify the performance benefits of employing gmblock’ short-circuit data path we
compare three different nbd systems in a client-server block-level storage sharing con-
figuration. The first one is a prototype implementation of gmblock with message bufters
on Lanai SRAM (hereafter gmblock-sram) so that direct disk-to-NIC transfers are pos-
sible. The second is a standard TCP/IP-based system, Red Hat's GNBD, the reworked
version of NBD that accompanies GFS (tcpip-gnbd). GNBD v1.03 runs over the same

Myrinet, with Ethernet emulation. The third one is gmblock itself, running over GM
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Server A Server B
Processor 2x Pentium III@1266MHz Pentium 4@3GHz
Motherboard Supermicro P3TDE6 Intel SE7210TP1-E
Chipset Serverworks ServerSet IIl HE-SL,  Intel E7210 chipset,
CIOB20 PCI bridge 6300ESB I/O controller hub
I/O Bus 2-slot 64bit/66 MHz PCI 3-slot 64bit/66MHz PCI-X
RAM 2x PC133 512MB SDRAM 2 x PC2700 512MB SDRAM DDR
Disks 8x Western Digital WD2500]S 250GB SATA II
I/O controller 3Ware 9500S-8 SATA RAID and MBL
NIC Myrinet M3F2-PCIXE-2

Table 3.1: Hardware specifications of storage servers used in experimental testbed

without the proposed optimization. Its performance is representative of RDMA-based

implementations using a data path which crosses main memory (gmblock-ram).

The evaluation concerns three metrics: (a) the sustained bandwidth for remote read
operations (b) the sustained bandwidth for remote write operations and (c) the server-
side impact on local executing computational workloads. At each point in the evalua-
tion we identify the performance-limiting factor and try to mitigate its effect, in order

to observe how the different architectural limitations come into play.

We experiment with storage servers of two different configurations: Server A is an SMP
system of two Pentium III processors, with a 2-slot PCI bus, while Server B is a Pen-
tium 4 system, with more capable DDR memory and a 3-slot PCI-X bus. The exact

specifications can be found in table 3.1.

The storage medium to be shared over Myrinet is provided by a 3Ware 9500S-8 SATA
RAID controller, which has 8 SATA ports on a 64bit/66MHz PCI adapter. We built a
hardware RAIDO array out of 8 disks, which distributes data evenly among the disks
with a chunk size of 64KB and is exported as a single drive to the host OS. We use two
nodes, one of configuration A functioning as the client, the either as the server (of either
configuration A or B). The nodes are connected back-to-back with two Myrinet M3F2-
PCIXE-2 NICs. The NICs use the Lanai2XP@333MHz processor, with 2MB of SRAM
and feature two 2+2Gbit/s full-duplex fiber links. Linux kernel 2.6.22, GM-2.1.26 and
3Ware driver version 2.26.02.008 are used. The I/O scheduler used is the anticipatory
scheduler (AS).

We also experiment with a custom solid-state storage device built around another Myrinet
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M3F2-PCIXE-2 NIC, which is able to deliver much better throughput even for very
small request sizes. We have written a Linux block device driver and custom firmware
for the card, which enables it to be used as a standard block device. Block read and write
requests are forwarded by the host driver (the Myrinet BLock driver, or “MBL”) to the
firmware, which programs the DMA engines on the NIC to transfer block data from
and to Lanai SRAM. Essentially, we use the card to simulate a very fast, albeit small,

storage device which can move data close to the rate of the PCI-X bus.

3.3.1 Experiment la: Local disk performance

We start by measuring the read bandwidth delivered by the RAID controller, locally,
performing back-to-back direct I/O requests of fixed size in the range of 1, 2, . . ., 512KB,
1024KB. The destination buffers reside either in RAM (local-raid-ram) or in Lanai
SRAM (local-raid-sram, short-circuit path) We repeat this experiment for the MBL
device as well (local-mbl-ram, local-mbl-sram). In the following, IMB = 22° bytes.
With the adapters installed on the 64bit/66 MHz PCI-X bus of Server B, we get the band-

width vs. request size curves of Fig 3.7(b).

A number of interesting conclusions can be drawn. First, for a given request size these
curves provide an upper bound for the performance of our system. We see that the
RAID throughput increases significantly for request sizes after 128KB-256KB (reaching
a rate of 7gisk—sram =335MB/s, with 512KB request size for buffers in SRAM) while
performance is suboptimal for smaller sizes: the degree of parallelism achieved with
RAIDO is lower (fewer spindles fetch data into memory) and execution is dominated
by overheads in the kernel’s I/O subsystem. On the other hand, MBL delivers good
performance even for small request sizes and comes close to the theoretical 528 MB/s

limit imposed by the PCI-X bus itself.

We note that throughput for transfers to RAM levels off early, at ~217MB/s. We found
this is due to an architectural constraint of the Intel motherboard used on Server B:
The 6300ESB I/O hub supporting the PCI-X bus is connected to the 827210 Memory
Controller through a “hub link” interface which is limited to 266MB/s. Server A’s PCI
bridge does not exhibit a similar issue (Fig. 3.7(a)).
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3.3.2 Experiment 1b: Remote read performance

107

We then proceed to measure the sustained remote read bandwidth for all three imple-

mentations. A userspace client runs on a machine of configuration A generating back-
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Figure 3.8: Sustained remote read bandwidth, Server A

to-back requests of variable size in two setups, one using Server A and one with Server
B. To achieve good utilization of Myrinet’s 2+2Gbit/s links it is important to pipeline

requests correctly. We tested with one, two and four outstanding requests and the
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Figure 3.9: Sustained remote read bandwidth, Server B

corresponding configurations are labeled gmblock-ram-{1,2,4} and gmblock-sram-
{1,2,4} for the GM-based and short-circuit path case respectively. To keep the figures

cleaner we omit the curves for gmblock-{ram, sram}-2. In general, the performance of



110 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GMBLOCK

gmblock-{ram,sram}-2 wasbetween gmblock{ram,sram}-1and gmblock{ram,sram}-

4, as expected.

We are interested in bottlenecks on the CPU, the memory bus, the RAID controller and
the PCI/PCI-X bus. In general, GNBD performs poorly and cannot exceed 68MB/s on
our platform; TCP/IP processing for GNBD consumes a large fraction of CPU power
and a large percentage of memory bandwidth for intermediate data copying. A repre-

sentative measurement is included in Fig. 3.8(a).

Performance for gmblock-ram-1 and gmblock-sram-1 is dominated by latency, since
only one block read request is in flight at all times. Resource utilization is suboptimal,
since the network interface is idle when the storage medium retrieves block data and
vice-versa, hence the sustained throughput is low. The results are consistent with block
data being transferred from the disk to buffers in RAM or SRAM (at a rate of 74;sk—ram
OF T'gisk—s sram Tespectively), then from RAM or SRAM to the Myrinet fabric (at a rate of
Tram—net> Tsram—net Tespectively). For example, in the case of gmblock-sram and the
3Ware controller on Server B (Fig 3.9(a)), 7disk— sram =335MB/S, T'spam—snet =462MB/s

and the expected remote read rate is

1 1
T gmblock—sram = 1/ ( + )

Tdisk—sram Tsram—snet

which is 194MB/s, very close to the observed value of 186MB/s.

When two or four requests are outstanding, the bottleneck shifts, with limited PCI-to-
memory bandwidth determining the overall performance of gmblock-ram. In the case
of Server B (Fig. 3.9(b)), gmblock-ramhas to cross the hub link (266MB/s theoretical) to
main memory twice, so it is capped to half the value of 745k ram = 217MB/s. Indeed,
for request sizes over 128KB, it can no longer follow the local storage bandwidth curve
and levels oft at ~100MB/s. This effect happens later for Server A’s PCI host bridge, since
its PCI to memory bandwidth is ~398MB/s. Indeed, with request sizes over 128KB for
MBL, gmblock-ram is capped at 198MB/s. On the other hand, gmblock-sram has no
such limitation. In the case of MBL on Server A, gmblock-sram-{2,4} deliver more
than 90% of the locally available bandwidth to the remote node for 256KB and 128KB-

sized requests respectively, a two-fold improvement over gmblock-ram.

When used with a real-life RAID storage subsystem, gmblock-sram-{2,4} utilizes the
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Figure 3.10: Interference on the memory bus

full RAID bandwidth for any given request size up to 256KB: for Server B that is 220MB/s,
a more than two-fold improvement. For Server A that is 214MB/s, 20% better than
gmblock-ram. Since gmblock-ram has already saturated the PCI-to-memory link, the
improvement would be even more visible for gmblock-sram-2 if larger request sizes
could be used, since the RAID bandwidth cap would be higher for 512KB requests: a
512KB request equals the stripe size of the RAID array and is processed by all spindles
in parallel. However, the maximum number of outstanding requests is limited by the
amount of SRAM that’s available for gmblocK’s use, which is no more than 700KB on our
platform, thus it only suffices for a single 512KB request. The small amount of SRAM
on the NIC limits the maximum RAID bandwidth made available to gmblock-sram.

We propose synchronized GM operations to work around this limitation in Chapter 4.

In the case of the higher-performing MBL, we note that a higher number of outstanding
requests is needed to deliver optimal bandwidth; moreover, a significant percentage of

the maximum bandwidth is achieved even for small, 32-64KB request sizes.

It is also interesting to see the effect of remote I/O on the locally executing processes
on the server, due to interference on the shared memory bus. Although gmblock-ram
removes the CPU from the critical path, it still consumes two times the I/O bandwidth

on the memory bus. If the storage node is also used as a compute node, memory con-



112 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GMBLOCK

tention leads to significant execution slowdowns.

3.3.3 Experiment 1c: Effect on local computation

For Experiment 1c, we run tcpip-gnbd, gmblock-ram-2 and gmblock-sram-2 along
with a compute intensive benchmark, on only one of the CPUs of Server A. The bench-
mark is a process of the bzip2 compression utility, which performs indexed array ac-
cesses on a large working space (~8MB, much larger than the L2 cache) and is thus
sensitive to changes in the available memory bandwidth, as we have shown in previous
work [KK06]. There is no processor sharing involved; the nbd server can always run
on the second, otherwise idle, CPU of the system. In Fig. 3.10 we show the normalized
execution time of bzip2 for the three systems. In the worst case, bzip2 slows down by
as much as 67%, when gmblock-ram-2 is used with 512KB requests. On the other hand,
the benchmark runs with negligible interference when gmblock-sram is used, since the

memory bus is bypassed completely and its execution time remains almost constant.

3.3.4 Experiment 1d: Remote write performance

We also evaluate performance in terms of sustained remote write bandwidth, similar to
the case of remote reads. The results for Server B are displayed in Fig. 3.11. Note that
the maximum attained write performance of the RAID controller is much worse than
the read case, however its bandwidth vs. request size curve rises sooner due to the use

of on-board RAID write buffers.

Again gmblock-ram is capped at ~100MB/s due to crossing the main memory bus.
However, the performance of gmblock-sram is much lower than expected based on the
read results. We discovered and later confirmed with Myricom this is due to a hardware
limitation of the LanaiX processor, which cannot support being the target of PCI read

transactions efficiently and delivers only ~25MB/s PCI read bandwidth.

To work around this limitation, we introduce a third configuration; we can construct a
data path which still bypasses main memory but uses intermediate buffers on the pe-
ripheral bus. Asbuffer space we decided to use memory on an Intel XScale-based PCI-X
adapter, the Cyclone 740 [Cyc], placed in the 3rd slot of Server B’s 3-slot PCI-X bus. It

features an Intel XScale 80331 I/O processor and 1GB of DDR memory, on an internal
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Figure 3.11: Sustained remote write bandwidth, Server B
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PCI-X bus. A PCI-X to PCI-X bridge along with an Address Translation Unit allows

exporting parts of this memory to the host PCI physical address space. By placing the

message buffers of gmblock on the card, we can have the Lanai DMAing data into this
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memory, then have the storage controller read data off it, which is more efficient than
reading data off Lanai SRAM directly. This path crosses the PCI bus twice, hence is lim-
ited to half its maximum bandwidth. Moreover, even after careful tuning of the Intel
XScale’s PCI-X bridge to support efficient prefetching from the internal bus in order to
serve incoming bus read requests, the 3Ware RAID controller was only able to fetch data
at a rate of ~133MB/s compared to ~160MB/s from main memory (the local-{ram,
pcimem} curves). Thus, the performance of the NIC — PCI buffers — storage path
(gmblock-pcimem) is comparable to that of gmblock-ram, however it has the advantage
of bypassing main memory, so it does not interfere with memory accesses by the host

processor.

3.4 Discussion

3.4.1 Sharing of structured data

The proposed data path at the logical layer can be seen in Fig. 3.5(a). There are almost no
gmblock-specific changes, compared to a GM-based nbd implementation. To achieve
this, we re-use existing programming abstractions, as provided by GM and the Linux
kernel. By building on 0_DIRECT-based access to storage, our approach is essentially

disk-type agnostic.

Since the CPU is involved in the setup phase of the transfer, the server is not limited to
sharing raw block device blocks. Instead, it could share block data in structured form.
The proposed framework concerns data transport without imposing limitations on how
the storage server structures shared data, by decoupling the control path from the data
path. The CPU may run filesystem code to locate the locations of affected blocks on
disk(s), then invoke gmblock’s mechanism to perform the transport on the short-circuit
path. For example, storage for virtual machine images can manage them as files in a

standard ext2 filesystem, and share them over gmblock.

Similarly, gmblock’s approach can be integrated in an object-based storage scenario

[Sun08, WUA"08] to enhance the operation of object storage servers: in the case of

a Lustre OSS, object management code continues to run on the host CPU in order to

traverse filesystem structures, with minimal interference by data transport operations.
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Protocol operations are undertaken by the host CPU, while file data are moved over the

proposed path, directly between network and storage devices.

3.4.2 Caching and prefetching

Another point to take into account is ensuring coherence with the kernel’s page cache.
Since blocks move directly from NIC to storage and vice versa, a way is needed to ensure
that local processes do not perform I/O on stale data that are in the kernel’s page cache
and have not been invalidated. We avoid this problem by keeping the kernel in the
processing loop, but not in the data path. Its direct I/O implementation will take care
of invalidating affected blocks in the page cache, if an 0_DIRECT write takes place, and
will flush dirty buffers to disk before an 0_DIRECT read.

Using the proposed path means that server CPU and RAM are no longer in the process-
ing path. Although this eliminates architectural bottlenecks, it means no server-side
prefetching and caching is possible. Moreover, overall performance depends on the in-
teraction of gmblock with the overlying filesystem and application, and the amount of
read-write sharing that takes place through shared storage. We discuss the importance

of these three factors, prefetching, caching and read-write sharing below.

Server-side buffers on storage servers may play an important role in prefetching data
from the storage medium for efficiency. Data prefetching is still possible in gmblock,
but has to be initiated by the client side. Experimental evaluation on an OCFS2 over
gmblock setup (Section 5.4) shows that prefetching is indeed necessary, to support good

performance for small application reads.

Regarding caching, although server-side caching is no longer possible, client-side caching
still takes place: Client systems treat gmblock-provided storage as a local hard disk,
caching reads and keeping dirty buffers on writes. Data need to be written back only to
ensure correctness for read-after-write sharing. Moreover, the aggregate size of memory

in clients can be expected to be much larger than storage server memory.

Server-side caching may also prove to be beneficial in coalescing small reads and writes,
forming more efficient requests to storage. The degree of coalescing is highly depen-
dent on the overlying application’s access patterns. Whether using the proposed data

path leads to performance increase depends on the balance of memory-to-memory
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copy throughput, imposed CPU load and memory-to-storage transfers, relative to di-

rect storage-to-network throughput.

Finally, server-side caching may prove important for applications with very heavy read-
write sharing through the filesystem. If there is no special provision for direct client-to-
client synchronization of dirty data, either by the application itself or by the filesystem,
then the storage server may be used essentially as a buffer for client-to-client block trans-
fers with many small writes followed by many small related reads. For such workloads,
using gmblock’s short-circuit data path is not an appropriate choice. If write coalescing
is needed, then the framework can be set to cache writes, while still allowing reads to
happen over the direct data path, or it can be run in fully cached mode. The same block
device can be exported through a number of servers in different modes, simultaneously;
the short-circuit path is coherent with page cache accesses, since the kernel remains in

the setup phase of the transfer.

On the other hand, the impact of heavy read-write sharing in application performance is
a well-known problem and there are numerous efforts in the literature to attack it at the
filesystem and application level. Oracle 9i uses a distributed caching mechanism called
“Cache Fusion” [LSC*01] to support read and write-sharing with direct instance-to-
instance transfers of dirty data over the interconnect, instead of going through shared
storage. Disk I/O happens only when the needed blocks are not present in any of the
client-side caches. Similarly, in the HPC context, heavy read-write block contention
arises in MPI applications with multiple peers working on the same block set. To attack
the problem, GPFS features a special data shipping mode [PTH'01], which the free
ROMIO implementation of MPI-10 has also been extended to support [BICrT08]. Data
shipping mode minimizes read-write block contention by assigning distinct parts of a
shared file to distinct processes, so that only a single process issues read/write requests

for a specific block during collective I/O.

To summarize, the applicability of gmblocK’s direct I/O path depends significantly on
the access patterns of the I/O workload. Workloads for which it is a good fit are those
with little data sharing, e.g., shared storage for live VM migration and read-write server
workloads on independent datasets, or workloads where nodes can be assumed to co-
ordinate access at a higher level, e.g., the Oracle RDMBS or MPI-10 applications with

data shipping optimizations.
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Figure 3.12: SRAM placed between the peripheral bus and a commodity interface
3.4.3 Applicability to other interconnection technologies

Our prototype implementation is based on Myrinet, which offers a fully programmable
NIC. Availability of such NIC provides flexibility, and allows for almost all of the com-
munications protocol processing to take place on the NIC, minimizing host CPU over-

head. However, it is not necessary for constructing the proposed data path.

The prerequisites for server-side gmblock operation are DM A-enabled storage, a DMA-
enabled network interface and a small, fast, PCI-addressable memory area close to it.
Thus, to make our approach applicable to interconnection technologies such as In-
finiband and 10-Gigabit Ethernet, we need to amend the hardware to include a small
amount of memory between the peripheral bus and the network interface. Fig. 3.12
displays such setup; a small amount of SRAM placed between the peripheral bus and a
commodity 10GbE interface enables two disk-to-NIC paths to work in parallel.

To transfer data for a remote block read request, the host CPU initiates a DMA opera-
tion from the storage device to the PCI physical addresses corresponding to this SRAM.
The degree of CPU involvement during the network send operation depends on the ca-
pabilities of the NI used. In the case of TCP/IP and commodity Ethernet, the protocol
stack will initiate a gather DMA operation to collect frame headers from host RAM and
frame data from the SRAM and inject them into the network. All of the protocol pro-
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cessing happens on the CPU, which will have to manage individual frame completions,

via a combination of interrupts and polling.

In the case of Infiniband, the corresponding SRAM regions can be registered with the NI
and the data sent to the requesting node over RDMA. The RDMA operation progresses
independently of the host CPU, which is notified when all of the message data have been

transferred to the remote node.

3.4.4 Applicability to low-power designs

The proposed approach is also relevant with the emerging trend for ubiquitous, low-
power, embedded storage devices based on a System-on-Chip (SoC) architecture. These
devices typically feature lower clock rates, typically in the 500MHz-1GHz range, and
lower-bandwidth internal buses, for reasons of cost and power efficiency. Staging data
for I/O operations in memory buffers exacerbates memory bandwidth pressure; peer-
to-peer data transfers between the NI and storage devices make the path to main mem-
ory available for use by protocol processing on the CPU and enable the storage device to
scale better with disk count and network/storage bandwidth. Furthermore, staging data
in an appropriately-sized SRAM instead of in the main memory of the host, which is
typically implemented with SDRAM or DDR, can effect significant performance savings
[MACMO05, ACMMO7]. Lowering DDR bandwidth requirements also allows for ag-

gressive power optimizations; a low-stress DDR266 workload consumes less than 17%

of the power needed for a high-stress DDR333 workload [Jan01].

Certain SoCs already feature a small amount of SRAM; for example, the Intel IOP80332
[Int] features an on-chip SRAM controller which can manage up to 1MB of SRAM.



Synchronized GM send operations

4,1 Motivation

Opverall, gmblock delivers significant bandwidth improvements for remote read / write
operations compared to conventional data paths crossing main memory. However, its
performance still lags behind the limits imposed by network and local storage band-
width; in the case of MBL on Server B, gmblock-sram achieves ~400MB/s (for 128KB-
sized requests in the gmblock-sram-4 case, which is 86% of the maximum available read
bandwidth available locally, while it achieves ~220MB/s (65% of the maximum) when
using a real-life RAID-based storage system. The chief reason for low efficiency lies
in the interplay between a number of conflicting factors and architectural constraints:
(a) The nbd system needs an outstanding request queue of sufficient depth in order
to pipeline requests efficiently and keep all system components busy, (b)) RAID-based
storage systems exhibit a bandwidth vs. request size curve as shown in Fig. 3.7(a); they
deliver their best performance when provided with sufficiently large requests which can
be parallelized across all spindles, (c) Cluster interconnect NICs, such as the Myrinet
NICs on our platform, feature a limited amount of memory, which is usually only meant

to buffer message packets before injection into the network.

The proposed approach moves data directly from disk to NIC, thus the maximum num-
ber of outstanding requests is limited by the amount of SRAM available for gmblock’s
use. In our case, using standard Myrinet NICs with 2MBs of SRAM, we were able to
reserve ~700KB for gmblock buffers. Allocating more than that is not a viable option

in production environments, because there is a number of side effects:

119
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o anumber of GM features, such as Ethernet emulation, have to be disabled in order

to reduce the size of the firmware.

o less SRAM is available for caching virtual-to-physical translations on the NIC.
Reducing the size of the translation cache increases the translation miss rate and
may impact messaging performance significantly, depending on the degree of

buffer reuse.

« the maximum supported number of nodes is reduced, since less space is available

for GM to hold connection state between pairs of nodes.

This means that only 1 x 512KB request or 2 x 256KB or 4 x 128KB requests may be

in flight at any moment.

Using a larger number of smaller requests improves pipelining but moves us at a lower
point on the request size vs. bandwidth curve of fig. 3.7(b). This becomes more evident
as the number of disks in the RAID array increases. When the number of outstanding

requests is low, the system is dominated by latency.

To allow gmblock to use larger requests, while still achieving good disk and network
utilization, we focus on increasing the amount of overlapped processing within each in-
dividual request. We aim to have the network send data for a remote block read request
even before the storage medium has finished serving it. This way, we can take advantage
of the full bandwidth of the RAID controller while still having good overlapping of disk

with network I/O, even with a single, large request on the fly.

4.2 Design

Servicing a block read request entails two steps: Retrieving data from disk to SRAM,
then sending data from SRAM to the network. To enable intra-request overlapping, the
send from SRAM operation needs to be synchronized with the disk read operation, in
order to ensure that only valid data are sent over the network. Ideally, this should be
done with minimum overhead, in a portable, block device driver-independent way and
with minimal changes to the semantics of the calls used by the nbd server for local and

network I/0.
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There are several approaches to implementing this kind of synchronization mechanism
in software, inside the nbd server, in order to submit large I/O requests to local storage

while splitting them up for processing by the network.

One approach is to uncouple the size of block I/O requests from the size of network I/O
requests. The server may divide each large remote read request of [ bytes (e.g., IMB) in
much smaller chunks of ¢ bytes (e.g., 4KB), then submit them all to the underlying stor-
age medium for processing. A userspace nbd server can use the POSIX Asynchronous

I/0 facility to have multiple outstanding requests to local I/O.

This scenario has a number of significant drawbacks. First, it incurs significant request
processing overhead, since the server receives individual completion notifications per
block I/O and network I/O request, and invokes individual GM send calls. Similarly, on
the client side, the host CPU is frequently woken up on the critical path to acknowledge
reception of individual GM messages and facilitate the flow of GM send and receive
tokens. Second, this approach discards the information that all chunks are contigu-
ous; instead it relies the server-side I/O scheduler to reassemble them into a larger I/O

request to the storage medium, for efficiency.

We propose a synchronization mechanism working directly between the storage medium
and the Myrinet NIC, in a way that does not involve the host CPU and OS running on
top of it at all, while at the same time remaining independent of the specific type of block

storage device used.

Let us consider the scenario when the server starts a user level send operation before the
actual read() system call to the Linux I/O layer. This way, sending data over the wire is
bound to overlap with fetching data from block storage into the Lanai SRAM. However,
this approach will most likely fail, since the correctness of the data being transmitted
depends on the ability of the storage medium to deliver data faster than the Send DMA
engine on the NIC consumes them. The disks may fail to keep up for a variety of rea-
sons, such as transient disk errors, concurrent access by applications other than the nbd
server, or simply because it cannot deliver enough bandwidth to saturate the network

link(s).

To solve this problem we introduce the concept of a synchronized property for user level
send operations. A synchronized GM operation ensures that the data to be sent from a

message buffer are valid, before being put on the wire. If at some point in time no valid
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data are available for a synchronized send token, the firmware ignores it when searching
for a suitable token from which to enqueue a packet to the network. Essentially, the NIC
works in lockstep with an external agent (the block device), throttling its send rate in

order to match that of the incoming data (in our case, 74;s%).

chunk
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Figure 4.1: Intra-request phase overlap

The NIC notices data transfer completions in chunks of c bytes. The value of ¢ deter-
mines the synchronization grain and the degree of overlapping achieved (see Fig. 4.1);

The NIC only starts sending after £, = - time units, then both the storage device

C
Tnet

and the NIC are busy for t, = -=<, then the pipeline is emptied in t3 = time units.

Tdisk’
There is a trade-off involved, since smaller values mean finer-grained synchronization
and better overlapping, but could impose significant CPU overhead on the Lanai, while
bigger values lead to lower synchronization overhead but reduce the overlapping be-

tween the two phases.

The semantics described above break the assumption that the whole of the message
is available when the send request is issued, allowing the NIC to synchronize with an

external agent while the data are being generated.

However, as we discovered experimentally and explain in greater detail in section 4.4,
this does not suffice to extract good performance from our platform; the design retains
the assumption that the external agent places data into the message buffer as a single
stream, in a sequential fashion. However, most real-world storage devices rely on par-
allelizing request processing to deliver aggregate high performance, e.g., by employing
RAID techniques. Thus, incoming data comprise multiple slower streams - Fig. 4.2

shows a 4-disk RAIDO array DMAing a single RAID stripe.

To achieve high degree of overlapping, we need to incorporate this multiplicity of streams
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Figure 4.2: A 4-disk RAIDO array moving a stripe into a message buffer

in the semantics of synchronized operations and the design of the networking protocol.
We extend reliable messaging to allow the sender to construct network packets from
disjoint locations inside the message buffer, and the receiver to support out-of-order

placement of incoming fragments.

The cost of having the sender-side NIC notice DMA transfer completions anywhere
inside the message is prohibitive, hence we make a compromise: we support “multiple
stream” synchronized operations by having the user provide hints on the position and
length of a finite number of incoming streams inside the buffer. In our case, they are

derived from RAID array member count and chunk size.

Although our prototype implementation of synchronized operations is Myrinet/GM
based, it is portable to any programmable NIC which exposes part of its memory onto
the PCI address space and features an onboard CPU. Synchronization happens in a

completely peer-to-peer way, over the PCI bus, without any host CPU involvement.

4.3 Implementation issues on Myrinet/GM

There is one major implementation-specific point which has not yet been addressed. We
need a way for the Lanai to be notified as an external agent places data into its SRAM.
However, the Myrinet NIC does not provide such functionality in hardware. It could
be implemented with a “dirty memory” bitmap describing the state of the Lanai SRAM
(2MBs) divided into chunks of size ¢ bytes. The bit corresponding to an SRAM chunk is
set by the hardware whenever a value is written anywhere into it. For a value of c = 4096
bytes, at most 64 bytes are needed. The firmware initializes all bits corresponding to an
SRAM bufter involved in a synchronized operation to zero. Then, it can verify chunk n

contains valid packet data by checking if the bit for chunk n + 1 is set, assuming that the
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external agent performs DMA into the SRAM serially in ascending order of addresses

for a single message chunk.

Since such functionality was not available on our NICs, we emulated it in software, with
32-bit markers in the SRAM itself. The Lanai polls the markers, which get overwritten
as the data are DMAed in. The probability of at least one overwritten marker going
undetected because the value being sent coincides with the magic value being used is

very low. For instance, for a random block of I =1MB and a value of ¢ =4KB, it holds:

L
Pno_ovr =1- (]- - 2_32)’—;| — P =5.96 x 10_8

Still, to ensure that the system never fails and the Lanai does not loop infinitely around
a marker, an extra one is used right after the end of the block. It is set by the host CPU,
i.e., by the nbd server application when the data transfer into SRAM is complete and
all of the data is valid. The worst-case scenario is that overlapping does not take place,
with probability P, ., and the network transfer starts after the block read operation

is complete.

The implementation of synchronized operations on Myrinet/GM comprises three phases:

Initialization phase Function gm_synchro_prepare_buffer() writes a 32-bit value,
GM_SYNCHRO_MAGIC, aligned with the end of each chunk, once every GM_MTU bytes
in the SRAM buffer. Initialization is done with PIO inside the GM library, since
the host CPU is an order of magnitude faster than the Lanai. Send events passed
to the firmware are flagged as synchronized by gm_synchro_send_with_callback()
and may optionally define the offsets and lengths of multiple streams inside the
message buffer. Similarly, send tokens created by the SDMA machine are en-

hanced to include send flags and multiple stream hints.

Transmission phase This step lies in the critical path of transmission and is executed
whenever a new packet of at most GM_MTU=4096 bytes is about to be injected into
the network. Upon encountering a synchronized send token, the SDMA machine
scans individual streams until one with valid data is found. If no stream contains a
packet with valid data yet, the send token is bypassed. The firmware never blocks

on a synchronized operation, ensuring fairness between tokens.
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Finalization phase When the block I/O request completes, the nbd server notifies the
GM firmware that all of the data are valid by calling gm_synchro_finalize_-
buffer(). This sets the marker right after the end of the block buffer to a magic

value.

For multiple stream support, we modified GM’s Go Back N protocol so that out-of-
order construction of message packets at the sender side and placement at the receiver
side is possible. Whenever a packet is injected into the network, the SDMA state ma-
chine keeps track of stream-specific state inside the send record being created; this in-
formation helps associate the send record with the stream from which the data for the
packet originated. Should the connection be rewound due to lost packets or timeouts,
the sender’s RECV machine will know which of the stream-specific send pointers to
modify in order to resend. Similarly, the RDMA state machine does not assume in-
coming message fragments are to be placed serially inside the matched buffer; we ex-
tended the GM packet header so that an optional offset field, h_synchro_ptr is used to

determine where to DMA incoming fragment data inside the message buffer.

The Lanai cannot address host memory directly but only through DMA. The cost of
programming the PCIDMA engine in order to monitor the progress of a block transfer
to in-RAM buffers is prohibitive, so synchronized GM operations are only available
when sending from buffers in Lanai SRAM. However, this suffices for implementing an

optimized version of gmblock’s data path.

4.4 Experimental evaluation

This section presents an experimental evaluation of gmblock extended to support syn-
chronized operations versus the base version of gmblock using a direct disk-to-NIC data
path. We do not include any instances of gmblock-ram-{1,2,4} since we have already
shown how staging data in RAM-based buffers is detrimental to overall performance.

The results were taken on Server B because it features a better performing, PCI-X bus.
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Figure 4.3: Sustained remote read bandwidth for single and multiple-stream synchronized

operations
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4.4.1 Experiment 2a: Synchronized Send Operations

We use two versions of gmblock: gmblock-synchro-single issues single-stream syn-
chronized operations with one outstanding request, while gmblock-synchro-
multiple supports multiple-stream synchronized operations. The number of streams
is set equal to the number of disks in the RAID array. The results for both storage me-
dia are displayed in Fig 4.3(a), Fig 4.3(a) for the 3Ware Controller and the MBL device

respectively.

As expected using gmblock-synchro-single yields much better throughput over gmblock-
sram for MBL (370MB/s, a 77% improvement, for 256KB-sized requests). Even with
a single outstanding request gmblock-synchro-single reaches 91% of the maximum
read throughput of gmblock-sram-4, by improving the latency of individual requests
(e.g., 59% for 64KB-sized requests). This is a sharp drop-oft in performance for 512KB-
sized requests, which we focus on shortly. Contrary to MBL the performance gains of
gmblock-synchro-single for the RAID configuration are marginal (7% improvement

over gmblock-sram-1, for 512KB-sized requests).

4.4.2 Experiment 2b: RAID data movement

To better understand the reasons for the performance drop-off for 512KB MBL requests
and the rather low performance of the RAID configuration, we need more insight on
the way DMA operations progress over time. We use a custom utility, dma_pol1, which
provides data movement traces using predefined marker values (fig 4.4), similarly to
the method described in Section 4.2. This way we can monitor when each individual
chunk is DM Aed into the message buffer. We find two reasons behind the results of the

previous section:

RAID data movement gmblock-synchro-single ignores the fact that data are placed
in different parts of the message buffer in parallel (see fig. 4.4(b)) and only over-
laps disk and network I/O for the first chunk.

Segment reordering The maximum hardware segment size for DMA operations with
the MBL device is 256KB. For requests greater than that, the actual order that the

segments are submitted depends on the Linux I/O scheduler. Using the anticipa-
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Figure 4.4: DMA traces for the anticipatory and CFQ schedulers, 1024KB-sized requests

tory I/O scheduler leads to the two segments being reordered for 512KB requests
(fig. 4.4(c)). Hence the degree of overlapping for gmblock-synchro-single is

lower.

On the other hand, works around

these problems and achieves read rates close to that of local access. In the case of the

using gmblock-synchro-multiple

3Ware controller it reaches 92% of the maximum bandwidth (40% better than gmblock-

sram-4) achieving near-perfect overlapping.

To demonstrate how overlapping influences request processing, we break down the to-
tal request processing time into distinct phases. The server monitors the state of each
request as it makes progress, using counters based on the TSC register of the Pentium.
Fig. 4.5 shows the time spent by the gmblock server in various stages of request process-

ing. We identify five different states:

o STATE_INIT: A new nbd request has been received and is being unpacked.
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o STATE_READ: A block I/O request is issued and the nbd server waits for it to com-

plete.
o STATE_SEND_INIT: The nbd server posts a new GM send event to the Lanai.
o STATE_SEND: Disk I/O has completed and the GM send operation is in progress.
» STATE_FIN: Completion of send operation, returning request receive token back

to GM.

The time spent on states other than STATE_READ or STATE_SEND was found to be negli-
gible. STATE_SEND represents network I/O time that was not overlapped with disk I/O,
and indicates the degree of disk to network I/O overlapping achieved. The integration

of synchronized operations in gmblock-synchro-multiple makes it negligible.
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synchro-multiple}



Client-side issues and end-to-end

evaluation

In the previous chapters, the primary focus has been on server-side optimizations to the
gmblock data path. This chapter presents the client-side design and implementation
of gmblock. We begin with a basic kernelspace client, which presents a virtual block
device to the host system, then examine the various implementation choices, and their

efficiency with regard to data movement.

We exploit Myrinet NIC programmability to enhance the operation of the kernelspace
client. We propose extensions to GM networking to support scatter-gather I/O directly
to/from the physical address space, and integrate them in the gmblock client. The end-
to-end performance of the integrated system is evaluated with application benchmarks

running on a parallel filesystem deployed on top of gmblock.

5.1 Design considerations for a kernelspace nbd client

5.1.1 Principles of operation

Let us return to Fig. 3.1(a), which presents the basic design of an nbd system. On the
client side, the nbd client runs in kernelspace, and implements the host OS’s block device
driver interface to export a virtual block device. Device access requests originate either
in applications performing raw block I/O, or in the filesystem layer. The requests are

processed by the client-side block device layer, which will perform request coalescing

131
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and I/O scheduling before passing them to the nbd client. This process is described in

greater detail in Section 2.3.

The nbd client has to encapsulate the request in one or more network messages which
are sent to the remote nbd server. When a reply arrives, the client notifies the overlying
block device layer for I/O completion. The block device layer will then wake up any code
waiting for the result of the I/O request, so that it can resume queueing I/O and the cycle

can begin again.

5.1.2 Client-side data movement

The nbd client needs to gather data from block I/O buffers into network packets, in the
case of write requests, and scatter incoming data to block I/O buffers, in the case of
read requests. To improve nbd performance on the client side, we need to minimize the
amount of redundant block data movement while translating between host block I/O

requests and network messages.

I/0O buffers reside in host RAM and are managed either by the application or by the

kernel itself. There are two distinct cases:

« An application uses the raw block device directly and employs custom caching
and prefetching policies using direct I/O from/to virtually addressed userspace
buffers. I/O operations refer to areas contiguous in the application’s VM space,
which are mapped to disjoint areas in physical memory. The direct I/O layer of
the host system takes care of enforcing memory access restrictions, performing
virtual-to-physical translation and pinning the relevant pages in physical memory,

before passing the request to the nbd client.

 Anapplication uses the raw block device for buftfered I/O, or a filesystem is mounted
on top of the virtual block device. In this case, the nbd client is called to perform

I/0 to/from pages in the page cache, as the kernel deems necessary.

In either case, the nbd client is presented with a scatter-gather list of pages in physical
memory, to be filled with data, or to be flushed to disk. The amount of data movement
necessary after this point, and the corresponding I/O overhead depends significantly on

the capabilities of the underlying network.
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The situation is similar to that described in Section 3.1.1 for the nbd server. If a TCP/IP-
based interconnect is used, then the nbd client will have to copy data in and out of socket
buffers and invoke the TCP/IP stack. The imposed overhead depends on the quality of
the TCP/IP implementation and whether the NIC offers TCP offload capabilities.

Let us study the interaction of the nbd client with a user level networking infrastructure.
We will focus on Myrinet, since this is the substrate used for the prototype gmblock
implementation, but the conclusions drawn hold for user level networking interfaces in

general.

Even though the Myrinet NIC undertakes most of network protocol processing in Myrinet,
translation between large block I/O requests referring to scattered physical memory
pages and GM network messages is not straightforward; there is discrepancy between

the needs of a kernelspace-based nbd client implementation and the capabilities of GM.

leng len, len, lens
> | > >

Physical address space

addrg addr,

[T =

scatter-gather list

Figure 5.1: A scatter-gather list describes an I/O buffer dispersed in physical memory

GM requires all communication to happen from/to pre-registered message buffers which
are contiguous in the application’s VM space. Scatter-gather I/O happens via address
translation; GM keeps track of message progress using virtual pointers and translates
from the contiguous VM area to possibly disjoint physical pages. On the other hand,
the kernelspace nbd client is presented with discontiguous segments in physical mem-
ory; blockI/O buffers are described in terms of scatter-gather lists, referring to a number

of disjoint physical memory segments (Fig. 5.1).

This gap arises from the different design goals set by GM and the Linux block layer. GM
targets userspace processes which need to communicate from virtually addressed mes-
sage buffers without entering the kernel, while the Linux block layer prepares requests
so that it is convenient for the driver to pass them to a block device supporting DMA

with physical addresses.

To solve this problem, a number of different approaches can be used:
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Staging data in pre-registered buffers: The nbd client pre-allocates a number of mes-
sages buffers and registers them with GM at initialization time. All block data
need to be copied in and out of these buffers, depending on the type of the I/O
request: for a remote write request, data are gathered into these buffers by the
CPU. For a remote read request, the Myrinet NIC matches the incoming net-
work reply with one of the staging buffers, then the driver is notified and does

CPU-based copying to scatter the blocks into their final locations.

Although this approach is simple, it has a number of disadvantages which signit-
icantly limit its applicability:

o it requires host CPU-based copying of all block data, and thus introduces
significant host CPU overhead. This happens although firmware on the
Lanai can use the onboard DMA engines to queue multiple DMA requests

for arbitrary physical memory segments.

« it consumes three times the sustained remote I/O bandwidth on the client’s
memory bus; data have to cross it once during NIC-based DMA and twice

during the copy operation.

« it may require modifications of the kernel’s page tables in the critical path
of block I/O: the nbd client is presented with a list of physical pages which
are not necessarily mapped to the kernel's VM space. Depending on the ar-
chitecture, only a number of physical memory pages (low memory, 1GB for
the i386) is already mapped one-to-one to the kernel’s virtual address space.
The rest of memory (high memory) is not, and needs to be explicitly mapped
before a kernel function may access it. This is not a problem when the pages
are to be passed to a real block device for DMA, since only their physical
addresses are needed, but for a CPU-based copy operation the driver has to

map them into the kernel’s VM space, and unmap them when it completes.

« Depending on the type of I/O request, page mapping and CPU-based copy-
ing happens either when the nbd client’s request function is running - a
write request — or before calling the block layer’s completion handler - a
read request. In both cases the driver locks the virtual block device and
disables interrupts on the local processor, to ensure correctness. This in-

troduces significant overhead in the critical path of block I/O and prevents
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Figure 5.2: Block 1/O buffers mapped onto contiguous areas in kernel VM

request queueing and scheduling to proceed in parallel on other processors

of the system.

Mapping of disjoint physical memory pages onto contiguous kernel VM areas: To
avoid the redundant data movement imposed by the previous approach, the nbd
client may assemble the physical memory pages referenced by each request into
a contiguous area inside the kernel's VM space (Fig. 5.2). It can then register
this area with GM and use it in a network I/O operation. The area needs to be
unregistered and unmapped when GM reports completion of the network oper-
ation, since each individual block I/O request refers to a possibly unrelated set of

physical pages.

This approach has the advantage of being zero-copy; the Myrinet NIC traverses
the virtual buffer serially and does DMA to the discontiguous physical segments,
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using virtual-to-physical address translation, with no redundant memory copies.

However, the nbd client needs to establish kernel page mappings and register VM
areas with GM in the critical path of every block operation. Registering and un-
registering memory with GM is a very expensive procedure, which involves paus-
ing the Lanai and manipulating the translation cache on the NIC. Similarly to the
previous approach, this happens inside the critical path of block I/O, with inter-
rupts disabled. The relative cost of memory copying vs. memory registration de-
termines the request size threshold over which using VM mappings is beneficial

compared to staging data in pre-allocated GM bufters.

The main problem with this approach is that it maintains mappings of referenced
physical pages and involves NIC-based virtual-to-physical translation, although
this is unnecessary. The need for memory registration arises when doing user
level communication and the kernel cannot be invoked for virtual-to-physical
address translation. However, in our case the kernel is already in the critical path.
In fact, the caller - the Linux block layer — has taken care of pinning down the
referenced physical pages if necessary (e.g., for O_DIRECT-based I/O with user

pages) and provides the driver with a scatter-gather list of physical segments.

Using one-sided RDMA operations on the server side: The server may use one-sided
RDMA-read and RDMA-write operations to fetch and store data directly into the
physical memory of nbd client systems. In this approach, either the server has
unrestricted access to the client’s physical address space, or, to maintain system
security, memory registration and deregistration calls are still used in the critical

path.

All of the previous approaches impose unnecessary overhead in the operation of a ker-
nelspace nbd client. We need a way to combine secure, two-sided GM sends and receives
with physically addressable discontiguous message buffers as requested by the overly-
ing block layer of the host OS. To this end, we propose extensions to Myrinet/GM to
make it more suitable for kernel-based operation, namely the ability to perform scatter-
gather I/O directly from physical memory buffers, defined in terms of scatter-gather
lists (Fig. 5.3).
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Figure 5.3: GM physical scatter-gather I/O as a stub of the remote block device

5.2 Proposed extensions to Myrinet/GM

5.2.1 Design

We describe the design of a proposed GM extension to support physical scatter-gather
I/O. Our approach needs to co-exist both with standard GM send/receives and syn-
chronized sends, with all kind of operations supported at the same port, simultaneously.
Manipulating physical memory directly may compromise system security, so we need

to ensure that the design maintains GM security semantics.

Along with standard and synchronized send operations, we define a new class of physical
gather send operations. The message buffer involved is defined using a scatter-gather
list of physical addresses passed to the Lanai. Similarly, we define physical scatter receive

tokens.

The state of an open port is extended to include a number of GM scatter-gather lists.
Every list features a number of segment vectors, i.e., { segment physical address, segment

length} pairs. A scatter-gather operation happens as follows:
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. 'The caller initializes a free scatter-gather list entry for an open port using gm_-

set_scatterlist().

. The caller issues a gather send (gm_gather_send_with_callback()) or scatter

receive request (gm_provide_scatter_receive_buffer_with_tag()), referring

to the recently initialized scatter-gather list.

From this point on it the list belongs to the Lanai and may no longer be manipu-

lated by the user, until...

The token is returned to the caller by GM, either when the send operation com-
pletes and the callback function executes, or when a receive event is posted to the

open port’s event queue.

We preserve GM’s buffer matching semantics: As with standard receives, every scatter

receive token also has the GM size attribute, and can only be matched with incoming

GM packets of the same size. Receive-side buffer matching happens completely on the

Myrinet NIC: the NIC traverses the scatter list before initiating a receive DMA opera-

tion.

This has three main advantages:

 Receive-side buffer matching happens completely on the Myrinet NIC. If a dis-

tinct GM size tag is used for every outstanding block request, the NIC has enough
information to place block data directly into their final location, without any host

CPU intervention.

The CPU need only be notified when an entire network send (block write) or
network receive (block read) operation has completed. All per-packet processing
is undertaken by the NIC and an interrupt is raised when a whole scatter-gather

list has been processed.

The memory integrity of the client system is protected, even though no memory
registration takes place. The server may request DMA writes only to the desig-
nated physical memory segments, since this is a two-sided operation and the NIC

verifies the legitimacy of every network packet before starting receive DMA.
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To maintain system security, only ports opened in privileged mode, i.e., by kernel en-
tities, may manipulate scatter-gather list entries and post scatter-gather tokens to the

Lanai.

5.2.2 Implementation of GM scatter-gather operations

This section describes the changes necessary to support GM scatter-gather operations
in all three components of Myrinet/GM: The library, the GM kernel driver and the Lanai

firmware.

GM userspace library

Functions gm_set_scatterlist(), gm_gather_send with_callback() and gm pro-
vide_scatter_receive_buffer_with_tag() are defined and exported as part of the

GM library public API.

They pass gather send events and scatter host receive tokens to the Lanai, and mark them

as such using flags (GM_SEND_FLAG_PHYS_SGLIST or GM_RECV_FLAG_PHYS_SGLIST).

GM kernel module

We extend the GM kernel driver to support per-port scatter-gather lists. The number
of lists and number of entries per list are compile-time constants. There is a trade-off:
A higher number of scatter-gather lists per-port means more block requests may be
outstanding at any given time; a high number of entries per scatter-gather list means
more physical segments may be coalesced in a block request to be passed over a single
network message to the nbd server. However, since GM scatter-gather lists are kept
in Lanai memory, this reduces the amount of memory available for caching address
translations and the size of the connection array, i.e., the maximum number of nodes in

the network.

GM firmware

The bulk of GM scatter-gather I/O support is implemented in the Lanai firmware. Changes
affect mostly the SDMA and RDMA state machines. For every send token, the SDMA
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state machine must keep track of the progress made inside the message buffer for this
token. For standard tokens, this is a pair of {current virtual address, remaining length}
values. For gather send tokens, the current token state is modified so that it points to
the physical address space and includes information on the gather list segment cur-
rently being processed, i.e., it becomes {current physical address, current segment in
gather list, total remaining length}. Whenever a new packet is to be injected into the
network, data are retrieved directly from the current physical pointer, omitting any ad-
dress translation. Packet length is determined by the number of bytes remaining in the
current segment. When the physical pointer reaches the end of a gather list segment, it

is updated to point to the following one.

The current state of the gather send token is also kept inside the send record used for
implementing the go-back-N part of the network protocol. If a NACK is received, or
this send record expires, the send token will be rewound to its previous state, including

the current physical segment.

Similarly to the SDMA machine, the RDMA machine is enhanced, so that the scatter
list is traversed before initiating receive-side DMA for scatter receive tokens. The scatter
list is not accessed in ascending order, because the implementation must support the
combination of synchronized sends with scattered receives: an incoming packet may
refer anywhere inside the discontiguous physical buffer. Thus, whenever an incoming
data packet matches with a scatter receive token, the RDMA state machine performs
a binary search inside the scatter list, to find the segment where the incoming packet
belongs. The final destination address for DMA is computed based on the value of the
h_synchr_ptr field inside the GM packet header and the starting physical address of

the scatter list segment.

5.3 Kernelspace gmblock client

On the client side, gmblock runs as a kernelspace driver, presenting a standard block
device interface to the rest of the system. Retaining the standard block device inter-
face makes our framework instantly usable either directly as a raw device, e.g., by VM
instances or a parallel database, or indirectly, through a shared-disk filesystem using

standard POSIX I/O. Moreover, we retain the highly optimized, production-quality
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I/O path of the Linux kernel, which does I/O queueing, scheduling, request coalesc-
ing and mapping to physical scatter-gather lists, before presenting the requests to our
driver; the performance of our nbd system benefits from improvements of the Linux

block layer as its implementation evolves.

The client uses Myrinet/GM with the extensions described in the previous section for
communication with the remote server. It maps every block read or write request for

DMA access, then passes the resulting scatter-gather list to GM for processing.

The driver derives the limits for its block layer queue (see Section 2.3) from the compile-
time parameters of the underlying GM; the number of segments in a GM scatter-gather
list specifies the maximum number of segments in a block request, while the number of

scatter-gather lists per port defines the maximum queue depth.

For remote read requests, receive-side matching happens entirely on the NIC, without
any host CPU involvement. The driver specifies a distinct GM size argument per out-
standing request, and a unique scatterlist for every size. Thus, any incoming block data
packet matches a single scatter-gather list and the NIC can initiate a receive DMA op-
eration independently. The host need only be interrupted when all of the block data for

a given request have arrived.

Essentially, we implement a stub of the remote storage medium on the NIC itself (Fig. 5.3).
This scheme, combined with the short-circuit data path on the server side, supports
end-to-end zero-copy data movement from remote storage to scattered client memory
segments. Scatter-gather I/O can reach all the way to user buffers for applications which
implement their own data caching policies and perform direct I/O. To the best of our

knowledge, this is the first such implementation.

5.4 Parallel filesystem deployment over gmblock

We completed a prototype deployment of the Oracle Cluster File System (OCFS2) over
gmblock-provided shared storage, which enabled us to evaluate gmblock with real-life

application I/O patterns from various workloads.

Our testbed consists of four cluster nodes in configuration A and one storage server of

configuration B. All cluster nodes access the 3Ware RAIDO array over virtual devices
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backed by the gmblock kernelspace client. They run OCFS2 1.5.0, which is part of the
standard Linux kernel version 2.6.28.2. We had to patch the kernel for 16KB kernel
stacks instead of the default 8KB, to work reliably with the long function call chains

coming from stacking OCFS2 over gmblock over GM.

Using the proposed server-side data path means no server-side caching and prefetch-
ing is possible. To explore this effect, we compare two versions of gmblock: gmblock-
ramcache, a version which passes both read and write data through RAM buffers using
cached I/0O, and gmblock-sram, which uses the proposed disk-to-NIC path for reads
and only issues direct I/O requests. Writes still go through main memory, uncached,
to work around the hardware limitation of the LanaiX which cannot support efficient

peer-to-peer transfers as a read target (see Section 3.3).

Caches are cleared on every cluster node before every experiment to ensure consistent

results.

We run three different application benchmarks on the OCFS2-over-gmblock setup: 10-
zone [NC], a server workload, and MPI-Tile-I/O [Ros].
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Figure 5.4: I0zone, single-node performance: No caching, direct I/O
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Figure 5.5: I0zone, single-node performance: Client-side caching, small file
5.4.1 Experiment 3a: Single-node IOzone performance

IOzone is a filesystem benchmark generating a variety of different I/O patterns. We
tested its performance in the read, re-read, and write modes. For every test, IOzone
performs multiple passes varying the I/O size from 64KB to 4096KB. We used two
different workloads. A “small” file of 512MB which fits entirely in a node’s cache and a
“large” file of 4GB. This is to demonstrate server and client-side cache effects. We show
results from the read tests, since the re-read case coincides with the small file read case

after the first pass, and writes follow the same data path in both implementations.

We look into the base performance of I0zone with a single client. Fig. 5.4 shows the
performance of uncached (direct I/O) reads for various request sizes both for gmblock-
sram and for gmblock-ramcache. We see that gmblock-ramcache is capped by the
memory-to-PCI bandwidth at ~93MB/s and ~160MB/s for the large and small file
respectively. The small file case has considerably better performance because the first
64KB pass brings the entire file in storage server RAM. Thus there is no disk-to-memory
traffic competing with cache-to-NIC traffic.

The gmblock-sram case scales linearly with request size independently of file size since

there is no client or server-side caching. It is interesting to note that gmblock-ram
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Figure 5.6: I0zone, single-node performance: Client-side caching, large file
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Figure 5.8: 10zone, multiple-node performance: Client-side caching, small file
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outperforms gmblock-sram for the initial read of 64KB requests. This is because the
caching server may prefetch aggressively: the caching server takes advantage of reada-
head set at 512KB, so gmblock-sram begins to outperform gmblock-ramcache after
the 512KB request mark and is ~1.64 and ~2.9 times better for the small and large file

respectively.

Fig. 5.5 shows small file performance, for readahead settings of 128KB and 512KB. We
see client-side caching in effect. For request sizes after 128KB, I/O requests are being
served by the page cache on the client side, as every cluster node gets its own read lock
on the shared data and caches the file independently. The steep drop as the request size
increases is an artifact of processor cache behavior. As request size increases towards
512KB, I0zone’s application buffer no longer fits in the L2 cache of the CPU, so RAM
becomes the target of memory copy operations when hitting the local page cache. With
a large enough request size, we essentially see memory copy bandwidth limitations.
gmblock-sram’s behavior for the initial file read shows that prefetching is necessary to
achieve good performance. When using the direct disk-to-NIC data path it is not possi-
ble to prefetch on the server, but client-initiated prefetching is still possible. The initial
file read with 512KB readahead on the client outperforms the 128KB readahead setting
by as much as 120%. Thus for all remaining experiments we continue with a readahead

setting of 512KB on the clients.

Finally, Fig. 5.6 shows read performance for the large file case. This time, no cache reuse
is possible. Performance of gmblock-sram with 128KB readahead is low because the
application I/O request must complete fully before a new one can be issued by IOzone.
When readahead is set 512KB the Linux I/O layer will overlap data prefetching with
page cache to application buffer copying. The bandwidth drop after 512KB is an artifact

of L2 caching as in the small file case.

5.4.2 Experiment 3b: Multiple-node IOzone performance

We repeat the previous experiments, this time with four instances of IOzone running
concurrently, one on each client node. Fig 5.7 demonstrates the aggregate attained
bandwidth for direct I/O reads of various request sizes. All I0zone processes work on
the same 512MB or 4GB file. This is the best possible scenario for gmblock-ramcache;

It has consistently good performance, since it only fetches data once in memory, then
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all nodes can benefit from it as they read through the file at approximately the same rate.
Achieving good performance with gmblock-sram proved more difficult. It quickly be-
came apparent that the choice of the I/O scheduler on the server was crucial. Initial
testing with the anticipatory scheduler showed poor disk efficiency. The bottleneck
was the storage medium serving a seek workload. Testing with other schedulers avail-
able in the Linux kernel (deadline, noop, CFQ; only presenting results for deadline,
for brevity) showed that performance varied significantly with request size. In the best
case, I/O scheduling increases disk efficiency enough for gmblock-sram to outperform
gmblock-ramcache by 66%. In the worst case, gmblock-sram only achieves 40% of

gmblock-ramcache’s performance, for 64KB requests and the anticipatory scheduler.

Fig. 5.8 shows small file performance. After the initial read of the file, all clients read

from the local caches concurrently at a rate of ~2.4GB/s.

Fig. 5.9 shows large file performance for 512KB readahead. gmblock-sram consistently
outperforms gmblock-ramcache, but its performance is very sensitive to the application
request size. We attribute this to the interaction of request timing with server-side I/O

scheduling.

5.4.3 Experiment 3c: Server workload

We evaluate a web farm scenario, where all four clients run scripts simulating web server
instances. Each instance serves randomly chosen files of fixed size from a single direc-
tory in the shared filesystem. We use the number of files served in a 2-minute period
as a metric of sustained system throughput. The file set ranges from a small cacheable

workload (70 files of 10 MBs each), to 1000 and 10000 files of 10MBs each (Fig. 5.10(a)).

For the cacheable workload, there was no significant difference in the performance of
gmblock-ramcache and gmblock-sram (results reached ~7000files/2min and are off
the chart). All clients quickly built a copy of the workload in their page caches, so the
result is dominated by the memory copy rate when hitting the page cache. gmblock-
sram performs 12% and 17% better for the 1000 and 10000-file case, respectively. It
is bound by disk performance due to small file seeks. To confirm this, we repeat the
test with the small 70-file workload, this time reading in 0_DIRECT mode, to prevent
any client-side caching (bar “sram-deadline-direct-70files” in the chart). With the disks
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performing seeks in a narrower range, performance improved by an extra 18% and 26%

compared to the 1000 and 10000-file case respectively.

5.4.4 Experiment 3d: MPI-1IO Application

We use MPI-Tile-10, an MPI-IO benchmark which produces a non-contiguous access
workload similar to that of some visualization and numerical applications. The input file
for the application is divided in a dense 2D set of tiles, with each peer process accessing
a single tile. We perform the I/O needed to render a frame on a 4 x 4 tiled display, with
512 % 512,1024 x 1024, or 4096 x 1024 tiles and 32 bytes per element. Total completion
time for every configuration is shown in Fig. 5.10(b). In the best case, gmblock-sram
delivers 39%, 51% and 57% the completion time of gmblock-ramcache for the three tile

sizes respectively, although no I/O scheduler has consistently better performance.

Overall, gmblock-sram performed better for all three workloads. However, the effect
of the short-circuit data path only becomes visible when server-side I/O scheduling can
remove the disk bottleneck due to concurrent access. This is why the performance in-
crease is more pronounced for IOzone, whose access pattern comprises multiple peers
streaming data concurrently, compared to the server and scientific application work-

loads, which lead to more frequent seeks.
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Related work

This work describes a framework for block I/O over intelligent interconnects with direct
disk-to-NIC data transfers; the aim is to minimize host CPU involvement and to miti-

gate the impact of resource contention on the I/O path of commodity storage servers.

Thus, it is relevant to past and ongoing research on user level architectures, efficient
utilization of shared resources on clusters of SMPs, shared block storage systems, parallel
and distributed filesystems, and novel interconnection technologies with programmable

network interfaces. In the following, we present related work in each of these areas.

User level networking

Myrinet/GM is used as the message-passing networking substrate for gmblock. The
main concepts of user level networking, a number of significant architectural choices
for a ULN system and the position of Myrinet/GM in the resultant design space, have

been discussed extensively in Section 2.2.

Efficient utilization of shared resources on SMPs

Substantial work has focused on the problem of limited bandwidth of shared resources
on SMP systems. The work in [LVE00] targets the impact of memory bus contention on
multiprocessor systems running a mix of non-realtime and realtime applications. The
authors emphasize that slowdown due to memory contention is possible even when the
total memory bandwidth demands of applications do not exceed the available mem-

ory bandwidth, then explore scheduling strategies which aim to fulfill memory band-
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width guarantees for high-priority processes. Bellosa [Bel97] explores the impact of
time-sharing applications executing concurrently with real-time applications on differ-
ent processors of a multiprocessor system. He proposes techniques for throttling lower
priority applications to reduce the load on the memory bus and mitigate the effects of
memory contention. Schonberg [Sch03] focuses on the effect of I/O load on the total ex-
ecution time of applications due to memory load induced by movement of data between
peripheral devices and main memory. He describes metrics for quantifying application
slowdown, which can be used to amend scheduling decisions when aiming to meet re-
source reservation requirements. The work in [ANP03] describes a system which aims
to coordinate the execution of applications for reduced memory contention, by schedul-
ing high-bandwidth demanding applications with low-bandwidth demanding applica-
tions. The system is based on source code changes to track the memory bandwidth
usage of processes based on hardware performance counters [Pet04], but does not take
into account the memory bandwidth consumption of applications due to network and
disk I/O. Finally, [WS06] describes a scheduling framework which aims to reduce con-
tention for shared resources on a multiprocessor by selecting suitable applications for

space sharing based on user-provided information.

Impact of data movement in commodity storage servers

The problem of redundant data copying and the overhead of data movement in the
I/O path of storage systems has been explored in various research efforts. The work in
[PSCO03, PSCO5] explores the performance of servers for network-attached storage. The
authors observe the operation of NFS servers backed by iSCSI storage and highlight that
it is dominated by data movement, rather than data processing, which is minimal. To
avoid redundant data copying while serving data, they propose changes to the organi-
zation of the buffer cache, so that data brought from storage are kept in a network-ready
format in main memory The layers of the network stack are enhanced so that instead of
copying the actual data in main memory, they exchange references to them. Our work
shares the same premise, that the overhead of server-side data movement is pivotal to
performance, while data interpretation on the server is less important. We propose
device-to-device communication as a means to alleviate storage server load, aiming to

bring data from server storage to their final location in the buffer cache of the client,
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with minimum overhead. A unified I/O buffering and caching system is presented in
[PDZ00], while a similar approach for unified I/O and communication buffer man-
agement in PVFES storage servers is explored in [WWPRO04]. Therein, the authors em-
phasize the overhead of data movement as the available bandwidth for RDMA-capable

interconnects becomes comparable to main memory bandwidth.

Shared-disk filesystems

A large fraction of the storage infrastructure for medium and large-scale clustered sys-
tems is based on shared-disk filesystems. Such systems include IBM’s GPFS [SH02], Or-
acle’s OCFS2 [Fas06],Red Hat’s Global File System (GFS) [SRO96, PBBT99], SGI's CXFS
[SE04], an extension of XFS [SDHT96] to support clustering, and the VERITAS Cluster

File System [Sym]. To ensure consistency while accessing shared storage, shared-disk
systems commonly employ a distributed lock manager (DLM) based on the principles
and interface of the VMS DLM [KLS86]. These filesystems typically operate over phys-
ically shared storage, e.g., over Fibre Channel. They can also be deployed over a virtual
shared storage pool, as provided by an nbd system. Section 5.4 describes the perfor-

mance of an OCFS2 installation over gmblock.

Scalable clustered storage

Much research has focused on provided flexible distributed clustered storage by com-
bining storage from various nodes in a virtual shared disk infrastructure. Frangipani
[TML97] is a shared-disk clustered filesystem operating on top of a shared storage pool
provided by a Petal virtual disk [LT96]. The work in [FLB08] presents Orchestra, a
system to form virtual storage hierarchies by building on the Violin [FB05] block I/O
framework. It replaces the traditional block I/O interface with a richer interface which
enables in-band support of both data and control requests, for operations such as lock-
ing and space allocation. While this provides for more flexibility at the block layer, it

requires rewriting of the overlying filesystem layer to be usable with Orchestra.

Object-based Storage Devices (OSDs) have also emerged as a major research trend on
scalable storage. An OSD is a storage device which uses object structures rather than

blocks, as the fundamental unit of data storage; an object being the combination of file
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data plus a set of associated attributes [0sd04]. OSD capabilities may be implemented at
various levels of the hierarchy, e.g., the storage server or on the actual disks, by including
increased processing capability close to storage [GNAT98]. Lustre [Sun08] is a widely
used cluster filesystem based on object storage. It is based on decentralized processing
of metadata and data; metadata are handled by Metadata Servers (MDS), while data
are handled by Object-Storage Servers (OSS), stored on Object-Storage Targets (OSTs),
which currently are modified ext3 filesystems. Our work on gmblock can be applied to
designing a more efficient OSS; the traversal of ext3 structures for OST management
can run on the CPU with minimal interference from block transfers between the storage
device and the network. Similarly, the proposed data path can improve the scalability of
embedded systems which are combined with commodity disks to provide object-storage

capabilities, as is the Panasas StorageBlade [NSM04, WUA™08].

Traditionally, the Network File System (NFS) has been used to provide remote access
capabilities in UNIX systems. Its latest revision, NFSv4.1 includes Parallel NFS (pNES)
support [HHO5]. To support I/O from a single client to multiple storage servers, pNFS
separates file data from file metadata and moves the metadata server out of the data
path. A client initially interacts with a single meta-data server, which provides it with a
data layout. The client uses the data layout as a template to contact the storage servers
directly and perform data updates over multiple, parallel paths. The data layout may
specify various access protocols; the standard supports block-based storage, Object-
Based storage, or file-based access to the data chunks. Our framework can be used
as one more means of block-based access to storage servers, to complement an existing
pNES installation. Uncoupling data from metadata handling enables industry-standard

NES clients to interact with gmblock-enabled storage with no code modifications.

Network block devices

TCP/IP-based approaches for building nbd systems are well-tested, widely used in pro-
duction environments and highly portable on top of different interconnection tech-
nologies, as they rely on - almost ubiquitous - TCP/IP support. They include the Linux
Network Block Device (NBD), Redhat’s Global NBD (GNBD) used in conjunction with
GFS [PBB"99], the Distributed RAID Block Device (DRBD) [Ell07] and the GPFS Net-
work Shared Disk (NSD) layer [SH02]. On the other hand, they exhibit poor perfor-
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mance, need multiple copies per block being transferred, and thus lead to high CPU
utilization due to I/O load. Moreover, using TCP/IP means they cannot access the rich
semantics of modern cluster interconnects and cannot exploit their advanced charac-
teristics, e.g., RDMA, since there is no easy way to map such functions to the program-
ming semantics of TCP/IP. As a result, they achieve low I/O bandwidth and incur high

latency.

RDMA-based implementations [KKJ02, LPB04, LYP06] relieve the CPU from network

protocol processing, by using the DMA engines and embedded microprocessors on
NICs. By removing the TCP/IP stack from the critical path, it is possible to minimize
the number of data copies required. However, they still feature an unoptimized data
path, by using intermediate data buffers held in main memory and having block data
cross the peripheral bus twice per request. This increases contention for access to main
memory and leads to I/O operations interfering with memory accesses by the CPUs,

leading to reduced performance for memory-intensive parallel applications.

The work in [MXPB06, MPB07] addresses the end-to-end performance of a a Linux 2.4

kernel-based block sharing system, over a custom 10Gbps RDMA-capable interconnect
with exclusive access. The authors show that network and disk interrupt processing
overhead can have major impact on the attainable performance and focus on I/O pro-
tocol optimizations in order to alleviate it. We follow a different approach, focusing on
integration in an existing HPC infrastructure: gmblock is implemented in userspace,
in order to simplify its design and be able to access structured storage (e.g., data in a
filesystem) using kernel-provided abstractions. To mitigate the overhead of managing
disk and network events we propose synchronized send operations, so that servicing of
larger requests can happen with coordination between storage and the network, without

host CPU involvement.

Exploitation of memory onboard the Network Interface

The availability of NIC-based memory has spawned research efforts [KPR02, yKRPO5,
CKE™'05, WYMGO09], which seek to increase server efficiency by engaging it for on-NIC

caching of data. In [KPR02], the authors enhance FreeBSD’s sendfile() system call
to support NIC-based caching on a programmable Gigabit Ethernet NIC. They eval-

uate the performance of a web serving scenario with various amounts (up to 16MB)
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of emulated NIC memory. In [CKET05], experimental evaluation of a cluster-based
web server interconnected with Myrinet shows NIC-based caching reduces server load
significantly, by reducing PCI bus contention and avoiding the latency of DMA opera-
tions for inter-node communication. Similarly, [WYMGO9] notes that network band-
width is increasing to become a significant fraction of the peripheral bus bandwidth, and
proposes a hierarchical cache architecture with on-NIC read caching for iSCSI storage

SE€rvers.

Device-to-device data movement

Our framework is not the only one to support a direct path between storage media and
the network; a number of network block sharing systems have been described in the
literature supporting block transfers from the disk to the NIC. However, they impose

limitations which can limit their applicability in real-world scenarios.

The DREAD project [Dyd01] describes a mechanism of controlling SCSI storage devices
over SCI-provided remote memory accesses to their PCI memory-mapped I/O space;
in this setup, the SCI controller driver runs on the client. However, only a single remote
node may be running the driver and accessing the SCSI adapter, hence no data sharing
between multiple clients is possible. Also, the system needs source code changes to the
SCSI driver so that it performs I/O over SCI-mapped memory. This approach has sig-
nificant interrupt overhead; interrupts are routed via the server CPU, causing a network
transaction and an interrupt on the client, which is caught by DREAD and routed to the
SCSI driver. Thus, it does not scale well as the I/O rate increases. Finally, there is little
room for client- or server-side optimizations to the protocol, since it works at a very low
level directly between the SCSI driver and the device, as if they were directly connected

over the PCI bus.

The work on Proboscis [Han01, HL02] implements a block-level data sharing system
over SCI. It builds on the idea of having nodes act as both compute and storage servers
and describes a kernel-based system for exporting block devices. It also mentions the
possibility of direct disk-to-NIC transfers, by exploiting hardware support specific to
SCI for mapping remote memory to a node’s physical address space. This reduces host
overhead significantly, but may be problematic: first, it would only make sense for disk

read operations (remote memory writes), since the overhead of remote reads over SCI
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is prohibitive; second, there is a low limit on the number of SCI memory mappings that
may be active at any time, which would interfere with processes trying to make con-
current use of the interconnect — a problem analogous to Myrinet’s limited amount of
SRAM on the NIG; third, referring to SCI-mapped addresses directly makes error han-
dling in case of network failures very complicated, as there is no way for the storage
device to be notified whenever a memory access operation to a physically mapped re-
mote location fails; and finally, there is no provision for coherence with the local OS’s
page cache. Our framework proposes synchronized sends to work around the limited
amount of SRAM on the Myrinet NIC and avoids the problem of error handling by
isolating network I/O in a distinct SRAM-to-wire or wire-to-SRAM phase.

The work on Off-Processor I/O with Myrinet (OPIOM) [Geo02] was the first Myrinet-
based implementation of direct data transfers from a local storage medium to the NIC.
At the server side, OPIOM performs read-only direct disk-to-Myrinet transfers, bypass-
ing the memory bus and the CPU. However, to achieve this OPIOM makes extensive
modifications to the SCSI stack inside the Linux kernel, in order to intercept block read
requests so that the data end up not in RAM but in Lanai memory. This has a number
of significant drawbacks: first, since the OPIOM server uses low-level OPIOM-specific
SCSI calls to make such transfers, it can only be used with a single SCSI disk. Moreover,
there is no provision for concurrent accesses to the SCSI disk, both over Myrinet and
via the page cache, thus no write support is possible, since there is no way to invalidate
blocks which have already been cached in main memory, when a remote node modifies
them. Even for the read case, it is unclear what would happen if a remote node requested
data recently changed by a local process, still kept in the page cache but not yet flushed
to disk. Our proposed framework is able to ensure coherence with the page cache, both
for reads and for writes by exploiting the direct-I/O semantics of the Linux 2.6 kernel; it
will invalidate cached blocks before an 0_DIRECT write and will write back any relevant
cached pages to disk before an 0_DIRECT read. By integrating parts on Lanai SRAM into
the VM infrastructure provided by Linux and using 0O_DIRECT-type transfers, gmblock
is disk-type agnostic and can construct an efficient disk-to-network path regardless of
the underlying storage infrastructure, whether it is an IDE disk, a SATA disk, storage
accessible over Fibre Channel or even a software RAIDO device. The only requirement

is that a Linux driver capable of using DMA to service O_DIRECT transfers is available.

A different approach for bringing storage media closer to the cluster interconnect is
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READ? [CRUO03]. In READ?, the whole of the storage controller driver resides on the
Lanai processor itself, rather than in the Linux kernel. Whenever a request arrives from
the network, it is processed by the Lanai, which is responsible for driving the storage
hardware directly, thus bypassing the host CPU. However, removing the host CPU (and
thus the Linux kernel executing on top of it) from the processing loop completely, limits
the applicability of this approach to real-world scenarios for a number of reasons. First,
it disregards all the work devoted to developing stable in-kernel block device drivers;
for each different block device, its driver needs to be rewritten to run on the limited re-
sources of the Myrinet NIC, which provides none of the hardware abstraction layers of
the Linux kernel. Second, since one cannot have two different agents driving the same
storage controller without any coordination, the disk being shared is inaccessible by the
host system. As a result, no enforcement of per-user rights and no process isolation is
possible. Finally, even for short commands to the storage controller, the Lanai cannot
do PIO, but is instead forced to setup DMA transactions from and to the controller’s
I/O space. Thus, the latency of control operations becomes very high. The design of
gmblock does not seek to completely decouple the host CPU and host OS kernel from
network processing. Instead, it involves them at points where it is beneficial, i.e., dur-
ing the block transfer setup phase. The host CPU, with its very high clock frequencys, is
much better suited to program the storage controller with PIO than the Lanai. More-
over, the kernel provides all the different abstractions and facilities (block device layer,
device drivers, virtual memory subsystem, different privilege levels and more) which are

necessary for maintaining code portability, process isolation and memory protection.

Client-side optimizations

Regarding the client-side operation of our nbd system, a number of research efforts
have explored the performance of accessing distributed and parallel filesystems over
user level interconnects and the imposed overhead, which is mostly due to the need
for noncontiguous memory buffers in virtual and physical memory and the need for

memory pinning.

The work in [WWPO03, YP05] proposes client-side optimizations for userspace-based
access to parallel filesystems. PVES2 over Infiniband and PVFS2 over Quadrics are used

as case studies, respectively. The focus in [WWPO03] is on matching the semantics of
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PVFS non-contiguous I/O operations and the PVFS List-10 interface [CCKL™02] with
the capabilities of modern interconnects for zero-copy I/O. The work exploits RDMA
scatter/gather for noncontiguous access and proposes mechanisms to reduce the over-
head of Infiniband memory registration. Our approach employs a kernelspace block
driver, thus the kernel undertakes memory pinning and virtual-to-physical translation,

and the need for memory registration is eliminated.

The work on ORFA [GP04, GPG04] examines the client-side overhead of accessing a
distributed filesystem from userspace, over Myrinet. The authors begin with a userspace
implementation and study the performance of a pin-down cache which enables it to
use of GM’s user level networking facilities directly. They port their implementation
to kernelspace, to take advantage of kernel-provided client-side caching and encounter
problems similar to those described in Section 5.1.2 with regard to discontiguous phys-
ical memory buffers due to application usage of VM buffers. They propose extending
GM to support physical addresses directly, since the kernel is in the critical path. How-
ever, support is limited to contiguous physical memory, which limits the applicability
of this approach when transferring block data into the physically discontiguous page
cache, and prevents aggressive coalescing of I/O requests by the client-side I/O sched-
uler. Our proposed extensions support sender- and receive-side I/O to discontiguous
memory segments, in a single GM operation, with full NIC-based matching. Moreover,
the receive path supports random fragment placement during scatter list traversal, to

accommodate GM synchronized sends.
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Conclusions and future directions

SMP systems are commonly used as building blocks for scalable clustered platforms.
Resource sharing, which is inherent in such systems, can have significant performance
impact. For data-intensive workloads, as the number of cores and consequentially the
processing power per processor increases, the performance of the I/O subsystem be-

comes decisive to overall performance.

Based on these observations, this work focused on efficient, low-overhead data trans-
port mechanisms from mass storage devices to processing cores over the interconnec-
tion network, aiming for reduced CPU, memory and peripheral bus bandwidth pres-
sure. To this end, we employ features provided by modern DMA- and processor- en-

abled cluster interconnects.

To mitigate the impact of remote I/O on commodity storage servers, we proposed di-
rect data paths between storage media and the network, bypassing the host CPU and
memory bus. We presented gmblock, an nbd system over Myrinet which enables build-
ing such paths in a block-device independent manner, combining NIC-based memory
with the direct I/O capabilities of the host OS. Experimental evaluation of a prototype
implementation demonstrated that it delivered significant bandwidth improvement for

remote I/O, with minimal interference with computation on the local CPUs.

We proposed minor hardware modifications, namely the inclusion of small, fast mem-
ory areas close to the NIC, to make our approach applicable to interconnection tech-
nologies other than Myrinet. We argue that our approach enables the use of aggressive
power-saving techniques on low-power, low-frequency embedded storage servers, by

detaching the control and data paths and moving the bulk of data transfer off main
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memory.

We proposed synchronized send operations to enable processing of large I/O requests
on the direct disk-to-NIC path, with minimal host CPU involvement. Their opera-
tion allows for intra-request overlapping of disk- and network I/O, with multiple data

streams from RAID storage.

On the client side, we showed how exploiting NIC programmability to implement a stub
of the remote storage device enables end-to-end zero-copy data paths, directly from
remote storage to userspace buffers dispersed in physical memory. To the best of our

knowledge, this is the first such implementation.

Deployment of a parallel filesystem on top of gmblock showed gmblock can mitigate the
effect of resource contention and improve the performance of various real-life work-
loads, provided server-side I/O scheduling can sustain sufficiently high disk I/O per-

formance with multiple data streams.
In the following we discuss some directions for possible future extensions of this work.

Recent work in the field of storage servers [PFB09] has focused on I/O scheduling tech-
niques for multiple concurrent sequential data streams. Such techniques could be used
in conjunction with gmblock to improve disk efficiency, however they would need to

be adapted to work with limited on-NIC memory and to cache data on the client side.

Our work on gmblock has also highlighted a longer-term research goal; our view is that
part of the problem of limited memory and peripheral bus bandwidth arises from a
semantic gap between the host system OS and the actual underlying architecture. The
advent of modern cluster interconnects has brought programmable microprocessors
and fast memories residing far from the host CPU, on the peripheral bus, close to the
network. However, the OS design keeps a host-RAM-centric approach with regard to
I/0: All I/O operations, both at the kernel and at the user level, involve some sort of
“memory buffer”, or “staging area’, which is assumed to lie in host RAM. The design
of gmblock enables the use of memory onboard a peripheral device as the intermediate

buffer, thereby constructing the direct disk-to-NIC data path.

What is needed is for the OS to be made aware of this new situation. Our current ap-
proach constructs pageframes in the Linux VM subsystem for Myrinet SRAM areas, but

they are marked as reserved. Their use is to make direct-1/O operations possible, but
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the kernel is not responsible for managing them. A goal for future work is to enhance
the kernel so that it actually treats them as a separate memory space. This way, we may
restore the page cache in its place inside the I/O processing path; it will be distributed
between host RAM and PCI-mapped memory spaces provided by storage and network

devices.

The kernel’s allocation semantics can then be enriched so that an application, e.g., our
userspace nbd server, may provide hints as to what kind of usage can be expected from
a buffer to be allocated, e.g., specifying that a file or block device is to be mapped close to
the network. Moreover, the semantics of managing the page cache and the struct page
abstraction will need to be extended beyond the host CPU(s). Accessing and moving
pages will vary significantly depending on their position and copying pages may no
longer be the sole responsibility of the host CPU(s); DMA or copy engines closer to

their location will be able to do it much more efliciently.

At the architectural level, this can be made possible by having the devices export on-
board physical memory as PCI-mapped memory resources. This way, our Myrinet-
based implementation could have the Lanai DM Aing data directly into the cache of the
RAID controller so that they may referred to in a future write operation, without any

modifications to the controller’s host driver.

From a practical standpoint, one way to reach a prototype implementation of the system
being described is by using programmable NICs offering a separate PCI-X slot for at-
taching other storage and network devices, e.g., Intel IOP-based intelligent NICs. The
combination of DRAM on the intelligent NIC with a Myrinet adapter or a storage con-
troller, will provide the necessary functionality of having globally addressable memory

spaces close to the network or the storage medium.

Extending the Linux page cache mechanism so that it may span multiple, disjoint mem-
ory areas on different parts of a computing system can bring a number of significant

advantages:

o There are two distinct phases in servicing network block I/O requests: the first
comprises block data transfers between storage and NI memory, the second com-
prises block data transfers between NI memory and the network link. To con-

struct a direct path from/to storage, our current approach intertwines these two
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processes. Treating NI memory as fully-fledged memory in the VM subsystem
would enable the two processes to progress asynchronously with regard to each

other.

This improves the semantics of communicating with the kernel; it is now aware of
and may manage all of the available memory and use it to optimize block I/O with
the storage device. By uncoupling network I/O from local I/O, latency-hiding
techniques become possible, with the kernel reading ahead storage blocks into
pages yet untouched by network requests. Still, this happens over the short-circuit
data path. Similarly, destaging of data from NI memory to disk happens asyn-
chronously, with the kernel performing page flush operations as the available NI

memory decreases.

With direct I/O, server-side readahead is disabled, since the kernel is only aware
of the buffer involved in each individual I/O request. Restoring the page cache
enables the kernel to read ahead on the server side, while still moving data directly

over the peripheral bus.

The system can support a hierarchical organization of available memory spaces,
without any specific code provisions. When memory on the NI does not suffice,
the system may degrade gracefully to using buffer spaces oft the NIC. Initially it
may use buffers close to the NIC. Afterwards it may start to allocate pages residing
in host RAM. There is a tradeoff: we gain more cache space and are able to hold
a larger working set of blocks in memory, in exchange for gradual increase in

memory pressure on the host.
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