
Load Balancing Hybrid Programming Models for SMP Clusters and Fully
Permutable Loops

Nikolaos Drosinos and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

{ndros, nkoziris}@cslab.ece.ntua.gr

Abstract

This paper emphasizes on load balancing issues associ-
ated with hybrid programming models for the paralleliza-
tion of fully permutable nested loops onto SMP clusters.
Hybrid parallel programming models usually suffer from
intrinsic load imbalance between threads, mainly because
most existing message passing libraries generally provide
limited multi-threading support, allowing only the master
thread to perform inter-node message passing communica-
tion. In order to mitigate this effect, we propose a generic
method for the application of static load balancing on the
coarse-grain hybrid model for the appropriate distribution
of the computational load to the working threads. We ex-
perimentally evaluate the efficiency of the proposed scheme
against a micro-kernel benchmark, and demonstrate the po-
tential of such load balancing schemes for the extraction of
maximum performance out of hybrid parallel programs.

1 Introduction

Distributed shared memory (DSM) architectures, such as
SMP clusters, have dominated the high performance com-
puting domain by providing a reliable, cost-effective so-
lution to both the research and the commercial communi-
ties. An immediate consequence stemming from the emer-
sion of this new architecture is the consideration of new
parallel programming models, which might exploit the un-
derlying infrastructure more efficiently. Currently, mes-
sage passing parallelization via the MPI library has become
the de-facto programming approach for the development of
portable code for a variety of high performance platforms.
Although message passing parallel programs are generic
enough, so as to be directly adapted to DSM architectures in
a straightforward manner, there is an active research inter-
est in considering alternative parallel programming models,

that could be more appropriate for such platforms.

Hybrid programming models on SMP clusters resort to
both message passing and shared memory access for inter-
and intra-node communication, respectively, thus imple-
menting a two-level hierarchical communication pattern.
Usually, MPI is employed for the inter-node communica-
tion, while a multi-threading API, such as OpenMP, is used
for the intra-node processing and synchronization. There
are mainly two hybrid programming variations addressed
in related work, namely the fine-grain incremental hybrid
parallelization, as well as the coarse-grain SPMD-like alter-
native.

Fully permutable nested loop algorithms account for a
large fraction of the computational intensive part of many
existing scientific codes. We consider generic N + 1-
dimensional perfectly nested loops, which are parallelized
across the outermost N dimensions, so as to perform se-
quential execution along the innermost dimension in a
pipeline fashion, interleaving computation and communica-
tion phases. These algorithms impose significant commu-
nication demands, thus rendering communication-efficient
parallelization schemes critical in order to obtain high per-
formance. Moreover, the hybrid parallelization of such al-
gorithms is a non-trivial issue, as there is a trade-off in pro-
gramming complexity and parallel efficiency.

Hybrid parallelization is a popular topic in related lit-
erature, although it has admittedly delivered controversial
results ([3], [7], [8], [6], [11] etc). In practice, it is still
a very open subject, as the efficient use of an SMP clus-
ter calls for appropriate scheduling methods and load bal-
ancing techniques. Most message passing libraries pro-
vide a limited multi-threading support level, allowing only
the master thread to perform message passing communica-
tion. Therefore, additional load balancing must be applied
so as to equalize the per tile execution times of all threads.
This effect has been theoretically spotted in related litera-
ture ([12], [10], [4], [5]), but to our knowledge no generic

load balancing technique has been proposed and, more im-
portantly, evaluated.

In this paper we propose two load balancing schemes for
the coarse-grain hybrid parallelization of fully permutable
nested loop algorithms. The computational load associated
with a tile is statically distributed among threads, based
upon the estimation and modeling of basic system param-
eters. We distinguish between two variations of load bal-
ancing, namely both a constant and a variable scheme, de-
pending on whether the same task distribution is applied on
a global or a per process base, respectively. We emphasize
on the elements of applicability and simplicity, and evalu-
ate the efficiency of the proposed scheme against a popular
micro-kernel benchmark, namely ADI integration. The ex-
perimental evaluation indicates that the variable load bal-
ancing model ensures superior performance compared to
all hybrid alternatives, and further slightly outperforms the
pure message model for most cases.

2 Algorithmic Model - Notation

Our algorithmic model concerns fully permutable per-
fectly nested loops. Such algorithms can be transformed
with the aid of the tiling transformation to deliver an equiv-
alent parallel tiled code form, that can be formally described
as in Alg. 1. We assume an N + 1-dimensional algorithm

Algorithm 1: iterative algorithm model

foracross tile1 ← 1 to H(X1) do1

. . .2

foracross tileN ← 1 to H(XN) do3

for tileN+1 ← 1 to H(Z) do4

Receive(
−→
tile);5

Compute(A,
−→
tile);6

Send(
−→
tile);7

with an iteration space of X1×· · ·×XN×Z , which has been
partitioned using a tiling transformation H. Z is considered
the longest dimension of the iteration space, and should be
brought to the innermost loop through permutation in or-
der to simplify the generation of efficient parallel tiled code
([14]). In the above code, tiles are identified by an N + 1-
dimensional vector (tile1, . . . , tileN+1). foracross implies
parallel execution, as opposed to sequential execution (for).
Generally, tiled code is associated with a particular tile-to-
processor distribution strategy, that enforces explicit data
distribution and implicit computation distribution, accord-
ing to the computer-owns rule. For homogeneous platforms
and fully permutable iterative algorithms, related scientific
literature ([2]) has proved the optimality of the column-
wise allocation of tiles to processors, as long as sequen-

tial pipelined execution along the longest dimension is as-
sumed. Therefore, all parallel algorithms considered in this
paper implement computation distribution across the N out-
ermost dimensions, while each processor computes a se-
quence of tiles along the innermost N + 1-th dimension.

In most practical cases, the data dependencies of the al-
gorithm are of several orders of magnitude smaller com-
pared to the iteration space dimensions. Consequently, only
neighboring processes need to communicate, assuming rea-
sonably coarse parallel granularities, taking into account
that distributed memory architectures are addressed. Ac-
cording to the above, we only consider unitary process com-
munication directions for our analysis, since all other non-
unitary process dependencies can be satisfied according to
indirect message passing techniques, such as the ones de-
scribed in [13]. However, in order to preserve the com-
munication pattern of the application, we consider a weight
factor di for each process dependence direction i, implying
that if iteration �j = (j1, . . . , ji, . . . , jN+1) is assigned to a
process �p, and iteration �j′ = (j1, . . . , ji + di, . . . , jN+1) is
assigned to a different process �p′, �p �= �p′, then data calcu-
lated at iteration �j from �p need to be sent to �p′, since they
will be required for the computation of data at iteration �j′.

In the following, P1×· · ·×PN and T1×· · ·×TN denote
the process and thread topology, respectively. P =

∏N
i=1 Pi

is the total number of processes, while T =
∏N

i=1 Ti the
total number of threads. Also, vector �p = (p1, . . . , pN),
0 ≤ pi ≤ Pi − 1 identifies a specific process, while
�t = (t1, . . . , tN), 0 ≤ ti ≤ Ti − 1 refers to a particular
thread. Throughout the text, we will use MPI and OpenMP
notations in the proposed parallel algorithms.

3 Message Passing Parallelization

The proposed pure message passing parallelization for
the algorithms described above is based on the tiling trans-
formation. Tiling is a popular loop transformation and can
be applied in the context of implementing coarse granular-
ity in parallel programs, or even in order to exploit memory
hierarchy by enforcing data locality. Tiling partitions the
original iteration space of an algorithm into atomic units of
execution, called tiles. Each process assumes the execution
of a sequence of tiles, successive along the longest dimen-
sion of the original iteration space.

The message passing parallelization paradigm for tiled
nested loops is schematically depicted in Alg. 2. Each pro-
cess is identified by N -dimensional vector �p, while different
tiles correspond to different instances of N +1-dimensional
vector

−→
tile. The N outermost coordinates of a tile specify

its owner process �p, while the innermost coordinate tileN+1

iterates over the set of tiles assigned to that process. z de-
notes the tile height along the sequential execution dimen-

Algorithm 2: pure message passing model

for i ← 1 to N do1

tilei = pi;2

for tileN+1 ← 1 to �Z
z � do3

foreach
−→
dir ∈ C�p do4

Pack(
−→
dir,tileN+1 − 1,�p);5

MPI Isend(�p +
−→
dir);6

MPI Irecv(�p−−→
dir);7

Compute(
−→
tile);8

MPI Waitall ;9

foreach
−→
dir ∈ C�p do10

Unpack(
−→
dir,tileN+1 + 1,�p);11

sion, and determines the granularity of the achieved paral-
lelism: higher values of z imply less frequent communica-
tion and coarser granularity, while lower values of z call for
more frequent communication and lead to finer granularity.

Furthermore, advanced pipelined scheduling is adopted
as follows: In each time step, a process �p = (p1, . . . , pN)
concurrently computes a tile (p1, . . . , pN , tileN+1), re-
ceives data required for the computation of the next tile
(p1, . . . , pN , tileN+1 + 1) and sends data computed at the
previous tile (p1, . . . , pN , tileN+1 − 1). C�p denotes the set
of valid communication directions of process �p, that is, if−→
dir ∈ C�p for a non-boundary process �p, then �p needs to

send data to process �p+
−→
dir and also receive data from pro-

cess �p − −→
dir. C�p is determined both by the data depen-

dencies of the original algorithm, as well as by the selected
process topology of the parallel implementation.

For the true overlapping of computation and commu-
nication, as theoretically implied by the above scheme by
combining non-blocking communication primitives with
the overlapping scheduling, the usage of advanced CPU of-
floading features is required, such as zero-copy and DMA-
driven communication. Unfortunately, experimental eval-
uation over a standard TCP/IP based interconnection net-
work, such as Ethernet, combined with the ch p4 ADI-2
device of the MPICH implementation, prohibits such ad-
vanced non-blocking communication, but nevertheless the
same limitations hold for our hybrid model, and are thus not
likely to affect the relative performance comparison. How-
ever, this fact does complicate our theoretical analysis, since
we will assume in general distinct, non-overlapped com-
putation and communication phases, an assumption that to
some extent underestimates the efficiency of the message
passing communication primitives.

4 Hybrid Parallelization

The potential for hybrid parallelization is mainly lim-
ited by the multi-threading support provided by the message
passing library. From the perspective of the message pass-
ing library, there are mainly five levels of multi-threading
support addressed in relevant scientific literature, namely
single, masteronly, funneled, serialized and multiple. Each
category is a superset of all previous ones. Currently, popu-
lar non-commercial message passing libraries provide sup-
port up to the third level (funneled), allowing only the mas-
ter thread to call message passing routines within the dy-
namic extent of multi-threaded parallel regions, while only
some proprietary libraries allow for full multi-threading
support (multiple thread support level). Due to this fact,
most attempts for hybrid parallelization of applications, that
have been proposed or implemented, are mostly restricted to
the first three thread support levels.

In this Section, we propose two hybrid implementations
for iterative algorithms, namely both fine- and coarse-grain
hybrid parallelization. Both models implement the ad-
vanced hyperplane scheduling presented in [1].

4.1 Fine-grain Hybrid Parallelization

The fine-grain hybrid programming paradigm, also re-
ferred to as masteronly in related literature, is the most
popular hybrid programming approach, although it raises
a number of performance deficiencies. The popularity of
the fine-grain model over a coarse-grain one is mainly at-
tributed to its programming simplicity: in most cases, it
does not require significant restructuring of the existing
message passing code, and is relatively simple to implement
by submitting an application to performance profiling and
further parallelizing performance critical parts with the aid
of multi-threading processing. Also, fine-grain paralleliza-
tion is the only feasible hybrid approach for message pass-
ing libraries supporting only masteronly multi-threading.

However, the efficiency of the fine-grain hybrid model is
directly associated with the fraction of the code that is in-
crementally parallelized, according to Amdahl’s law: since
message passing communication can be applied only out-
side of parallel regions, other threads are essentially sleep-
ing when such communication occurs, resulting to poor
CPU utilization and overall inefficient load balancing. Also,
this paradigm suffers from the overhead of re-initializing
the thread structures every time a parallel region is encoun-
tered, since threads are continually spawned and terminated.
This thread management overhead can be substantial, es-
pecially in case of a poor implementation of the multi-
threading library, and generally increases with the number
of threads. Moreover, incremental loop parallelization is a
very restrictive multi-threading parallelization approach for

many real algorithms, where such loops either do not exist
or cannot be directly enclosed by parallel regions.

Algorithm 3: fine-grain hybrid model

for i ← 1 to N do1

groupi = pi;2

foreach groupN+1 ∈ G�p do3

foreach
−→
dir ∈ C�p do4

Pack(
−→
dir,groupN+1 − 1,�p);5

MPI Isend(�p +
−→
dir);6

MPI Irecv(�p−−→
dir);7

#pragma omp parallel8

for i ← 1 to N do9

tilei = piTi + ti;10

tileN+1 = groupN+1 -
∑N

i=1 tilei;11

if 1 ≤ tileN+1 ≤ �Z
z � then12

Compute(
−→
tile);13

MPI Waitall ;14

foreach
−→
dir ∈ C�p do15

Unpack(
−→
dir,groupN+1 + 1,�p);16

The proposed fine-grain hybrid implementation for it-
erative algorithms is depicted in Alg. 3. The hyperplane
scheduling is implemented as follows: Each group is iden-
tified by a N + 1-dimensional vector −−−→group, where the N
outermost coordinates denote the owner process �p, and the
innermost one iterates over the distinct time steps. G�p cor-
responds to the set of time steps of process �p, and depends
both on the process and thread topology. For each instance
of vector−−−→group, each thread determines a candidate tile

−→
tile

for execution, and further evaluates an if-clause to check
whether that tile is valid and should be computed at the cur-
rent time step.

X
1

X
2

Z

P
1
= 3

P
2
= 2

T
1
= 3

T
2
= 2

)0,1(=p
r

)0,0(=t

r

4
3
=tile

4
3
=group

process

thread

Figure 1. Hybrid parallel program for 3D algo-
rithm and 6 processes × 6 threads

All message passing communication is performed out-
side of the parallel region (lines 4-7 and 14-16), while the
multi-threading parallel computation occurs in lines 8-13.
Note that no explicit barrier is required for thread synchro-
nization, as this effect is implicitly achieved by exiting the
multi-threaded parallel region. Note also that only the code
fraction in lines 8-13 fully exploits the underlying process-
ing infrastructure, thus effectively limiting the parallel effi-
ciency of the algorithm. Fig. 1 clarifies some of the notation
used in the hybrid algorithms.

4.2 Coarse-grain Hybrid Parallelization

According to the coarse-grain model, threads are only
spawned once and their ids are used to determine their
flow of execution in the SPMD-like code. Inter-node mes-
sage passing communication occurs within the extent of the
multi-threaded parallel region, but is completely assumed
by the master thread, as dictated by the funneled thread sup-
port level. Intra-node synchronization between threads of
the same SMP node is achieved with the aid of a barrier
directive of the multi-threading API.

The additional promising feature of the coarse-grain ap-
proach is the potential for overlapping multi-threaded com-
putation with message passing communication. However,
due to the restriction that only the master thread is allowed
to perform message passing, a naive straightforward imple-
mentation of the coarse-grain model suffers from load im-
balance between the threads, if equal portions of the com-
putational load are assigned to all threads. Therefore, ad-
ditional load balancing must be applied, so that the master
thread will assume a relatively smaller computational load
compared to the other threads, thus equalizing the per tile
execution times of all threads. Moreover, the coarse-grain
model avoids the overhead of re-initializing thread struc-
tures, since threads are spawned only once, and can poten-
tially implement more generic parallelization schemes, as
opposed to its limiting fine-grain counterpart.

The pseudo-code for the coarse-grain parallelization of
the fully permutable iterative algorithms is depicted in
Alg. 4. Note that the inter-node communication (lines 8-12
and 16-19) is conducted by the master thread, per communi-
cation direction and per owner thread, incurring additional
complexity compared to both the pure message passing and
the fine-grain model. Also, note the bal parameter in the
computation, that optionally implements load balancing be-
tween threads, as will described in Section 5.

5 Load Balancing for Hybrid Model

The hyperplane scheduling scheme enables for a more
efficient load balancing between threads: Since the com-
putations of each time step are essentially independent of

Algorithm 4: coarse-grain hybrid model

#pragma omp parallel1

for i ← 1 to N do2

groupi = pi;3

tilei = piTi + ti;4

foreach groupN+1 ∈ G�p do5

tileN+1 = groupN+1 -
∑N

i=1 tilei;6

#pragma omp master7

foreach
−→
dir ∈ C�p do8

for th ← 1 to M do9

Pack(�dir,groupN+1 − 1,�p,th);10

MPI Isend(�p +
−→
dir);11

MPI Irecv(�p−−→
dir);12

if 1 ≤ tileN+1 ≤ �Z
z � then13

Compute(
−→
tile,bal(�p,�t));14

#pragma omp master15

MPI Waitall ;16

foreach
−→
dir ∈ C�p do17

for th ← 1 to M do18

Unpack(
−→
dir,groupN+1+1,�p,th);19

#pragma omp barrier20

the communication data exchanged at that step, they can
be arbitrarily distributed among threads. Thus, it would be
meaningful for the master thread to assume a smaller part
of computational load, so that the total computation and the
total communication associated with the owner process is
evenly distributed among all threads.

We have implemented two alternative static load balanc-
ing schemes. The first one (constant balancing) requires
the calculation of a constant balancing factor, which is com-
mon for all processes. For this purpose, we consider a non-
boundary process, that performs communication across all
N process topology dimensions, and determine the com-
putational fraction of the master thread, that equalizes tile
execution times on a per thread basis. The second scheme
(variable balancing) requires further knowledge of the pro-
cess topology, and ignores communication directions cut-
ting the iteration space boundaries, since these do not result
to actual message passing. For both schemes, the balancing
factor(s) can be obtained by the following lemma:

Lemma 1 Let X1 × · · · × XN × Z be the iteration space
of an N + 1-dimensional iterative algorithm, that imposes
data dependencies [d1, . . . , 0]T , . . . , [0, . . . , dN+1]

T . Let
P = P1 × · · · × PN be the process topology and T the
number of threads available for the parallel execution of
the hybrid funneled implementation of the respective tiled

X
1

X
2

87% 87% 87% 92%

95% 95% 95% 100%

Algorithm X
1
=4X

2
, [(d,0)T , (0,d)T]

Z

8 processes (4x2)

2 threads/process (2x1)

thread 0 thread 1
process (0,0)

process (3,1)

Figure 2. Variable balancing for 8 processes
× 2 threads and algorithm with X1 = 4X2

algorithm. The overall completion time of the algorithm is
minimal if the master thread assumes a portion bal

T of the
process’s computational load, where

bal = 1 − T − 1

tcomp

(
Xz
P

) N∑
i=1
i∈C�p

tcomm

(
diPiXz

XiP

)
(1)

tcomp(x) The computation time required for x iterations

tcomm(x) The transmission time of an x-sized message

z The tile height for each execution step

C�p Valid communication directions of process �p

X Equal to
∏N

i=1 Xi

The proof of the lemma is omitted due to space limita-
tions. We assume the computation time tcomp to be a lin-
ear function of the number of iterations, that is, we assume
tcomp(ax) = atcomp(x). Note that if condition i ∈ C�p

is evaluated separately for each process, variable balancing
is enforced. If the above check is omitted, (1) delivers the
constant balancing factor.

The constant balancing scheme can be applied at
compile-time, since it merely requires knowledge of the un-
derlying computational and network infrastructure, but also
tends to overestimate the communication load for boundary
processes. On the other hand, the variable balancing scheme
can be applied only after selecting the process topology, as
it uses that information to calculate a different balancing
factor for each process. Fig. 2 demonstrates the variable
load balancing scheme, for a dual SMP cluster. Generally,
a factor bal, 0 ≤ bal ≤ 1, for load balancing T threads
means that the master thread assumes bal

T of the process’s
computational share, while all other threads are assigned a
fraction of T−bal

T (T−1) of that share. Note that according to
the variable scheme, the balancing factor is slightly smaller
for non-boundary processes. However, as the active com-
munication directions decrease for boundary processes, the

balancing factor increases, so as to preserve the desirable
thread load balancing.

6 Experimental Results

In order to test the efficiency of the proposed load bal-
ancing schemes, we use a micro-kernel benchmark, namely
Alternating Direction Implicit integration. ADI is a sten-
cil computation used for solving partial differential equa-
tions ([9]). Essentially, ADI is a simple three-dimensional
perfectly nested loop algorithm, that imposes unitary data
dependencies across all three space directions. It has an it-
eration space of X1 ×X2 ×Z , where Z is considered to be
the longest algorithm dimension. We choose to experimen-
tally verify the efficiency of load balancing with ADI, as it is
a typical representative of tiled nested loop algorithms and
complies with the target algorithmic model, that accentuates
interleaving computation and communication phases. More
importantly, ADI imposes communication in all three uni-
tary directions. Consequently, all parallel implementations
of ADI include a significant amount of communication, and
thus facilitate the comparison of various programming mod-
els on distributed memory environments.

We use MPI as the message passing library and OpenMP
as the multi-threading API. Our experimental platform is an
8-node Pentium III dual-SMP cluster interconnected with
100 Mbps FastEthernet. Each node has two Pentium III
CPUs at 800 MHz, 256 MB of RAM, 16 KB of L1 I
Cache, 16 KB L1 D Cache, 256 KB of L2 cache, and
runs Linux with 2.4.26 kernel. For the support of OpenMP
directives, we use Intel C++ compiler v.8.1 with the fol-
lowing optimization flags: -O3 -mcpu=pentiumpro
-openmp -static. Finally, we use MPI implementa-
tion MPICH v.1.2.6, appropriately configured for an SMP
cluster, so as to perform intra-node communication through
SYS V shared memory. This version of the MPICH im-
plementation asserts a funneled thread support level, and
is thus capable of supporting all programming models dis-
cussed here. Some fine-tuning of the MPICH communica-
tion performance for our experimental platform indicated
using a maximum socket buffer size of 104KB, so the re-
spective P4 SOCKBUFSIZE environment variable was ap-
propriately set to that value for all cluster nodes.

In all cases, we use 16 processes for the pure message
passing experiments, and 8 processes with 2 threads per
process for all hybrid programs. For the pure message pass-
ing case, an appropriate machine file is used to ensure that
two MPI processes residing on the same SMP node will
communicate through shared memory segments. Also, all
experimental results are averaged over at least three inde-
pendent executions for each case.

6.1 Load Balancing

A simplistic approach is adopted in order to model the
behavior of the underlying infrastructure, so as to approx-
imate quantities tcomp and tcomm of (1). As far as tcomp

is concerned, we assume the computational cost involved
with the calculation of x iterations to be x times the aver-
age cost required for a single iteration. On the other hand,
the communication cost is considered to consist of a con-
stant start-up latency term, as well as a term proportional to
the message size, that depends upon the sustained network
bandwidth on application level. Formally, we define

tcomp(x) = xtcomp(1) (2)

tcomm(x) = tstartup +
x

Bsustained
(3)

Since our primary objective was preserving simplicity
and applicability in the modeling of environmental param-
eters, we intentionally overlooked at more complex phe-
nomena, such as cache effects or precise communication
modeling. Despite having thoroughly studied the MPICH
source code in order to acquire an in-depth understanding
of the ch p4 ADI-2 device, we decided not to integrate
implementation-specific protocol semantics into our theo-
retical model in order to preserve generality and simplicity.
The same holds for cache effects, which would require a
memory access pattern analysis of the tiled application in
respect to the memory hierarchy configuration of the under-
lying architecture. A more accurate representation of such
hardware and software issues would probably lead to more
efficient load balancing. Also, a major difficulty we encoun-
tered was modeling the TCP/IP socket communication per-
formance and incorporating that analysis in our load balanc-
ing scheme. Assuming distinct, non-overlapping compu-
tation and communication phases and relatively high sus-
tained network bandwidth allowed bypassing this restric-
tion. However, this hypothesis underestimates the commu-
nication cost for short messages, which are mostly latency-
bound and sustain relatively low throughput, while on the
other hand it overestimates the respective cost in the case of
longer messages, where DMA transfers alleviate the CPU
significantly. Our main goal was providing some intuition
as to the merit of these load balancing schemes, even un-
der the most simple and straightforward implementation.
For our analysis, we considered tcomp(1) = 288nsec,
tstartup = 107usec and Bsustained = 100Mbps.

The overall experimental results for ADI integration and
various iteration spaces are depicted in Fig. 3. These results
are normalized in respect to the fine-grain execution times.
Granularity measurements for various iteration spaces are
depicted in Fig. 4. Some significant performance degrada-
tions observed at certain threshold values of z can be as-
cribed to the transition from the eager to the rendezvous

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 50 100 150 200 250

T
im

e
(s

ec
)

Tile Height

Total execution time for 32x256x16K space
8 processes x 2 threads/process

Fine-grain
Coarse-grain, unbalanced
Coarse-grain, constant balance
Coarse-grain, variable balance

(a) 32 × 256 × 16K

 11

 11.5

 12

 12.5

 13

 13.5

 0 50 100 150 200 250

T
im

e
(s

ec
)

Tile Height

Total execution time for 128x256x16K space
8 processes x 2 threads/process

Fine-grain
Coarse-grain, unbalanced
Coarse-grain, constant balance
Coarse-grain, variable balance

(b) 128 × 256 × 16K

 22

 23

 24

 25

 26

 27

 28

 0 50 100 150 200 250

T
im

e
(s

ec
)

Tile Height

Total execution time for 256x256x16K space
8 processes x 2 threads/process

Fine-grain
Coarse-grain, unbalanced
Coarse-grain, constant balance
Coarse-grain, variable balance

(c) 256 × 256 × 16K

Figure 4. Granularity results for ADI integration (8 dual SMP nodes)

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

256x256x16K128x256x16K64x256x16K32x256x16K16x256x16K

R
at

io

Fine-grain
Coarse-grain, unbalanced
Coarse-grain, constant balance
Coarse-grain, variable balance

Figure 3. Comparison of hybrid models (ADI
integration, various iteration spaces)

MPICH message protocol occurring at 128000 bytes (for
instance, see Fig. 4(c) at z = 125).

Following conclusions can be drawn from the thorough
investigation of the obtained performance measurements:

• The coarse-grain hybrid model is not always more ef-
ficient than its fine-grain counterpart. This observation
reflects the fact that the poor load balancing of the sim-
ple coarse-grain model diminishes its advantages com-
pared to the fine-grain alternative.

• When applying constant balancing, in some cases the
balanced coarse-grain implementation is less effective
than the unbalanced alternatives. This can be attributed
both to inaccurate theoretical modeling of the system
parameters for the calculation of the balancing factors,
as well as to the inappropriateness of the constant bal-
ancing scheme for boundary processes.

• When applying variable balancing, the coarse-grain
hybrid model was able to deliver superior performance
to the fine-grain alternative in all cases. The perfor-

 0.85

 0.9

 0.95

 1

 1.05

 1.1

256x256x16K128x256x16K64x256x16K32x256x16K16x256x16K
R

at
io

Pure message passing, optimized
Fine-grain hybrid, optimized
Coarse-grain hybrid, optimized

Figure 5. Overall comparison of optimized
programming models on ADI integration

mance improvement lies in the range of 2-8%. Fur-
thermore, Fig. 4 reveals that variable balancing per-
forms better than any other implementation for most
granularities, thus appearing to be in almost all cases
the most efficient hybrid parallelization approach.

6.2 Overall Comparison

We also performed an overall comparison of the mes-
sage passing model, the fine-grain hybrid one and the vari-
ably balanced coarse-grain paradigm. We display the ob-
tained results in Fig. 5, normalized to the pure message
passing execution times. It should be noted that although
this comparison may be useful towards the efficient usage
of SMP clusters, it cannot be generalized beyond the chosen
hardware-software combination, as it largely depends upon
the comparative performance of the two programming APIs
(MPICH vs OpenMP support on Intel compiler), as well as
how efficiently MPICH supports multi-threaded program-
ming.

That said, we observe that the fine-grain hybrid paral-

lelization is always 3-8% worse in terms of performance
compared to pure message passing. This observation re-
flects the fact that unoptimized hybrid programming suffers
from serious disadvantages compared to pure message pass-
ing, and fails to exploit its structural similarities with the
architecture of SMP clusters. Limiting parallelization due
to the masteronly thread support level according to Am-
dahl’s law, as well as the overhead of re-initializing the
thread structures by repeatedly entering and exiting paral-
lel regions, are the main causes for the poor performance of
the fine-grain hybrid model.

On the other hand, the combination of the coarse-grain
model with an efficient load balancing technique seems very
promising, as it significantly improves the obtained execu-
tion times. In fact, for most cases the optimized coarse-
grain hybrid model outperforms the pure message passing
one, although only by a small fraction. However, some
drawbacks incurred by the coarse-grain model cannot be
avoided, even under all proposed optimizations, the two
most fundamental of which involve the additional commu-
nication overhead when having the master thread assume
all message passing, as well as the difficulties in accurately
estimating the impact of the various system parameters in
order to apply load balancing. As a result, the message pass-
ing and the coarse-grain model perform similarly, and only
at specific cases appear slight performance differences.

7 Conclusions - Future Work

This paper discusses load balancing issues regarding hy-
brid parallelization of fully permutable nested loops. We
propose two static load balancing schemes, namely a con-
stant and a variable approach, that model basic system and
application parameters in order to determine a suitable task
distribution between threads. We compare both popular hy-
brid programming models, that is, fine- and coarse-grain,
and experimentally evaluate the efficiency of both load bal-
ancing schemes against a micro-kernel benchmark. The
evaluation demonstrates a significant performance improve-
ment for all cases, when the variable balancing scheme is
applied. We have also conducted an overall experimen-
tal comparison of the hybrid models and standard message
passing parallelization. Appropriately balanced coarse-
grain hybrid parallelization exhibits slightly better perfor-
mance than the pure message alternative for most cases con-
sidered, although only by a small fraction.

We intend to implement a dynamic variation of the vari-
able balancing scheme and evaluate all proposed schemes
against more real applications and benchmarks. Also, we
are currently investigating the performance attained in a
Myrinet-interconnected SMP cluster, in order to draw more
generic conclusions concerning different hardware-network
combinations. Last, we are also working on improving the

theoretical load balancing model, in order to more accu-
rately model the behavior of the underlying system by also
presuming simplicity and applicability of the methodology.

References

[1] M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and
N. Koziris. Pipelined Scheduling of Tiled Nested Loops
onto Clusters of SMPs Using Memory Mapped Network In-
terfaces. In Proceedings of the ACM/IEEE conference on
Supercomputing, 2002.

[2] P. Calland, J. Dongarra, and Y. Robert. Tiling with Limited
Resources. In Application Specific Systems, Architectures
and Processors, pages 229–238, Jun 1997.

[3] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on
IBM SP for the NAS Benchmarks. In Proceedings of the
ACM/IEEE conference on Supercomputing, page 12, 2000.

[4] D. G. Chavarrı́a-Miranda and J. M. Mellor-Crummey. An
Evaluation of Data-parallel Compiler Support for Line-
sweep Applications. Journal of Instruction Level Paral-
lelism, 5:1–29, Feb 2003.

[5] A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarrı́a-
Miranda. Generalized Multipartitioning of Multi-
dimensional Arrays for Parallelizing Line-sweep Compu-
tations. Journal of Parallel and Distributed Computing,
63(9):887–911, 2003.

[6] S. Dong and G. E. Karniadakis. Dual-level Parallelism for
High-order CFD Methods. Journal of Parallel Computing,
30(1):1–20, 2004.

[7] N. Drosinos and N. Koziris. Performance Comparison of
Pure MPI vs Hybrid MPI-OpenMP Parallelization Models
on SMP Clusters. In Proceedings of IPDPS ’04, Apr 2004.

[8] D. S. Henty. Performance of Hybrid Message-passing and
Shared-memory Parallelism for Discrete Element Modeling.
In Proceedings of the ACM/IEEE conference on Supercom-
puting, 2000.

[9] G. E. Karniadakis and R. M. Kirby. Parallel Scientific Com-
puting in C++ and MPI : A Seamless Approach to Parallel
Algorithms and their Implementation. 2002.

[10] A. Legrand, H. Renard, Y. Robert, and F. Vivien. Map-
ping and Load-balancing Iterative Computations on Hetero-
geneous Clusters with Shared Links. IEEE Trans. on Paral-
lel and Distributed Systems, 15(6):546–558, Jun 2004.

[11] R. D. Loft, S. J. Thomas, and J. M. Dennis. Terascale Spec-
tral Element Dynamical Core for Atmospheric General Cir-
culation Models. In Proceedings of the ACM/IEEE confer-
ence on Supercomputing, 2001.

[12] R. Rabenseifner and G. Wellein. Communication and Op-
timization Aspects of Parallel Programming Models on Hy-
brid Architectures. International Journal of High Perfor-
mance Computing Applications, 17(1):49–62, 2003.

[13] P. Tang and J. Zigman. Reducing Data Communication
Overhead for DOACROSS Loop Nests. In Proceedings of
the 8th International Conference on Supercomputing, pages
44–53, Jul 1994.

[14] M. Wolf and M. Lam. A Loop Transformation Theory and
an Algorithm to Maximize Parallelism. IEEE Trans. on Par-
allel and Distributed Systems, 2(4):452–471, Oct 1991.

