
HiPPIS: An Online P2P System for Efficient Lookups on
d-Dimensional Hierarchies

Katerina Doka
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

katerina@cslab.ntua.gr

Dimitrios Tsoumakos
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

dtsouma@cslab.ntua.gr

Nectarios Koziris
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

nkoziris@cslab.ntua.gr

ABSTRACT
In this paper we describe HiPPIS, a system that enables efficient
storage and on-line querying of multidimensional data organized
into concept hierarchies and dispersed over a network. Our scheme
utilizes an adaptive algorithm that automatically adjusts the level
of indexing according to the granularity of the incoming queries,
without assuming any prior knowledge of the workload. Efficient
roll-up and drill-down operations take place in order to maximize
the performance by minimizing query flooding. Extensive experi-
mental evaluations show that, on top of the advantages that a dis-
tributed storage offers, our method answers the large majority of
incoming queries, both point and aggregate ones, without flooding
the network. At the same time, it manages to preserve the hier-
archical nature of data. These characteristics are maintained even
after sudden shifts in the workload.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Systems and Software

General Terms
Design, Performance

Keywords
Distributed Hash Table, Data Warehousing, Concept Hierarchies

1. INTRODUCTION
As the volume of produced data increases, so do the require-

ments for efficient data processing by the various applications. In
both the business and the research domain, data are usually viewed
in the form of multidimensional arrays (or data cubes [8]). Data
cubes are characterized by their dimensions, which represent the
notions that are important to an organization for managing its data
(e.g., time, location, product, customer, etc) and the facts, which
are the numerical quantities to be analyzed (e.g., sales, profit, etc).
Data cubes allow for efficient summarization of data by reducing
the dimensions in the viewed data. However, data can be presented
in an even more fine-grained manner through the use of concept
hierarchies.

A concept hierarchy defines a sequence of mappings from more
general to lower-level concepts. For example, a simple hierarchy
for the location dimension could be: Address< ZipNo< City<
Country; and one for product: Product < Brand < Category.
Hierarchies allow users to view a given cube at different levels
of granularity: With the roll-up operation we climb up to a more
summarized level of the hierarchy, while a drill-down navigates to
lower levels of increased detail. The mappings of a concept hierar-
chy are usually provided by application or domain experts.

Data warehouses usually host immense volumes of historical
data and provide tools for their aggregation and management at
different levels of granularity. Yet, this is a strictly centralized
(in terms of data location and processing) and off-line approach
(views are usually calculated on a daily or weekly basis after the
operational data have been transferred from various locations). On
the other hand, there has been considerable work in sharing rela-
tional data using both structured (i.e. DHTs) and unstructured (i.e.,
Gnutella-style) Peer-to-Peer overlays (e.g., [9, 10, 13]). Neverthe-
less, no special consideration has been given to multidimensional
data supporting hierarchies. Specifically, we investigate the prob-
lem of indexing and querying such data in a way that preserves
the semantics of the hierarchies and is efficient in retrieving the
requested values, for both point and aggregate queries.

As a motivating scenario, let us consider a geographically dis-
persed business or application that produces immense amounts of
data such as a multinational sales corporation or a data-collection
facility that processes data from Internet routers. We argue for a
completely decentralized approach, where users can perform on-
line queries on the multiple dimensions, simple yet important min-
ing operations (such as roll-up and drill-down on the defined hi-
erarchies) and calculate aggregate views that return important data
summaries. Such an application, besides eliminating the central
storage and processing bottleneck and minimizing human coordi-
nation efforts, enables querying the data in real time, even if some
of the resources are unavailable.

Let us assume that the company’s database contains data orga-
nized along the location and product dimensions. In a plain DHT
system, one would have to choose a level of the suggested hier-
archy in order to hash all tuples to be inserted to the system and
repeat this for each dimension. Assuming the tuples are hashed ac-
cording to the city and category attributes, there will be a node
responsible for tuples containing the value Athens, one for Patras,
etc, as well as nodes responsible for Electronics, Household, etc.
This structure can be very effective when answering queries refer-
ring to the chosen levels of insertion (and even so, intersection of
tuples will be necessary), whereas queries concerning other levels
of the hierarchy demand global processing.

The solution of multiple insertion of each tuple by hashing every
hierarchy value of each dimension is not viable: As the number of
dimensions and levels increase, so does the redundancy of data and
the storage sacrificed for this purpose. Furthermore, while point
queries would be answered without global processing, this scheme
fails to encapsulate the hierarchy relationships: One cannot answer
simple queries, such as “Which country is Patras part of ” or “What
is the total revenue for ‘Electronics’ products anywhere sold”.

Contribution Summary Our work intends to describe a com-
plete system that enables storing and querying hierarchical data
in DHTs. The Hierarchical Peer-to-Peer Indexing System (HiP-
PIS) undertakes the task of storing and indexing bulk data in the
form of a fact table (see Table 1) to multiple sites over the net-
work. Peers initially index at a default (pivot) level combination.
Inserted tuples are internally stored in a hierarchy-preserving man-
ner. Query misses are followed by soft-state pointer creations so
that future queries can be served without re-flooding the network.
Peers maintain local statistics which are used in order to decide
if a re-indexing (to a different combination of hierarchy levels)
is necessary, according to the current query trend. If the ratio of
queries for country, brand exceeds a threshold (assuming the
pivot level is city, category), data would be re-indexed accord-
ing to that level combination so that most requests would be directly
answered. Besides answering point queries at different levels of
granularity, HiPPIS can answer group-by queries, such as “Give
me the sales registered for ‘Greece’ for ALL products”.

It has been widely observed that most Internet-scale applications,
including P2P ones, exhibit highly skewed workloads (e.g., [4,15],
etc). HiPPIS indexes popular levels and uses indices to answer
the less popular requests. It adapts to the incoming workload as a
whole, without assuming any prior knowledge of the data or work-
load distributions and without any precomputations on the data.
Our extensive simulations show that our system effectively adapts
the level of granularity of the indexing according to user requests.
HiPPIS achieves a high ratio of exact-match queries in a variety
of workloads, even when these change dynamically with time. We
show that our scheme is particularly efficient with highly skewed
data distributions which are frequently documented in the majority
of applications.

2. THE HIERARCHICAL PEER-TO-PEER
INDEXING SYSTEM

HiPPIS is a fully dynamic, self-adaptive protocol that can be ap-
plied over a P2P overlay in order to provide efficient mechanisms
for storing, indexing and querying hierarchical data. Our goals are
twofold: Efficient querying and preservation of the hierarchy se-
mantics. In this section, we first give the necessary notation to the
problem and then describe in detail the HiPPIS protocol: Data in-
dexing during insertion, query lookups and system adaptation to
the incoming queries.

2.1 Necessary Notation
Our data spawn the d-dimensional space. Each dimension i is

organized along Li +1 hierarchy levels: Hi0,Hi1, . . . ,HiLi , with Hi0
being the special ALL (∗) value. We assume that our database com-
prises of fact table tuples of the form:
〈tupleID,D11 . . .D1L1 , . . . ,Dd1 . . .DdLd , f act1, . . . , f actk〉, where
Di j,1 ≤ i ≤ d and 1 ≤ j ≤ Li is the value of the jth level of the ith

dimension of this tuple and f acti,0≤ i≤ k are the numerical facts
that correspond to it (we assume that the numeric values correspond
to the more detailed level of the cube). Our goal is to efficiently in-
sert and index these tuples so that we can answer queries of the
form: q = 〈q1,q2, . . . ,qd〉, where each query element qi can be a

Table 1: Sample fact table

Location Product Fact
TupleID Country City Zip Category Brand Sales
ID2 Greece Athens 16674 Electronics Apple 11,500
ID5 Greece Athens 15341 Electronics Sony 1,900
ID51 Greece Athens 15341 Electronics Philips 22,900
ID31 Greece Athens 16732 Household AEG 2,450
ID190 Greece Patras 19712 Household Unilever 1,990
ID324 Greece Athens 17732 Electronics Philips 2,450
ID501 Greece Athens 17843 Electronics Sony 12,000
ID712 Greece Athens 17843 Electronics Apple 32,000

AllAll

Greece

15341 17732 1784316674

Electronics

Sony Philips Apple

Athens

Pivot Level

ID5 ID51 ID324 ID712 ID501ID2

$22,900$1,900 $11,500 $2,450 $32,000 $12,000

Figure 1: Sample data stored at node responsible for
Athens,Electronics using the data of Table 1

value from a valid hierarchy level of the ith dimension, including
the ∗ value (dimensionality reduction): qi = Dix,0≤ x≤ Li.

2.2 Data Insertion
The insertion of a data tuple is performed as follows: Upon cre-

ation of the database, a combination of levels is globally selected.
This is called pivot level P = 〈p1, p2, . . . , pd〉 where each pivot ele-
ment pi can be a valid hierarchy level of the ith dimension (includ-
ing the special ∗ value): pi = Hiy,0≤ y≤ Li. The ID of each tuple
to be inserted is the hashed value of the tuple values corresponding
to the pivot level. The DHT then assigns each tuple to the node
with ID numerically closest to this value. For tuples inserted at a
later stage, nodes can be informed of the global pivot level from
one of their neighbors in the overlay.

Inserted data are stored in the form of trees that preserves their
hierarchical nature. Nodes store multiple forests, one for each d-
valued combination it is responsible for. As a consequence, each
distinct value of the pivot level combination corresponds to a forest
that reveals part of the hierarchy. Each forest consists of d rooted
trees, one for each dimension. To see this pictorially, let us refer
to the example depicted in Figure 1. Let us assume the data con-
tained in Table 1 and the hierarchy described in Section 1 (with-
out the last level of each dimension) with 〈city,category〉 as the
globally defined pivot level. The first tuple to be inserted is as-
signed an ID that derives from applying our hash over the value
‘Athens’||‘Electronics’ and forms a forest with two plain lists. As
data items with the same ID keep arriving at this node, different
values at levels lower in the hierarchy than the pivot level create
branches, thus forming a tree structure. The trees of a forest are
connected (in order to retrieve the corresponding facts) through the
tuple IDs, depicted as a linked list in Figure 1.

2.3 Data Lookup and Indexing Mechanism
Queries concerning the pivot level are defined as exact match

queries and can be answered within O(logN) forwarding steps.
Since we have included the ∗ as the top level of the hierarchy of

each dimension, the pivot level combination may include ∗ in any
of its d possible values. Therefore, assuming the query elements
qi = Dix and the respective pivot level elements pi = Hiy, the query
is an exact-match one if x = y in the case it comprises of exact
values or if pi = ∗. Queries on any of the other level combina-
tions cannot be answered unless flooded across the DHT. In order
to amortize the cost of this operation and facilitate such requests,
we introduce soft-state indices to our proposed structure. These in-
dices are created on demand, as soon as a query for non-pivot level
data is answered. After the answers from the corresponding nodes
are received through overlay flooding, the query initiator hashes
the value of the requested key and sends the IDs of the nodes that
answered the query to the node responsible for that key.

Soft-state indices give users the illusion that the queried val-
ues are actually hashed and retrieved in a fast manner. In reality,
O(logN) steps are required to locate the indices which are then used
to retrieve the multiple tuples required to compute the correct result
set. The number of indices followed depends on the query and the
pivot level: If the query attributes are of equal/smaller level than
the respective pivot level elements, only a single pointer will exist.
Otherwise multiple (the exact number depends on the data) pointers
need be followed.

The created indices are soft-state, in order to minimize the re-
dundant information. This means that they expire after a predefined
period of time (Time-to-Live or TTL), unless a new query for that
specific value is initiated, in which case, the index is renewed. This
mechanism ensures that changes in the system (e.g., data location,
node unavailabilities, etc) will not result in stale indices, affecting
its performance. While memory becomes a cheaper commodity by
the day, the plain size of data discourages an “infinite” memory al-
location for indices. After the number of created indices per node
has reached the limit Imax, the creation of a new index results in the
deletion of the oldest one. Calibrating Imax for performance with-
out increasing it uncontrollably entails knowledge of our data (e.g.,
how skewed each hierarchy is, etc).

Summarizing, we can categorize the queries that can be posed to
the system into exact match ones and those that require forward-
ing to more than a single node. The latter can be answered either
through flooding or using the soft-state indices. In any case, we as-
sume that the computation of the correct fact values is done locally
through addition of the returned numeric values.

Let us assume the same hierarchy as before, with 〈city, category〉
as the pivot level. When querying for 〈‘16674’,‘Apple’〉, we dis-
cover that no such key exists in the DHT. Flooding is performed
and the node ‘Athens’||‘Electronics’ answers with the correspond-
ing tuple. The initiator, which now knows the ID of the node
that answered the query, forwards it to the node responsible for
the value ‘16674’||‘Apple’ which now has an index pointing to the
node ‘Athens’||‘Electronics’.

The same procedure takes place when the query concerns a value
that lies higher in the hierarchy than the pivot level. The query for
〈‘Greece’, ∗〉 is routed to the node responsible, where no answer is
available. Flooding is performed and the nodes that contain rele-
vant tuples are discovered. Finally, the data satisfying the query are
returned to the initiator and multiple indices are built. Both these
cases are shown pictorially in Figure 2, where the black nodes are
the ones that store the actual data, whereas the nodes holding point-
ers are depicted in gray.

2.4 Reindexing operation
HiPPIS is adaptive to the query distribution, supporting dynamic

changes in the pivot level, without assuming any prior knowledge
and solely based on locally maintained statistics. By shifting to a

Greece||*

Larissa||Electronics

16674||Apple

Athens||ElectronicsPatras||Household

Figure 2: Example of soft-state index creation using our run-
ning example
Algorithm 1 HiPPIS Reindexing Algorithm

P: current pivot level combination
popularityci : popularity of level combination ci
Clocal : c0 < c1 < .. . < cmax ranked level combinations according
to local popularity
if popularitycmax - popularityP > threshold then

flood(SendStatsMessage) and collect global statistics
Cglobal : c0 < c1 < .. . < cmax ranked level combinations ac-
cording to global popularity
calculate ∆

threshold← k ·∆
if popularitycmax -popularityP > threshold then

determine new pivot level Pnew
if Pnew = P then

no action taken
else

flood(ReindexingMessage(Pnew))
P← Pnew
rehashing of tuples

end if
end if

else
no action is taken

end if

different level combination we aim at increasing the ratio of exact-
match queries, reducing floodings and boosting performance. The
exact procedure is presented in Algorithm 1.

If the number of queries initiated by a node regarding level com-
binations different than the pivot level exceeds the number of queries
for the pivot level by some threshold, this node considers the pos-
sibility of a new partitioning. Each node determines the popularity
of each level combination (∏d

i=0 Li exist) by measuring the number
of queries it has locally initiated within the most recent time-frame
W. This time-frame should be properly selected to perceive varia-
tions of query distributions and, at the same time, stay immune to
instant surges in load. If the percentage of the queries on the most
popular level combination cmax is more than threshold% of the re-
spective pivot level popularity, the node is positive to the potential
of adopting another pivot level. This step is used as an indication
of an imbalance that should be further investigated.

If this is the case, the reindexing enters its second phase, in which
the local intuition must be confirmed (or not) using global statistics.
The node whose local information indicates a possible shift of the
pivot level sends a SendStats message to all system nodes. The ini-
tiator, after collecting the statistics from all nodes, redefines cmax
and repeats the aforementioned procedure, enhanced with a strat-
egy for the optimal pivot level selection, thoroughly described in
the next section. In case of a new pivot level selection, reindexing
is performed respectively by all nodes.

The initiating node floods a Reindex message, to force all nodes
to change their pivot level. Each node that receives this message
traverses its tuples, finds all the values of the level combination
that will constitute the new reference point and rehashes them one
by one, sending the tuples to the corresponding nodes. Assuming
that the size of the dataset |D| � N2, N being the size of the net-
work, the preferred method to perform this is to send at most N−1
messages per node, grouping the tuples by recipient. After the node
completes the procedure, it erases all its data and indices.

2.5 Locking
In order to ensure the correctness of the answers during the Rein-

dexing process and to avoid simultaneous Reindexings by multiple
nodes, we introduce a locking mechanism. After a node finally
decides to perform Reindexing according to the global statistics,
it sends a Lock message to all nodes of the system and then pro-
ceeds to the Reindexing. Once a node receives the Lock message,
it changes its state to LOCKED and maintains it for a predefined
period of time (related to the size of the system), which we assume
is adequate to cover the time needed for the whole system to finish
the Reindexing process and to reach a stable state. During this time,
all queries are answered through flooding and no other operation is
allowed.

2.6 Updates
Tuple updates are normally performed through an update of the

tuple’s measures at the corresponding node. One open issue relates
to the insertion of new tuples in the system. While hashing accord-
ing to the current pivot level and storing the new item is trivial,
there may exist indices that need to be updated since the new tuple
must be included in the result set of various queries. As an exam-
ple, consider an inserted tuple that documents sales of electronics
in a new Greek zip code. An existing index for q = 〈‘Greece’,
‘Electronics’〉 should now include the ID of the node responsible
for the new tuple. Since the creation of an index may be followed
by one or more index deletions at the creating node (due to space
constraints), the inserting node cannot know of the existence or not
of an index relative to the new tuple a priori. This can be resolved
in a variety of ways, according to the level of consistency that we
require from our system. We distinguish the following two cases:
• Weak consistency – allow for some incomplete answers: Nodes
periodically append the inserted tuples to a globally known loca-
tion. Index-holding peers can then, asynchronously, retrieve this
directory and update the required indices.
• Strong consistency – require complete answers: After each in-
sertion, the node performs ∏

d
i=0 Li− 1 lookups to identify the ex-

istence of all possible index combinations. Each node that holds a
corresponding combination will update its value.

3. DISCUSSION – ENHANCEMENTS
In this section we discuss some important aspects of HiPPIS that

relate to its parameters as well as optimization issues.
Memory requirements A node running HiPPIS requires space

for the combination statistics (O(∏d
i=0 Li) modulo the window W)

plus the storage required for the soft state indices. Each created
index for a specific key holds, besides the key itself and its time
of creation, the IDs of the nodes that hold the relative tuples. The
number of different IDs is bound by the size of the network N.
Hence, if Kmax the maximum number of non-pivot keys held by a
node, each node requires O(NKmax) bytes. Note here that in this
calculation we have not included the amount of space reserved for
the data at each node (which are usually not stored in main mem-
ory). Nodes can either physically store the data or pointers to their
original locations. Whichever the case, the amount of space per

forest depends on the pivot level (besides the data distribution of
course): The higher the hierarchy levels in P, the larger the number
of tuples that correspond to each tree.

Parameter Selection A careful choice of the TTL, W, Kmax pa-
rameters plays an important role in the performance of the system.
A small TTL degrades the success ratio of the search mechanism,
invalidating indices unnecessarily. Assuming the rate at which par-
ticipating peers delete their data or disconnect is small (a reason-
able assumption for our motivating application), a large value for
TTL will not create a stale image that fails to reflect the infrequent
changes.

The window parameter W represents the number of previous
statistics that each node stores and uses in order to decide a pivot
level change. A large value for W will fail to perceive load vari-
ations, whereas a very small value will possibly lead to frequent
erroneous or conflicting reindexing decisions. In order to estimate
its value, we set W= O(1/λ), i.e., we connect the size of the win-
dow with the query interarrival time. The more frequent the re-
quests, the smaller W can be and vice versa. Finally, regarding the
total amount of memory dedicated per node, this is dominated, as
we mentioned before, by the maximum number of non-pivot keys
Kmax that a node is responsible for (thus holds indices pointing to
the relevant nodes). Assuming a (very optimistic) value of N = 1K
nodes for our application and that IDs and keys need 20 bytes (as
outputs of SHA1 hash function), a node that will be responsible for
1K different keys will need at most 20MB of memory while for
10K keys a node will need at most 200MB of memory (certainly
affordable by most modern desktop PCs).

Reindexing cost and Load Balancing Reindexing is a costly
procedure, as it requires network flooding for the collection of statis-
tics and the consecutive re-insertion of tuples. The latter dominates
the complexity of the reindexing process which requires Ω(N2)
messages. Therefore, it is important to ensure that our gains from
reducing query floodings outweigh this cost.

Furthermore, following our previous discussion, there is a clear
trade-off between the amount of space per forest (via the choice
of the pivot level) and the amount of processing corresponding to
each node: The higher the pivot level, the more requests are han-
dled through a single node. In this work, we do not deal with the
load-balancing problem (caused either by uneven load or data dis-
tribution), as this is orthogonal and can be handled in a variety of
well-documented ways in a DHT (e.g., [7, 14]). Nevertheless, for
our target applications, we believe that an uneven data distribution
is unlikely: The number of participating peers is not expected to be
very high so that a uniform hashing of the existing combinations
even at the highest levels will result in a uniform data distribution.

Minimize Reindexing Operations In order to minimize the num-
ber of occasions where global statistics are collected due to nodes
interested in suboptimal levels or malicious users, we define the
intervaln parameter for each node n. This parameter defines the
minimum time-stretch between two consequent checks that can be
initiated by n and coincides with the frequency of n checking its
statistics. Its initial value Ts is the same for all nodes: intervaln ≥
Ts. In order to discourage consecutive reindexing attempts from the
same node, this parameter is multiplicatively increased when the
processing of global statistics (per p’s indication) conclude in dif-
ferent results or in a no-change decision (i.e., intervaln = 2Ts,4Ts,
etc). Each time a SendStats message is flooded over the network,
interval is reset to the maximum between the current value and Ts,
regardless of the outcome (whether Reindexing is decided or not).

Threshold Selection The threshold is of vital importance for
the efficiency of the system, and should therefore be carefully de-
termined in order to avoid unnecessary reindexing decisions. Fre-

quent index reorganizations should be avoided, yet beneficial rein-
dexing should not be prevented. The node having initiated the col-
lection of global statistics calculates the popularity of each level
combination, that is, the percentage of queries concerning that spe-
cific level combination, and ranks them according to this metric
(C : c0 < c1 < .. . < cmax). The overall query distribution should
be taken into account as well, since it is possible that the system
profits by choosing some less popular combination than cmax. This
conclusion derives from the following observations:
• Remaining at the current pivot level spares the reindexing pro-
cess as well as the invalidation of the so far created indices.
• A ∗ subsumes all levels of a dimension’s hierarchy, since queries
for other levels can be answered from the ALL data stored: For ex-
ample for a pivot level P = 〈H11,∗〉 all queries q = 〈D11,q2〉 can
be answered (with q2 being any possible value from any level of
dimension 2).

The pivot choice is shaped as follows: The level combinations
that lie within threshold from cmax are considered as pivot can-
didates. More formally, {∀ci ∈ C,0 ≤ i ≤ max | popularitycmax -
popularityci < threshold =⇒ ci ∈Ccand}, where Ccand is the set of
candidate level combinations.

The threshold value is proportional to the Mean Difference (∆)
of the popularity values, in particular threshold=k∆, k ≤ 1. The
parameter ∆, which equals the average absolute difference of two
independent values, is chosen as a measure of statistical dispersion:
∆ = 1

max·(max+1) ∑
max
i=0 ∑

max
j=0 |ci−c j|. Among all ci ∈Ccand , the new

pivot level is chosen through the following strategy:
1. If the current level P ∈Ccand , the system takes no action.
2. Otherwise, from all c∈Ccand containing ∗ in one or more di-

mensions, we consider only combinations that include up to
dD

2 e ones and exclude the rest. This is in order to ensure that
no excessive local processing will be needed for incoming
queries. For each of the remaining combinations contain-
ing ∗, we recalculate their popularity adding the popular-
ity of other candidate combinations that are subsumed by it.
For instance, let us assume 〈Country,Brand〉,〈City,∗〉 and
〈∗,Brand〉 are the candidate pivot levels, with popularities
of 10%, 20% and 15% respectively. Comparing the two lev-
els with ∗, 〈∗,Brand〉 can answer 〈Country,Brand〉 queries,
thus its popularity rises to 25%, and is therefore chosen over
〈City,∗〉 as the new pivot combination.

3. If none of the above holds, the system shifts to the level com-
bination with the highest popularity.

4. EXPERIMENTAL RESULTS
We now present a comprehensive simulation-based evaluation of

HiPPIS. Our performance results are based on a heavily modified
version of the FreePastry simulator [6], although any DHT imple-
mentation could be used as a substrate. By default, we assume a
network size of 256 nodes. Results were collected with up to 1K
nodes with little qualitative difference.

In our simulations, we use synthetically generated data. Each
dimension is represented as a tree with each value having a sin-
gle parent and at most mul children in the next level. The tuples
of the fact table to be stored are created from combinations of the
leaf values of each dimension tree plus a randomly generated nu-
merical fact (sales). By default, our data comprise of 22k tuples,
organized in a 3-dimensional, 3-level hierarchy. The number of
distinct values of the top level is |H1| = 20 and mul=2. The initial
pivot level is, by default, P = 〈H12,H22,H32〉.

For our query workloads, we consider a two-stage approach: we
first identify the probability of querying each level combination ac-
cording to the levelDist distribution; a query is then chosen from

Table 2: Percentage of queries directed towards the 27 level
combinations of our initial simulation

θ % most popular % least popular #combs
0 3.7 3.7 27

0.5 11.1 2.1 27
1.5 44.8 0.3 27
2.5 74.9 0.01 27
3.5 88.8 0.01 12

that combination following the valueDist distribution. In our ex-
periments, we order the different combinations lexicographically,
i.e., combination 〈H13,H21,H31〉> 〈H11,H23,H33〉 and we use the
Zipfian distribution for levelDist where #queries for combination
i ∼ 1/iθ. We vary the value of θ as well as the direction of the or-
dering to control the amount and target of skew of our workloads.
For valueDist we use the 80/20 rule by default, unless stated other-
wise. Table 2 gives an overview of the workloads we frequently use
in this section. We document the percentage of queries directed to-
wards the most and least popular combination, as well as the num-
ber of combinations that receive at least one query (out of the total
27 existing).

Our default workload comprises of 35k queries which arrive at
an average rate of 1 query

sec . For our experiments, W is set to 500sec
and TTL is given a practically infinite value (indices never expire).

In this section, we intend to demonstrate the performance and
adaptability of HiPPIS under various conditions. To that direction,
we measure the percentage of queries which are answered directly,
i.e., without flooding (precision) and we trace the average number
of exchanged messages per query, as well as the overhead of con-
trol messages needed by our protocol. We compare HiPPIS with
the naive protocol (referred to as Naive), where precision equals
the ratio of queries on the initial pivot level, and a special case of
HiPPIS, where only the indices are utilized and no reindexing oc-
curs (referred to as HiPPIS(N/R) or plain N/R).

Performance with varying query distributions
In this initial set of simulations, we vary the θ parameter for lev-
elDist as well as the direction of skew, using the default parameters
otherwise.

In Figure 3, data are skewed towards the “lowest” level
(〈H13,H23,H33〉). As θ increases, the workload becomes more
skewed and the performance of HiPPIS improves: Reindexing is
performed sooner, as the ratio of popular queries increases, result-
ing in a rise of the exact matches due to the chosen combination.
Moreover indices contribute more to system’s precision, since the
number of distinct queries for non pivot level tuples decreases. For
uniform distributions, the number of distinct queries does not allow
our method to capitalize on the indexing scheme.

Figure 4 shows results where our workload favors 〈H11,H21,H31〉.
Again, we notice a similar trend in performance as the values for θ

increase. Nevertheless, HiPPIS is slightly more effective than be-
fore, with its difference from N/R increasing as θ increases. This
is due to the limited number of distinct values of 〈H11,H21,H31〉,
which facilitates the maintenance of indices, favoring N/R against
HiPPIS. The latter erases all created indices during the reindexing
process. However, HiPPIS naturally outperforms its competition in
the steady state, as it can increase its performance with time.

Figures 5 and 6 depict the number of messages exchanged per
query in the system, indicating a measure of bandwidth consump-
tion. Messages regarding query resolution (including requests as
well as responses) and control messages, which include those needed
to build indices, collect statistics, notify of a Reindexing and rein-
sert tuples, are presented separately. Qualitatively, the total num-
ber of messages per query is inversely proportional to the system’s

0 0.5 1.5 2.5 3.5
theta

20

40

60

80

100
Pr

ec
is

io
n

(%
)

HiPPIS
HiPPIS(N/R)
Naive

Figure 3: Precision for vary-
ing levels of skew (most
popular combination is
〈H13,H23,H33〉)

0 0.5 1.5 2.5 3.5
theta

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HiPPIS
HiPPIS(N/R)
Naive

Figure 4: Precision for vary-
ing levels of skew (most
popular combination is
〈H11,H21,H31〉)

0 0.5 1.5 2.5 3.5
theta

0

50

100

150

200

250

of

 m
es

sa
ge

s
pe

r
qu

er
y

HiPPIS
N/R
HiPPIS control
N/R control

Figure 5: Average number
of messages required to an-
swer a query (skew towards
〈H13,H23,H33〉)

0 0.5 1.5 2.5 3.5
theta

0

50

100

150

200

250

of

 m
es

sa
ge

s
pe

r
qu

er
y

HiPPIS
N/R
HiPPIS control
N/R control

Figure 6: Average number
of messages required to an-
swer a query (skew towards
〈H11,H21,H31〉)

precision. As observed in all experiments, the overhead of con-
trol messages is small and outweighed by the gains in precision
(less than 8% over the total number of messages). This is due to
the fact that HiPPIS carries out the minimum required reindexing
rounds, which translates to one reindexing process per direction of
skew. We also notice that the overhead of the control messages
decreases as the workload becomes more skewed (almost negligi-
ble for θ > 1.5). This can be explained by the fact that HiPPIS
becomes more confident in the level of reindexing it chooses as θ

increases. Finally, we calculated that one HiPPIS reindexing equals
less than 100 queries answered by flooding (in the number of mes-
sages needed for these two operations). Given that we only per-
form the necessary reindexing and less than 5 SendStats requests
are produced per simulation, our method makes near-optimal use
of its bandwidth-intensive operations.

Effect of recurring queries
We plan to identify the effectiveness of our system’s indexing mech-
anism under workloads with varying ratio of recurring queries. We
believe that this will be the case for the majority of workloads for
our target applications, with users temporarily interested in a small
number (or set) of (aggregate) data. We consider two different sce-
narios for the distribution of the duplicate queries. In the first case,
for two levels of skew (θ = {1.0,3.0}), we vary the percentage of
unique queries by increasing duplicate ones, following the same
distribution. In the second case, for three different values of θ for
levelDist, namely 0.0, 1.0 and 3.0, the valueDist distribution varies
from uniform to 99/1, creating within each level combination the
same amount of skew. The documented precision for both cases is
depicted in Figures 7 and 8 respectively.

In both cases we notice that, as more queries recur in the work-
load, the performance increases. In the first case, recurring queries
follow the levelDist distribution, meaning that duplicate queries
primarily concern the most popular level combinations. Since HiP-
PIS reindexes to the most beneficial level, it naturally increases its
exact answers compared to N/R. Nevertheless, the gains decrease
as replication increases, unlike N/R, which shows almost linear im-
provement. This is due to the fact that there exists less “room” for
HiPPIS to take advantage of the indexed queries since it has al-
ready moved to the best combination which takes up significantly
more requests. As θ increases, we normally expect an increase in
performance.

In the second case (Figure 8), as the bias of queried values within
a level combination increases, we observe that our system benefits
more and more from the soft-state indices, exploited by duplicate
queries. Small replication in queries results in significant differ-
ences in precision for the various θ values, as for these kinds of
workloads precision is dominated by exact matches. Nevertheless,
all three distributions seem to converge to very high precision lev-
els as the ratio of duplicate queries augments.

The effect of aggregate queries
In this experiment we intend to examine how our system behaves
when we inject an increasing number of aggregate queries (from
zero up to 50% of the total number of queries). We assume two
different distributions as to how ∗ are distributed in those queries:
In scenario 1 (S1), a ∗ appears in the three dimensions with prob-
abilities (0.73, 0.18, 0.09) respectively (i.e., we heavily favor an
aggregate view on the first dimension). In the second one (S2),
each dimension is given an equal probability. The workload skew
is set to θ = 2.0. Results are presented in Figure 9.

We notice that both methods increase in performance as the per-
centage of aggregate queries increases in both distributions. This is
due to the fact that the different combinations that these queries can
produce are less than those of point queries. Therefore, increasing
their ratio enables the indexing mechanism to store and answer a
larger amount or requests without flooding. This is evident from
N/R’s precision increase. In the latter case, the reindexing process
invalidates all created indices, thus mitigating the beneficial effect
we described before. Furthermore, the skew in the star distribu-
tion affects, although slightly, the system’s precision: greater skew
leads to greater probability of duplicate queries, favoring the in-
dexing mechanism. Since HiPPIS is less dependent on this mecha-
nism, the increase in precision is less noticeable than in the case of
HiPPIS(N/R).

Performance in dynamic environments
In the next experiment, we measure the performance and adaptivity
of HiPPIS in dynamic environments, namely sudden changes in the
workload. We tailor our query distribution so that a sudden change
occurs in the middle of the simulation (tc = 31000sec): From a
skewed workload towards 〈H13,H23,H33〉we shift to a skewed load
towards 〈H11,H21,H31〉. We show the results for two levels of skew
in Figure 10.

Our results show that, in all cases, HiPPIS quickly increases its
precision due to the combination of automatic reindexing and soft-
state indices. Floodings increase after tc, since neither the pivot
combination nor the so far created indices can efficiently serve
queries with different direction of skew (hence the decline in pre-
cision). However, it quickly manages to recover and regain its per-
formance characteristics, as a Reindexing is performed and new in-
dices are built. The rate at which these events occur depends on the
amount of skew: In the θ = 3.0 case, we show remarkable increase
in precision (starting from the plain data-insertion at t = 0sec), fast
recovery after the change in skew and convergence to almost 100%
precision. For the less skewed distribution (θ = 1.0), the results
record a slight deterioration in the rate of convergence as well as a
decline in precision from the change in skew. The decline ranges
from less than 30% in the θ = 3.0 case to about 40% in the worst-
case. Once again, we observe that HiPPIS performs best in skewed
workloads, but its performance in the steady state is invariably high,
regardless the workload.

0 10 30 50 70
% duplicate queries

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HiPPIS (theta=3.0)
HiPPIS (theta=1.0)
HiPPIS(N/R) (theta=3.0)
HiPPIS(N/R) (theta=1.0)

Figure 7: Precision over variable per-
centage of duplicate queries

Uniform
80/20

90/10
99/1

valueDist

20

40

60

80

100

Pr
ec

is
io

n
(%

)

theta=3.0
theta=1.0
uniform

Figure 8: Precision for various distribu-
tions of valueDist

0 10 17 30 38 50
% aggregate queries

20

30

40

50

60

70

80

Pr
ec

is
io

n
(%

)

HiPPIS (S1)
HiPPIS (S2)
HiPPIS(N/R) (S1)
HiPPIS(N/R) (S2)

Figure 9: Precision over variable num-
ber and skew of aggregate queries

8000 16000 24000 32000 40000 48000 56000
Time (sec)

0

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HiPPIS (theta=3.0)
HiPPIS (theta=1.0)

Figure 10: Precision over time for var-
ious workloads when a sudden shift in
skew occurs in tc = 31000sec

2 4 6 8
#dimensions

20

40

60

80

100

Pr
ec

is
io

n
(%

) HiPPIS (theta=3.0)
HiPPIS (theta=1.0)
N/R (theta=3.0)
N/R (theta=1.0)

Figure 11: Precision over variable di-
mensionality datasets

1000 2000 3000 4000
Imax

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

is
io

n
(%

)

HiPPIS (theta=3.0)
HiPPIS (theta=1.0)
HiPPIS(N/R) (theta=3.0)
HiPPIS(N/R) (theta=1.0)

Figure 12: Precision over variable Imax

4000 8000 12000 16000 20000 24000
Time (sec)

0

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HiPPIS
HiPPIS(N/R)

Figure 13: Precision of HiPPIS for the one APB query work-
load

Testing HiPPIS with different number of dimensions
In this set of simulations we plan to investigate the possible perfor-
mance variations caused by datasets with variable dimensionality.
We assume that each dimension is described by a 3-level hierarchy.
By varying the mul parameter we try to create equal-size data and
query-sets with the same θ value. Figure 11 depicts the results for
2 to 8 dimensions for two different values of θ: 1.0 and 3.0.

As the number of dimensions increases linearly, the number of
combinations increases exponentially. This radically the popular
levels’ request rates, especially for less skewed workloads, thus re-
ducing the number of exact match queries for the level combina-
tion HiPPIS chooses. This becomes obvious when θ increases: the
slope becomes more parallel to the dimension axis. HiPPIS ranges
between 40% and 70% in the low skew case while for bigger skew
this becomes 80% to 93%. A pure indexing scheme solely relies
on the duplicate queries and (to a lesser extent) to the exact match
queries of the random pivot level, thus producing poor results.

The effect of the Imax parameter
The value of the Imax parameter is very important as it specifies
the maximum number of different non-pivot values that a node can
index, and thus defines, as described earlier, the memory require-

ments of each node. The effect of the Imax parameter on the sys-
tem’s precision is examined in this set of experiments, where its
value varies from 0 to 4000 for the standard workload, for two lev-
els of skew, θ = {1.0,3.0}, directed towards 〈H13,H23,H33〉. Re-
sults are depicted in Figure 12.

The system performance improves as Imax increases for all work-
load skews. As the number of indices increases, more queries can
be answered using this mechanism. There exists a point Ithres,
beyond which no significant improvement is observed. The Ithres
value as well as the documented slope strongly depend on the data
and query workloads. For the less skewed workload, the Ithres value
is larger since more distinct values are requested, thus HiPPIS re-
lies more on indices to improve its performance. In more skewed
workloads HiPPIS tracks the optimal pivot level sooner and shifts
to it, hence less space dedicated to indices is necessary to achieve
high performance. Finally, it is worth noticing that the more bi-
ased the workload, the lower the performance gains. This is due
to the fact that a greater θ value results in more duplicate queries,
thus in fewer distinct keys that need to be indexed. The dominant
performance mechanism in these cases is the indexing level.

Given this analysis, a value of Imax = 2k indices is deemed ade-
quate, ensuring that the majority of the created indices will remain
in the system. This heavily favors the N/R method, since HiPPIS
discards all indices each time a reindexing occurs. With this value,
used in all this experimental section, each node needs to dedicate
at most 100KB of main memory for the soft-state indices.

APB Benchmark Datasets
Finally, we test the performance of HiPPIS using some more re-
alistic data and query sets generated by the APB-1 benchmark [3].
Running the APB-1 data generator with the density parameter set to
0.1, we produced a 4-dimensional dataset with cardinalities 9000,
900, 9 and 24 and two measure attributes. Each dimension com-
prises of a hierarchy of 7, 4, 2 and 3 levels respectively. The

produced data-cube contains 1,239,300 tuples, while the produced
workload comprises of 25k queries (queries with ∗ were filtered
out from the original query workload) with 1% replication ratio.
Results are depicted in Figure 13.

We clearly notice that HiPPIS exhibits very high performance,
reaching over 90% of precision in its steady state after about 4000
queries. This experiment shows that for more realistic scenarios,
even with more dimensions HiPPIS quickly adapts and serves the
vast majority of user requests without flooding. Using plain indices
reduces precision by over 20%, while there is a substantial delay in
reaching the steady state (twice as many queries needed).

5. RELATED WORK
There has been significant work in the area of databases over

P2P networks. PIER [9] proposes a distributed architecture for re-
lational databases supporting operators such as join and aggrega-
tion of stored tuples. A DHT-based overlay is used for query rout-
ing. The Chatty Web [1] considers P2P systems that share (semi)-
structured information but deals with the degradation, in terms of
syntax and semantics, of a query propagated along a network path.

In GrouPeer [10], SPJ queries are sent over an unstructured over-
lay in order to discover peers with similar schemas. Peers are grad-
ually clustered according to their schema similarity. PeerDB [13]
also features relational data sharing without schema knowledge.
Query matching and rewriting is based on keywords provided by
the users. GridVine [2], and pSearch [17] are based on structured
P2P overlays. GridVine hashes and indexes RDF data and schemas,
and pSearch represents documents as well as queries as semantic
vectors. All these approaches offer significant and efficient solu-
tions to the problem of sharing structured and heterogeneous data
over P2P networks. Nevertheless, they do not deal with the special
case of hierarchies over multidimensional datasets.

An interesting method applied on unstructured networks contain-
ing XML documents in order to favor the routing of path queries
is presented in [11]. Each XML document is represented by an
unordered label tree and bloom filters are used to summarize it.

Several indexing schemes have been presented for storing data
cubes (e.g., [12, 18]). However, only few support both aggregate
queries and hierarchies. In [16], hierarchies are exploited to enable
faster computation of the possible views and a more compact repre-
sentation of the data cube. The Hierarchical Dwarf contains views
of the data cube corresponding to a combination of the hierarchy
levels. The other approach is the DC-Tree [5]. In this work, one
concept hierarchy is stored per dimension and an ID is assigned to
every attribute value of a data record that is inserted. These ap-
proaches are very efficient in answering both point and aggregate
queries over various data granularities but do so in a strictly cen-
tralized and controlled environment.

6. CONCLUSIONS
In this paper we described HiPPIS, a distributed system that

stores and indexes data organized in hierarchical dimensions for
DHT overlays. HiPPIS, assuming no prior knowledge of the work-
load nor any precomputations, enables on-line queries on the dif-
ferent dimensions and granularities of the data. Our system dy-
namically adjusts to the workload by reindexing the stored data
according to the incoming queries. With the combination of adap-
tive indexing and soft-state pointers, HiPPIS manages to avoid the
network-disastrous flooding in most cases, while enabling both real-
time querying and update capabilities on voluminous data.

Our simulations, using a variety of workloads and data distribu-
tions, show good performance and bandwidth efficiency. HiPPIS
is especially effective with skewed workloads, achieving very high
precision and fast adaptation to dynamic changes in the direction of

skew. Even with low query replication ratios, HiPPIS manages to
answer the majority of queries within O(logN) steps, by detecting
the most popular level combination and shifting to it. Moreover,
a significant increase in the number of aggregate queries does not
degrade system performance, but on the contrary, leads to higher
precision.
Acknowledgments
This work was partly supported by the European Commission in
terms of the GREDIA FP6 IST Project (FP6-34363) and partly by
the Greek Secretariat of Research and Technology (GSRT) in terms
of the GREED project (EHG-89).

7. REFERENCES
[1] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. The Chatty

Web: Emergent Semantics Through Gossiping. In WWW
Conference, 2003.

[2] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. V. Pelt.
Gridvine:Building internet-scale semantic overlay networks.
In International Semantic Web Conference, 2004.

[3] APB-1 OLAP Benchmark. http://www.olapcouncil.org/.
[4] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. I

tube, you tube, everybody tubes: analyzing the world’s
largest user generated content video system. In IMC ’07:
Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, 2007.

[5] M. Ester, J. Kohlhammer, and P. Kriegel. The dc-tree: A fully
dynamic index structure for data warehouses. In ICDE, 2000.

[6] FreePastry. http://freepastry.rice.edu/freepastry.
[7] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and

P. Keleher. Adaptive Replication in Peer-to-Peer Systems. In
ICDCS, 2004.

[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Min. Knowl. Discov.,
1(1):29–53, 1997.

[9] R. Huebsch, J. Hellerstein, N. Boon, T. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In VLDB, 2003.

[10] V. Kantere, D. Tsoumakos, and T. Sellis. GrouPeer: Dynamic
Clustering of P2P Databases. Information Systems, 2008.

[11] G. Koloniari and E. Pitoura. Content-based routing of path
quieries in peer-to-peer systems. In EDBT, 2004.

[12] L. Lakshmanan, J. Pei, and Y. Zhao. QC-trees: An Efficient
Summary Structure for Semantic OLAP. In SIGMOD, 2003.

[13] B. Ooi, Y. Shu, K. Tan, and A. Zhou. PeerDB: A P2P-based
System for Distributed Data Sharing. In ICDE, 2003.

[14] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication,
Load Balancing and Efficient Range Query Processing in
DHTs. In EDBT, 2006.

[15] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer
systems and implications for system design. IEEE Internet
Computing Journal, 6(1), 2002.

[16] Y. Sismanis, A. Deligiannakis, Y. Kotidis, and
N. Roussopoulos. Hierarchical dwarfs for the rollup cube. In
DOLAP, 2003.

[17] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks. In
SIGCOMM, 2003.

[18] W. Wang, H. Lu, J. Feng, and J. Yu. Condensed Cube: An
Effective Approach to Reducing Data Cube Size. In ICDE,
2002.

