Optimal Automatic Hardware Synthesis
For Signal Processing Algorithms

Nectarios Koziris, George Economakos, Theodore Andronikos,
George Papakonstantinou and Panayotis Tsanakas

National Technical U

niversity of Athens

Dept. of Electrical and Computer Engineering

Computer Scie

nce Division

Zografou Campus, Zografou 15773, Greece
e-mail:{nkoziris, papakon}@dsclab.ece.ntua.gr

Abstract: This paper presents a complete methodology for the automatic synthesis of VLSI architectures used in digital signal

processing. Most signal processing algorithms have the form of an

dependencies. We model such algorithms with generalized UET grids.

n-dimensional nested loop with unit uniform loop carrried
We calculate the optimal makespan for the generalized UET

grids and then we establish the minimum number of systolic cells required achieving the optimal makespan. We present a complete

methodology for the hardware synthesis of the resulting architecture,

based on VHDL. This methodology automatically detects all

necessary computation and communication elements and produces optimal layouts. The complexity of our proposed scheduling
policy is completely independent of the size of the nested loop and depends only on its dimension, thus being the most efficient (in
terms of complexity) known to us. All these methods were implemented and incorporated in an integrated software package which
provides the designer with a powerful parallel design environment, from high level signal processing algorithmic specifications to

low-level (i.e., actual layouts) optimal implementation. The evaluati
processing.

INTRODUCTION

1.
One of the most tedious tasks for a lot of sequential
algorithms is the execution of nested FOR-loops
with data dependencies among their computations. If a
computation in one iteration, depends on a computation
in another iteration, this dependence is presented as the
vector difference of these two iteration indices. The
majority of such algorithms present a regular vector
pattern (uniform data dependencies). This means that the
values of all dependence vectors are constants, i.e., they
are independent of the indices of computations. A
subclass of the class of uniform nested loops is the class
of the unit dependence nested loops, where every
dependence vector has zeroed or unit coordinates. Very
important algorithms used in signal processing, such as
matrix multiplication, LU decomposition, discrete
Fourier transform, convolution and transitive closure fall
into this category. In addition to this, even signal
processing algorithms with non-uniform dependencies
can be transformed into uniform ones [11]. Since
dependence vectors describe computations’ flow, they
are used to find the optimal parallel execution time. The
widely used method is based on Lamport [7] who
introduced the term “hyperplane”. The idea is to find a
time schedule that partitions computations into different
sets, which are called hyperplanes. All index points
belonging to the same set can be executed concurrently.
The major problem after having found a time
schedule, is to organize computations in space, i.e.,
assign indexed computations to processors. Systolic
arrays are widely used in signal processing because, due
to their uniformity, they are suitable for massive

on was performed using well-known algorithms from signal

parallelism and low cost implementation (see Kung [6]).
One of the most difficult issues when using a systolic
array is the efficient use of its cells. The regularity of the
systolic array structure imposes serious obstacles in
organizing computations efficiently and thus increasing
the utilization of cells. Most of presented methods for
mapping loop algorithms onto systolic arrays have poor
cell utilization, and use exhaustive search-based
mapping techniques [5], [6], [8], [9].

In this paper we apply the methodology
presented in [2], on signal processing algorithms. In [4]
we have implemented an integrated design tool for the
optimal mapping of nested loops with unit dependencies
on unbounded number of systolic cells. We did not only
find an optimal time schedule for loop iterations, but we
also assigned the concurrent iterations onto the least
possible number of cells. In this paper we show that
most of the signal processing algorithms can be
automatically synthesized in hardware using the
previously established analysis. Our integrated tool,
accepts as input the nested loop specifications and
produces optimal systolic designs for the subclass of
loops with unit uniform dependencies. This tool
integrates the methods for optimal time and space
scheduling onto unbounded number of processors
presented in [2], and produces VHDL descriptions for
the resulting architecture. In particular, a VHDL
preprocessor called GENVHDL has been implemented,
which translates optimal scheduling and mapping results
into VHDL code, which can be afterwards fed into
VHDL entry CAD tools for synthesis and simulation
(e.g. XILINX, WorkView Plus from VIEWIogic etc).

The rest of the paper is organized as follows:

correctly begins its execution at instant k i the

Section 2 contains useful notation and definitions; points iOIN(j) have completed their execution and

Section 3 presents the optimal makespan and the
minimum number of cells adequate for scheduling the
iterations of a nested loop. Finally, in Section 4 the
GENVHL preprocessor is analyzed and the application
of the proposed automatic method to a typical example
of an algorithm used in signal processing, the matrix
multiplication, is presented. This algorithm is
automatically mapped onto VLSI architecture and
optimally implemented using XILINX FPGA devices.

2. BAsiC CONCEPTS AND DEFINITIONS
Our work is focused on signal processing algorithms
that exhibit regular computation patterns. The exact
algorithm model we use is depicted in Fig. 1. This
model is representative for most of the digital signal
processing algorithms.

FOR i;=1; TO uj; DO

FOR i,=1, TO u, DO

AS: (I)
AS, (1)
END i,
END i
Fig. 1: The Algorithmic model.
In Fig. 1:
Q) 4, w0z, I<isn.
@) I1=(iy, ..., b).
(3) AS, ..., A§ are assignment statements of the

form Vo(D=E(Vi(J)), ..., k(Ji)), where \§ is an output
variable, E is an expression of the input variablgs..\,
Vi, andd;=1-J;, 1<i<k, are constant dependence vectors
with zero or unit coordinates only, forming the set DS.

@) (w, ..., u) is called theterminal point of the
algorithm and is denoted,.P

The index space FTOZ" is the set of indices {{j
.oy) | K0Z O L<igy;, 1<isn}. Each point in this n-
dimensional integer space is a distinct instantiation of
the loop body. In the rest of the paper, we shall abstract
an algorithm A by the ordered pair (DS).J

Notice that the points of "Jare ordered
lexicographicaly;, the usual symbol < is used to denote
this (linear) ordering. The following two things should
be emphasized: (1) By definition, dependence vectors
are always > tha®, where0=(0, ..., 0) and > is the
lexicographic ordering and (2) Dependence vectors are
uniform, i.e., their elements are constants and not
functions defined over index sets.

Definition 2.1. For every poinj of J', we define

IN(j) = {iOJ" | j=i+d, wheredODS}]

The unit dependence vectors induce a partial
ordering over the points of the index space in a natural
way. If i andj are two index points, we writiej iff O
d,...d,0DS such thatj=i+d,+ ... +d,. The intuition
behind the partial ordering notion is that the dependence
vectors represemtrecedence constraints, which have to
be satisfied in order to correctly complete the iterations
represented by the index points. The formal definition of
the schedule must reflect our intuition that a pgint

communicated their results (if needed) to j by that
instant.

3. OPTIMAL SCHEDULING OF UET GRIDS

Section 2 models the nested loop index space with UET
grids. We now calculate thetimal makespan for UET
grid-index spaces. Having established the optimal
makespan, we will proceed to calculate Wyimal
number of cells, i.e., the minimum number of cells
required to achieve the optimal makespan. We present
an optimal time and space scheduling policy for index
spaces with specific space bounds. Our schedule
partitions the iterations of the index space into disjoint
sets. Each set contains vertices, which are executed on
different cells at the same time. Our scheduling policy
guarantees that neighboring iterations of the n
dimensional index space will be assigned to neighboring
cells of the n-1 dimensional target systolic array. The
time complexity of the scheduling and mapping method
is independent of the index space size and depends only
on the dimension n of the index space.

® A schedule for algorithm A, denoted S(A), is an
ordered couple (e, Serr), where Sp and g are

the time and processor schedules, respectively, defined
as follows:

1) Sew: F-{0, ..., m}, mON, such thatj is
assigned to processogsg (j), and

(2) Smme: J'= N such that for every vertgfdJ" we

have

. . . s o i S (D) =Sceu()

LidIN - i) = ,
(1)Srivei)-Srive(i) %_'_c, S 1) % Sepi ()

wherep is the processing time ardhe communication
delay.
o The makespan of a time scheduleg;s, denoted
M(Stive), is max{Sne(j)+p | jOJ}, where p is the
processing time.

o Given the schedule S(A)=(SE, Scew), we
define Npy as max{[j0F Srve(i)=K} -
O<ksM(Srine)}- u

The makespan gives the completion time of the
last task and, therefore, determines the time required for
the completion of the whole algorithmcf\; gives the
maximum number of cells required by the specific
schedule. In our case, and for mapping onto systolic
cells which operate synchronously without extra
communication delays, we assume ¢=0 and p=1.

In order to achieve our final objective, which is
to design optimal layouts, we must first achieve the
following objectives:

(1) Tofind anoptimal time schedule S“MEOPT’ i.e., a
schedule whose makespamwisgimum.

(2) To establish theoptimal number of cells
NCELLOPT’ i.e., the minimum number of systolic cells that
are required to execute an optimal time schedule.

(3) To find anoptimal space schedule SCELLOP that
realizes 5’MEOPT using N?ELLopT systolic cells ﬁom a
multidimensional systolic structure.

A schedule (SuvEe opT’ ScEiL OPT) is calledoptimal
and is denotedgpr(A).
Theorem 3.1. For every algorithm and every time
schedule aME we have: M(%ME) = SFIME(PH)+1-
Proof: Given in [2].
Definition 3.1.

Let I1(k), O<k<u;+ ...+u, be the

number of points of the loop that can be executed at Corollary 4.1.

instant k,andIy;ax = max{lI(k) | Czk<u+ ...+u,}. l
4. OPTIMAL SCHEDULING PoLICY

It is apparent that in order to achieve the optimal

makespan, all vertices of the grid must be executed at 7%c0rem 4. 4.

the earliest possible time. This fact implies that the
optimal time schedule is actually unique:

SrivE PT(]) =k=k,+ ... +k,, wherej=(k,, ..., k). This
point can be executed by any of the requmé(k)

processors for the k time instant. Thus, for every point ...

of the grid we know in time independent of the size of
the grid when and by which group of processors will be
executed. In principle, we can find a schedule that will
implement the optimal time schedule utilizing exactly
NceLLgp, Cells (see [3] for such a schedule). However,
although in that way the resulting schedule will be
optimal in all accounts, it will not be suitable for

mapping into systolic architecture, mainly due to
complicated interconnection network among the

T(k)= %k o E«Z(—Di%“" <“1+1) <ur+1)—%

, =k<u+
A tr|V|aI consequence of Theorem 4.3 is the
following corollary:
For every uniform loop with
B=(uy, W),
D»l] L Lln

NeerLopp=TImax-Tyax=TI(W

Every vertex j=(k;, ..., k) has a maximal
coordinate, i.e., a coordinate, kor which k=k,, 1<r<n.
Let y be a maximal coordinate of

terminal point

the terminal point 2(u;, ..., Ll,) If u12u1 ... +u
it . U thenTTyay =11(= E) (U+1)x
X(Uip 1+ L)% (Ui +2)x ... x(u,+1).

Example 4.1. Consider the following algorithm that
performs the matrix multiplication: C=AxB, where A
5x3 matrix and B 3x3. Notice that for exploiting the full
parallelism of the classical multiplication algorithm, we
use 3D matrices A, B, C. Initial 2D A,B matrices are
copied in the third dimension by statemen{s$so as
to enable concurrent accesses to them (see[3]).

processors. Therefore, what we propose here is a Program multiplication;

mapping that reflects the regular computation pattern of

int al51[31([3]1,bI[51[31[3]1,cI5]1[311[31;
int i, 12, 1is;

the algorithm and uses the least possible number of |

links: Every index poinj=(ky, ..., k) is assigned to cell

c=(ky, ..., k). If P=(uy, ..., W) is the terminal point of
the loop, the above mapping requires exactly
(Up+1)x(us+1)x ... X(u,+1). Optimality in terms of

parallel time is always guaranteed and [Bw+us+ ...
+u, (recall that according to our assumption is a
maximal coordinate of f, then optimality in terms of

number of cells is also achieved. The worst case
scenario regarding the number of redundant processors

is when y=w=u;= ... =u,. The greatest advantage of
this methodology is the simplicity of its implementation
and its efficiency in terms of time complexity.

In this section we first present the results from [3]
concerning optimal makespan and the optimal time

for (i1=0; 4;)
for (i,=0; 2;)
for (i3=0; 2;) {
S1: alii] [iz2] [is]l=ali1] [i2-1][45]7
Sz: blii] [iz2][i3]=b[i1-1]1T[4iz][415]7
clii] [iz] [i3]=cli1] [1i2] [is-1]1+
alii] [iz2] [13]1*b[i-1] [12] (4315}

Fig. 2: The Algorithm A.
The dependence set DS is {(0, 1, 0), (1, 0, 0), (0,
0, 1)} and the index spac€ & {(i,, i, i5) | i <4,
0<i,<2, (xi;<2} with Ps=(4, 2, 2) (see Fig. 3). Theorem
4.3 gives:

o TR

schedule which achieves the optimal makespan. Finally, g<k<g As we see in Table TLyax=9 for k=4, which

for the optimal time schedule we give the optimal (i.e.,
the minimum) number of cells required implementing it.
In [2] the following theorems have been shown:
Theorem 4.1. For every j=(k;, ..., k)OJ
STIMEOPT(J) =ki+ ... +k,.

Now, we can establish the optimal execution time
for any uniform loop A
Theorem 4.2. For every loop A with terminal
point R=(uy, ..., W), M(STIMEOPT) ut ..+t

The following theorem gives the value Hi(k)
see definition 3.1.
Theorem 4.3. For
terminal point R=(uy, ...

every uniform
» W),

loop with

means that No ;=9

Fig. 3: The index spacé.J

3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2E—\ ,,,,,,,,,,,,,,,,,,,,
I
0 1 2 3 X,

Fig. 4: The systolic mapping of A.

Table 1: The cardinality dil(k).

K ol1]2|3] 4 5] 6| 7| 8
numofprocs; 1| 3| 6] 8 9 8 € 3]
Table 2: The optimal schedule for A.
Cell 0 1 2 3 4 5 6 7 8
¢(0,0) 1(0,0,0){(1,0,0)}(2,0,0)](3,0,0)](4,0,0)
c(0,1) (0,0,1)](1,0,1)}(2,0,1)](3,0,1){(4,0,1)
c(0,2) (0,0,2)(1,0,2)](2,0,2){(3,0,2)|(4.,0.,2)
c(1,0) (0,1,0)](1,1,0)}(2,1,0)](3,1,0)|(4,1,0)
c(L,1) (0,1, |(L,1,1H](2,1,1)|(3,1,1)](4,1,1)
c(1,2) (0,1,2)](1,1,2){(2,1,2)](3,1,2)](4,1,2)
c(2,0) (0,2,0)](1,2,0)](2,2,0){(3,2,0)|(4.,2,0)
c(2,1) 0,2,D)](1.2,1)[(2,2,1D)](3,2,1)](4,2,1)
c(2,2) (0,2,2)](1,2,2)](2,2,2)|(3,2,2)| (4,2,2)

The schedule for the Algorithm A, which is
depicted in Table 2, is optimal in time and number of
processors. The systolic array that implements this
schedule is depicted in Fig. 4. a

5. GENVHDL (VHDL PREPROCESSOR)

GENVHDL is a utility program developed to translate
architectural descriptions into VHDL. It accepts as
inputs the original FOR loop statements. From these it
constructs two VHDL files, one describing the structure
of the basic systolic cell and one describing the map of
the whole architecture. Computational elements are
constructed by mapping primitive arithmetic operations
(additions, multiplications etc.) into appropriate
primitive hardware elements. The transformed
dependencies are satisfied by implementing the
appropriate links among the cell of the systolic
architecture and by inserting delay elements, when
needed. All elements are connected together in the map
file.

Example 5.1. (Example 4.1 continued).

GENVHDL was used to produce the VHDL systolic
hardware description corresponding to the algorithm A,

presented in Example 3.1. The outcome was used as the

input specification in VIEWIogic ViewSynthesis VHDL
synthesis tool. The resulting schematic was given to
XILINX XACTStep to produce an FPGA
implementation. A floorplan of such an implementation
can be seen in Fig. 5 (device used XC4003).

"
¥

Fig. 5: FPGA Implementation.

A comparison of this methodology with manual
implementations taken using dataflow style VHDL
descriptions, can be found in [4], showing very
promising results. There has been a considerable
reduction in the total number of used components inside
an FPGA chip when our proposed methodology is
applied . a

REFERENCES

Andronikos, T., Koziris, N., Tsiatsoulis, Z.,
Papakonstantinou, G., and Tsanakas, P. Lower Time and
Processor Bounds for Efficient Mapping of Unifor
Dependence Algorithms into Systolic Array®urnal of
Parallel Algorithms and Applications. 10, 3-4, 1997.
Andronikos, T., Koziris, N., Papakonstantinou, G. and
Tsanakas, P., “Optimal Scheduling for UET-UCT
Generalized n-Dimensional Grid Task Graphs,”
Proceedings of the 11" IEEE/ACM International Parallel
Processing Symposium (IPPS97), Geneva, Switzerland.

A. Darte and Y. Robert, “Constructive Methods for
Scheduling Uniform Loop NestsTEEE Trans. Parallel
Distrib. Syst., vol. 5, no. 8, pp. 814-822, Aug. 1994.

Koziris N., Andronikos, T., Economakos, G.,
Papakonstantinou, G., and Tsanakas, P., “Automatic
Hardware Synthesis of Nested Loops using UET Grids
and VHDL,” Proceedings of Europe HPCN97, Vienna,
Austria 1997.

Koziris, N., Papakonstantinou, G., and Tsanakas, P.
Optimal Time and Efficient Space Free Scheduling For
Nested LoopsThe Computer Journal, vol. 39, no. 5, pp.
439-448, 1996.

Kung, S. Y. “On Supercomputing with Systolic/
Wavefront Array ProcessorsProceedings IEEE, vol. 72,

no. 7, pp. 867-884, Jul. 1984.

7. Lamport, L. The Parallel Execution of DO loops.
Commun. ACM, vol.17, no.2, pp. 83-93, Feb. 1974.
8. Lee, P.-Z. and Kedem, Z.M. Mapping Nested Loop

Algorithms into Multidimensional Systolic Array$EEE
Trans. Parallel Distrib. Syst., vol. 1, no. 1, pp. 64-76, Jan.
1990.

Moldovan, D.l. and Fortes, J.A.B. Partitioning and
Mapping Algorithms into Fixed Size Systolic Arrays.
IEEE Trans. Comput., vol C-35, no 1, pp. 1-11, Jan. 1986
Shang, W. and Fortes, J., Time Optimal Linear Schedules
for Algorithms with Uniform DependenciefZEE Trans.
Comput., vol. 40, no. 6, pp. 723-742, June 1991.

Tzen ,T.H. and Ni, L.M., “Dependence Uniformization: A
Loop Parallelization TechniqueTEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 5, pp. 547-558, May 1993.

9.

10.

11.

