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Abstract

This paper describes the performance benefits attained
using enhanced network interfaces to achieve low latency
communication. We make use of DMA communication
mode, to send data to other nodes, while the CPU performs
useful calculations. Zero-copy communication is achieved
through pinned-down physical memory regions, provided by
NIC’s driver modules. Our testbed concerns the parallel ex-
ecution of tiled nested loops onto a Linux PC cluster with
PCI-SCI NICs (Dolphin D330). Tiles are essentially ex-
changing data and should also have large computational
grain, so that their parallel execution becomes beneficial.
We schedule tiles much more efficiently by exploiting the in-
herent overlapping between communication and computa-
tion phases among successive, atomic tile executions. The
applied nonblocking schedule resembles a pipelined datap-
ath where computation phases are overlapped with commu-
nication ones, instead of being interleaved with them. Ex-
perimental evaluation illustrates that when using enhanced
communication features such as DMA transfers, memory-
mapped interfaces and zero-copy mechanisms, overall per-
formance is considerably improved compared to using con-
ventional, CPU and kernel bounded, communication prim-
itives.

1 Introduction

Modern high performance communication architectures
allow new, low latency messaging protocols [7, 8, 9, 19] to
provide the means for very efficient communication in clus-
ters. Available bandwidth is constantly increasing, while
there is a trend towards offloading host CPU from the bur-
den of communication [19] through the use of bus master-
ing, DMA enabled NICs. In this way, CPU has more time

to spend on useful application calculations.

When a (user level) process needs to access a conven-
tional network interface, overall communication is delayed
[14], since, through a system call, the OS switches to ker-
nel level and assumes the copying of data from user areas
to kernel areas for protection. Nevertheless, modern net-
work technologies (i.e. SCI, Myrinet, etc.) are mitigating
this startup latency with optimized communication proto-
cols (i.e. VIA) with Zero-Copy [5], DMA support and User-
Level [3] characteristics.

Not only these novel network interfaces are reducing
the message startup latency, but they can also alleviate the
communication burden from CPU. Current parallel applica-
tions should be rescheduled to exploit these enhanced fea-
tures. The parallel execution of any computationally inten-
sive code, containing nested loops, is a very good testbed for
such enhanced communication architectures for clusters.
Parallel loop execution requires for frequent synchroniza-
tion points and extensive exchange of data between differ-
ent nodes. Thus, loops are most suitable for being resched-
uled, if we adopt zero-copy, DMA enabled, messaging fea-
tures. The key issue is to mitigate communication overhead
by efficiently controlling the computation to communica-
tion grain. When using enhanced network interfaces, the
objective should also be to hide as much as possible this
communication overhead, gaining extra cycles for useful
computation, since the CPU is now disengaged.

In the past, many researchers presented methods for con-
trolling the computation to communication grain for paral-
lel loop execution. In order to alleviate the communication
overhead, Irigoin and Triolet proposed supernode partition-
ing [13] of the iteration space, where neighboring iteration
points are grouped together to build a larger computation
node (tile) that can be atomically executed without any in-
tervention. Data exchanges are also grouped and performed
within a single message for each neighboring processor, at



the end of each atomic supernode execution.

In their paper Ramanujam and Sadayappan [16] gave a
linear programming formulation for the problem of finding
optimal tile shapes (thus determining optimal tile transfor-
mation H) that reduces communication by adjusting the tile
shape accordingly. The use of a communication function
that has to be minimized by linear programming approaches
was also used by Boulet et al. in [4]. Thus they gave a lin-
ear programming approach to determine optimal tile shape
for any given volume. The problem of determining the opti-
mal shape was surveyed, and more accurate conditions were
also given by others as Xue [20].

Nevertheless, all above approaches ignored the actual it-
eration space boundaries. Although tile shape is a deter-
minant of communication reduction, the ultimate objective
should be the overall tiled space completion time. Hodzic
and Shang [12] proposed a method to correlate optimal tile
size and shape, based on overall completion time reduction.
Their approach considers a straightforward time schedule,
where each processor executes all tiles along a specific di-
mension, by interleaving computation and communication
phases. All processors first receive data, then compute and
finally send result data to neighbors in explicitly distinct
phases, according to the hyperplane scheduling vector.

In [10] we proposed an alternative method for the prob-
lem of scheduling the tiles to processors. Each atomic
tile execution involves a communication and a computa-
tion phase and this is repeatedly done for all time planes.
We are compacting this sequence of communication and
computation phases, by overlapping them for the differ-
ent processors. The proposed method acts like enhanc-
ing the performance of a processor’s datapath with pipelin-
ing [15], because a processor computes its tile at & time
step and concurrently receives data from all neighbors to
use them at £ + 1 time step and sends data produced at
k — 1 time step. Experiments were conducted using MPI
send-receive blocking and non-blocking primitives. Com-
mon MPI _send, MPI receive primitives are usually imple-
mented as non-blocking ones. In fact, to overcome this, we
used synchronous primitives to emulate the blocking (non-
overlapping case) and non-blocking asynchronous ones for
the overlapping case. Results have shown that the overlap-
ping schedule is much better, however, in real world, hard-
ware should provide support for it.

In this paper, we extend our work of [10], taking into
consideration the new features (zero-copy and DMA) of
the aforementioned novel network interfaces. We now
use a cluster of Linux PCs with SCI Network Interface
Cards (NIC) connected to the 1/0 PCI bus. SCI NICs
support shared memory programming either through P10
(Programmed-10) messaging or through DMA. We are us-
ing their kernel-level DMA support for messaging. Invok-
ing kernel system calls, causes extra CPU cycles overhead.

However, we can avoid extra copying from user space to
kernel space (physical memory) when using DMA. We al-
locate user level pages which correspond to physical pre-
reserved memory regions, for DMA communications.

Under the above implemented scheme, we avoid most
of communication overhead and allow for actual computa-
tion to communication overlapping. All experimental re-
sults show that when the overlapping schedule is applied,
the overall completion time is considerably reduced, under
the condition of controlling the computation to communi-
cation grain.

The rest of the paper is organized as follows: In Sec-
tion 2, we present the modern communication architecture
features used in clusters and elaborate on SCI approach. In
Section 3 we analyze the properties of the non-overlapping
optimal time schedule of tiles, whereas in Section 4 we
introduce the pipelined approach of an overlapping time
schedule. In Section 5 we present a comparative experi-
mental evaluation of both scheduling approaches using SCI
primitives. Finally, in Section 6 we propose future work.

2 Clusters of Workstations — High Perfor-
mance Features

Recent advances in high speed networks and improved
microprocessor performance are making clusters of work-
stations an appealing vehicle for cost effective parallel com-
puting. The trend in parallel computing is to move away
from custom-designed platforms of the established HPC in-
dustry to general purpose systems consisting of loosely cou-
pled components built up from single or multi-processor
workstations or PCs.

The de-facto 100Mbps networking of commaodity clus-
ters can be a bottleneck for many applications, when scaling
beyond a small number of nodes. In the last years, new net-
working technologies such as SCI [11], Myrinet and Gigabit
Ethernet offer increased bandwidth and low startup laten-
cies, which however, are never efficiently utilized by user
applications. Therefore, high-performance clusters are in-
troduced, which provide the computationally intensive ap-
plications with increased performance using special com-
munication primitives, such as Zero-Copy Protocols and
DMA transfers.

2.1 Zero-Copy Protocols

Network protocol stacks, such as TCP/IP, aggravate the
communication procedure with the extra copying of data
sent or received, to and from kernel space, respectively. As
Fig. 1 depicts, when sending data from an application (user
space) buffer to the network, data must be initially copied
from the application buffer to kernel buffers. TCP, IP and



network headers must be added and then, as a packet, trans-
ferred to NIC’s buffer for transmission. A respective proce-
dure takes place when data reach the receiving node.
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Figure 1. Single-Copy Protocol and packeti-
zation process

SCI Zero-Copy: The previous procedure is unavoidable
when using customary network technologies, but could be
avoided when novel communication technologies are used.
SCI achieves Zero-Copy Communication, since it supports
a Distributed Shared Memory approach, which is imple-
mented using kernel area memory mapped regions for com-
munication. An SCI communication scenario involves the
following stages: A process in an SCI node exports a mem-
ory segment which is imported by a process that resides in
another SCI node. Every imported memory segment is di-
rectly mapped to the PCI /O space of the PCI-SCI NIC. It is
part of the importer’s (process) virtual memory through the
prior invocation of an SCIConnectSegment () driver
call. When the importing node needs to send data, it just
writes them directly to the imported memory segment (thus,
no kernel copies). Data are transferred to the exporter’s
memory and communication is performed, without any ker-
nel intervention. No other data processing is needed within
each send, since SCI packetization and flow control is com-
pletely in hardware.

2.2 DMA transfers

Message data can be usually transferred to the NIC in
two ways; Programmed 1/0 (P10) mode and DMA mode.
In PIO mode, CPU handles data transferring completely,
word by word. For example, data transferring of 1Kwords
involves the initial copying of these words from main mem-
ory to the NIC’s buffers with the aid of CPU. From a par-
allel application’s point of view, these are considered “lost”
CPU cycles, since useful calculations could have been exe-
cuted instead. On the contrary, using DMA mode, CPU just
programs the NIC’s DMA engine with the information of

which data to transfer from main memory and where to send
it (Fig. 2). CPU is not used (or blocked from a program’s
perspective) during the transfer and can perform other (use-
ful) tasks.

SCI DMA approach: The DSM feature of SCI al-
lows the efficient use of its DMA capabilities. Using
special SCI driver calls, the system returns physically
contiguous allocated memory. This is performed using
the _get_free_pages () kernel routine. The allocated
memory is first “pinned down” and then mapped to user’s
virtual memory (Fig. 3). User is able to read/write that
memory region like the ordinary memory regions returned
by LIBCmalloc (). Despite the fact that DMA transfer is
only invoked as a kernel system call, the complete transfer
of the specific memory area will be performed with only one
DMA invocation. On the contrary, even if the NIC in Fig. 1
was DMA enabled, a new DMA invocation should take
place for each {data, TCP,IP,NET} packet, which would be
time consuming.
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Figure 3. Locked and memory mapped "RAM
device" for SCI communications

2.3 Combined approach

In this paper, we extend our work of [10] by propos-
ing the use of a cluster of Linux PCs with SCI Network



Interface Cards (NIC) connected to the 1/0 PCI bus. We
map process pages to physical pre-reserved pinned down
memory regions, especially for DMA communications. The
mapping procedure assists in implementing a zero copy
mechanism, since accesses to mapped pages corresponds
to accesses in physically contiguous kernel memory. In this
way, we also satisfy DMA’s prerequisite that data are lo-
cated in contiguous physical memory, since most DMA en-
gines can only access physical memory addresses.

We propose the use of DMA to remote write data to
neighboring nodes, while the CPU is performing calcula-
tions. Every node reserves the aforementioned pinned down
regions of memory as message buffers. Buffers serving as
destinations need to be exported to the SCI global address
space, in contradiction to those serving as source buffers.
According to the SCI communication protocol, senders im-
port exported destination segments to their virtual address
space. DMA is then instructed to transfer data from a source
buffer to an imported destination buffer. We use the SISCI
API [6], [9], for all system calls related to SCI. Synchro-
nization between communicating nodes is achieved through
the SCI interrupt mechanism.

2.4 Preliminaries- Supernode Transformation

In a supernode (tiling) transformation, the loop index
space J" is partitioned into identical n-dimensional paral-
lelepiped areas (tiles or supernodes) formed by n indepen-
dent families of parallel hyperplanes. Supernode transfor-
mation is defined by the n-dimensional square matrix H.
Each row vector of H is perpendicular to one family of hy-
perplanes forming the tiles.

Dually, supernode transformation can be defined by n
linearly independent vectors, which are the sides of the
supernodes. Similar to matrix H, matrix P contains the
side-vectors of a supernode as column vectors. It holds
P = H~'. The reader is referred to [10] for a thorough
analysis.

Formally supernode transformation is defined as follows:

. 7n 2n S |_H]_]

r:Z" — Z°" r(j) = [j—HlLHjJ },
where | Hj| identifies the coordinates of the tile that index
point 5 (41, ja2, - . -, jn) iSmappedtoand j— H ~*| Hj] gives
the coordinates of j within that tile relative to the tile origin.
Thus the initial n-dimensional index space is transformed
to a 2n-dimensional one, the space of tiles and the space
of indexes within tiles. Indexes within tiles have to be se-
quentially executed, while tiles themselves can be assigned
to processors and executed in parallel according to a valid
hyperplane schedule as we will see in Sections 3 and 4. The
tiled space J° and the supernode dependence matrix D~
are defined as follows: J° = {j°|j° = |Hj]|,j € J"},

DS = {d%|d° = |H(jo +d)|,d € D,jo € J"0 <
|Hjo| < 1} where j, denotes the index points belonging
to the first complete tile starting from the origin of the index
space J" (details can be found in [10]).

In this paper we assume that all dependence vectors are
smaller than the tile size, thus they are entirely contained in
each supernode’s area, which means that |[HD| < 1 or al-
ternatively that the supernode dependence matrix D con-
tains only 0’s and 1’s. This assumption is quite reasonable
since dependence vectors for common problems are rela-
tively small, while tile sizes may result to be orders of mag-
nitude greater in systems with very fast processors. In this
case every tile needs to exchange data only with its nearest
neighbors, one in each dimension of J ™. The number of in-
dex points contained in a supernode expresses the respective
computation cost of this supernode (tile), and is calculated
by det(P). Thus we define Vo, = det(P) = g, where g
is called the tile grain or size.

The communication cost of a tile is proportional to the
number of iteration points that need to send data to neigh-
boring tiles, in other words, the sum of dependence vec-
tors cutting the supernode’s boundaries. An analytical for-
mula to calculate the exact communication cost was given in
[20],[4] thus enabling the calculation of matrix H that im-
poses the minimum amount of communication for a given
supernode size.

Finally, if HD > 0, tiles are atomic and preserve the
initial execution order. Consequently the tiled index space
J*° can be scheduled using similar techniques to the initial
index space J™. In this paper we use linear schedules, thus,
atile 5 € J5 will be executed at ¢ ;s = IIj¥ + t, where
to = —minIli® : i5 € JS.

3 Non-overlapping Schedule

In [12], Hodzic and Shang have presented a scheme for
scheduling loops that have been transformed through a su-
pernode transformation. Their approach is to minimize total
execution time, as follows: The optimal tile size ¢ is de-
termined by the actual parallel architecture parameters i.e.
communication to computation grain. Given the tile size,
they calculate the optimal tile transformation H that reduces
communication cost for each tile. The rows of matrix H
determine the actual tile shape. Relative sizes for tile sides
and shape are defined by the dependence vectors of the al-
gorithm, whereas tile volume V.., (Size g) is defined by
the hardware parameters. Once H is fully determined, it
is applied to the original index space. The resulting tiled
space J° is scheduled using a linear time hyperplane II.
All tiles along a certain dimension are mapped to the same
processor. Total execution of tiles consists of successive
computation phases interleaved with communication ones.
A processor receives the data needed to execute a tile at time



step 4, performs the computations and sends to its neighbor-
ing processors the boundary data, which will be used for tile
calculations in time step i + 1.

Thus the total execution time is given by:

T = P(g) (tcomp + tcomm); (1)

where P(g) is the number of time hyperplanes needed to
execute the algorithm, ¢..,,,, the execution time of a tile,
teomm 1S the communication time and consists of a startup
latency and transmission time ty.qnsmit, thUS teomm =
tstartup + ttransmit- Clearly, the total execution time de-
pends on the tile size g, since it affects the number of time
planes, the computation cost (tcomp = Gtecomp,, Where
teomp, 1S COmMputation cost of a single iteration) and the
communication volume (Veomm)-

Let us now consider the implementation of the above
schedule in a cluster of workstations, interconnected with
a fast local area network. In this context, the execution
time of a computation and communication phase consists
of: the computation time ¢ ., the startup communication
time ¢5¢4,¢4p and the send transmission time ¢4, 4nsmit-

The overall parallel loop execution consists of atomic
computations of tiles interleaved with communication for
the transmission of the results to neighboring processors.
Since tiled space J° has the unitary dependence vectors,
the optimal linear time schedule can be easily proved to be:
IT =[11...1]. Analytically, each time step between suc-
cessive hyperplanes contains a triplet of compute-startup-
transmit non-overlapped subphases for each tile. There is
no separate receive phase, since receive is performed auto-
matically by the recipient’s NIC, without any intervention
of the respective CPU. All tiles along a specific dimension
are mapped to the same processor. If we cluster together
the startup and transmit subphases and call it "communica-
tion subphase” (t..mm ), then we see that the overall sched-
ule has computation subphases interleaved with communi-
cation ones(Fig. 4).

This quite straightforward model of execution results in
very good execution times, since it exploits all inherent par-
allelism at the tile level. However, an important drawback
is that each processor has to wait for essential data before
starting the computation of a certain tile, and wait for the
transmission of the results to its neighbors, thus resulting in
a significant computationally idle processor time.

4 Overlapping Schedule

The linear schedule presented in the previous section
achieves a moderate processor utilization. All processor
nodes are concurrently either computing or communicating
their results to their neighbors. What really imposes such
inefficient processor utilization is the data flow between

0.

0,7

nNO,

e e T

t 5 3 7 s o

compute |_comm_| compute | comm
compute | comm JAcompute |_comm | compute | comm

compute | comm | compute | comm facompute [ comm |

K000

Figure 4. Non-overlapping Time Schedule
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Figure 5. Overlapping Time Schedule

successive time steps. Specifically, it seems that computa-
tions and respective communication substeps for each time
step should be serialized to preserve the correct execution
order. Every processor should first compute data, then ini-
tiate the communication and finally send the results to be
used at the next step by its neighbor (Fig. 4).

A much more thorough look at the correct data flow in
the non-overlapping case, reveals the following interesting
property:

If we slightly modify the initial schedule, then we could
overlap some of actual communication time with compu-
tations. This means that, within each time step, the node
should send and receive data that is not directly dependent
to the data computed at this step. A valid execution scheme
would be for a processor to compute data received the previ-



ous time step, receive data that will be used in computations
the next time step, send data that were computed the previ-
ous time step. In this case, every processor computes a tile,
and receives+sends data needed in the next step or produced
in the previous step, respectively.

In [1] a linear hyperplane for the optimal time schedul-
ing of Unit Execution Times—Unit Communication Times
grid task graphs was presented. Grid graphs are like itera-
tion spaces with unitary dependence vectors. Considering
UET-UCT model, it is like having communication phases
that need equal time to computation ones. In [1], it was
also proven that the optimal space schedule for UET-UCT
was to assign all points along the maximal dimension to the
same processor.

The analogy of equal computation to communication
times with our case is obvious. If we could achieve a com-
putation to communication grain g, so that the time needed
to communicate with others is equal to the time needed
for the CPU to compute, then we could apply this slightly
modified linear schedule and the respective space schedule.
The optimal time schedule for tile j (57, 55, . . ., j2) inthis
case is 257 + 245 + ...+ 257 + 252, + ...+ 250 + 57
(starting from ¢ = 0) where 1 is the dimension along which
all tiles are mapped to the same processor.

In Fig. 5 the overlapping schedule is shown. Consider,
for example, processor P3 at & time step: While it makes
the computation for a tile, he concurrently sends the results
produced during & — 1 time step and receives data from
neighbors, to be used during the computation of next tile
at k + 1 time step. Note the arrows show in Fig. 5. They
depict the actual flow of data between successive time steps
(computes—dma setups —transmits) in a pipelined way. The
outcome of this schedule is to have successive computations
overlapped with communication phases, thus a 100% theo-
retical processor utilization.

If we consider the possibility to overlap computation
with communication, then we could have the following
scheme: A processor first initiates all the nonblocking send
operations and then performs the actual atomic tile com-
putations. While the processor performs computations, the
NIC is receiving data from neighbors and sends previously
computed data to others as well.

According to the previous properties, the total execution
time for the overlapping schedule is given by:

Toverlap =P (g)X (2)
X (tstart_dma + max(tcompa tcomm_dma) + tsync);

where P'(g) = 2(z1(g)+a2(9)+. . .+zj-1(g9)+zjt1(9)+
ot wa(g) +a(g) +1 =230, wi(g) + zi(9) + 1
is the total number of hyperplanes and j is the maximal
coordinate. The time needed to initiate the DMA engine
IS tstart_dmar tcomp 15 the tile execution time, t.omm_dma
is the communication time which can be overlapped with

computation and ¢, is required synchronization time be-
tween successive time steps.

5 Experiments
5.1 Execution Environment

We used 9 800MHz Pentium-111 nodes interconnected
with an SCI network based on Dolphin’s D330 SCI NICs.
Each node has 128MB of main memory. The OS is Linux
with kernel from the 2.4.x series. In order to assess the ben-
efits of high performance cluster features, we ran two type
of experiments. The first one implements the overlapping
algorithm and is compared to the second one which imple-
ments the non-overlapping algorithm.

The test application was implemented using C and the
SISCI API [9]. Execution times were measured using
gettimeofday() Linux system call.

5.2 Experimental Application

We experimented using the following 3-D loop:

for(i=1; i<DIMX; i++)
for(j=1; j<DIMY; Jj++)
for(k=1; k<DIMZ; k++)
A[i]1 [31[k] =
func (A[i-11 (3] [k],A[i] [§-11 [k],A[i] [3] [k-11);

The 9 cluster nodes were organized as a 3 x 3 array of
processors. The optimal tiling is in rectangular tile shapes.
Each tile is a cube with i7, ik and k7 sides. Without lack of
generality, we selected & dimension to be the largest one, so
all tiles along k-axis are mapped to the same processor P;,
i = (0,...,8). During each time step, every processor in
the ¢j plane with coordinates (i, j) receives from neighbor-
ing processors (i — 1, j) and (i, j — 1), computes and sends
to processors (i + 1, j) and (i,5 + 1).

The internal part of the nonblocking program’s main
loop can be seen in Table 1. Since send dma () is not
blocking, the compute () call is concurrently executed.
After the execution of wait _for dma (), it is assured
that both computation and communication are already com-
pleted. The blocking program is implemented by swapping
the compute () and send_dma (n+1,data) calls.

When evolving from a multicycle non-pipelined data-
path to a pipelined one, we introduce pipeline registers
among consecutive stages [15]. Similarly, when evolving
from the non-overlapping schedule to the overlapping one,
we added extra buffers for receiving and sending data, while
transforming the data on the tile’s cube (Fig. 6).

The above test application was executed using various
DIMXxXDIMYXDIMZ initial J? index spaces. Typical experi-
mental values for DIMX=DIMY were 12 or 24 and for DIMZ
were 256K, 512K, or 2048 K. \We measured execution



Table 1. Internal Part of Program’s Main Loop.

sequence of functions respective SCI calls Action performed
trigger_interrupt (n-1) SCITriggerInterrupt() Inform “previous” node(s) (n-1) “I am ready to accept data”
wait_for_interrupt (n+1) | SCIWaitForinterrupt() Wait till “next” node(s) (n+1) is ready to receive data
send-dma (n+1, data) SCIPostDMAQueue() Initiation of DMA transferring to neighboring nodes
compute () compute() Computation
wait_for_dma () SCIWaitForDMAQueue() | Wait for DMA to complete
trigger_interrupt (n+1) SCITriggerinterrupt() Inform “next” node(s) (n+1) “Your data have arrived”
wait_for_interrupt (n-1) | SCIWaitForinterrupt() Wait till “previous” node(s) (n-1) has finished sending data

receive(from_proc(i,j-1), k+lj/'
J

receive(from_proc(i-1,j), k+1)|

send(to_proc(i+1,j), k-1)
J

send(to_proc(i,j+1), k-1)
]

receive(from processor, time to be used)
send(to processor, time produced)

Figure 6. Extra Buffering for the Overlapping
Case

times for the following overlapping and non-overlapping
cases 12 x 12 x 512K (also in [17]), 24 x 24 x 256K and
24 x24 x 2048K.

From (2), the total (theoretical) execution time for the
overlapping case is:

Toverlap(z) =
(2 ;ﬂ T; +xp + ]-)(tstart_dma + tcomp + tsync); (3)
K3

where in our case, because there are 3 processors in each
dimension s and j, we have 3, x; = 2 x (3 — 1). Since
the initial space height is DIMZ and tile height z is the prob-
lem’s variable, there are DIMZ/ z tiles in k£ dimension, o z,
isequal to DIMZ/z — 1.

The communication phase of a node with each neighbor-
ing node involves the receiving or sending of x; x z floats
or4 x x; x z bytes.

Due to need for synchronization between any two suc-
cessive time steps, nodes have to signal each other us-
ing SCI interrupts that impose a constant delay, tsyn. =
AXtsci_interrupt- YV ran several ping-pong tests and derived
the values t,c;_start_dma = 49-2usec and tscizinterrupt =

18.8usec.

The total computation time for each application execu-
tion, either overlapping or non-overlapping, is constant and
can be seen in Fig. 7 for the ”non-overlapping case” and
the "overlapping case without SCI”. The latter concerns the

execution of the overlapping case, having commented out
all the SCI communication functions. In this way we only
measure the pure computation time. This is measured using
the following code:

gettimeofday (start, NULL) ;
compute () ;
gettimeofday (end, NULL) ;

The computation time for the overlapping case, when
including the SCI communication functions is shown in
Fig. 7. The decreasing plot is due to the frequent kernel
invocations which are servicing interrupts for SCI commu-
nication: local CPU, apart from compute (), also handles
both SCITriggerInterrupt executed on a neighbor-
ing node and SCIPostDMAQueue executed on the current
node. In the beginning of each experiment, the tile size is
small, so there is a substantial number of exchanged inter-
rupt signals (SCITriggerInterrupt) and data trans-
missions (SCIPostDMAQueue) routines existing in main
loop body. When the number of iterations is reduced due
to increased tile size, the CPU time consumed on handling
interrupts is decreased, and finally converges to the non-
overlapping case. Thus, the pure compute time used to
calculate the theoretical plots should come from the non-
overlapping case.
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Figure 7. Comparison of Experimental Com-
putation Times for 12 x 12 x 512K



Overlapping and non-overlapping overall execution
times for each problem are plotted in Figs. 8, 9 and 10. It
can be seen that, in all cases, overlapping (pipelined) exe-
cutions, which take advantage of the cluster’s high perfor-
mance communication features, are considerably faster than
the non-overlapping (blocked) ones.
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In Fig. 11, the experimental result is compared to our an-
alytical result derived from (3). The plot for the experimen-
tal time measured, is very close to the theoretical function.
This is due to the fact that (3) includes a thorough and de-
tailed analysis of actual possible time delay parameters. For
example, from the minimum of each function in Fig. 11, it
can be easily calculated that the difference between experi-
mental minimum and theoretical minimum is nearly 0.2%,
achieved in very close values of tile heights.
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Figure 11. Comparison of Experimental and
Theoretical Minima (Fig. 9 zoomed in)

6 Conclusions— Future Work

In this paper we described the performance benefits at-
tained when using memory mapped network interfaces with
zero-copy features and DMA engines in parallel loop ex-
ecution. We reduced overall execution time by overlap-
ping computation and communication for each tile execu-
tion. We have shown that the theoretically calculated overall
time, following the optimal hyperplane transformation and
the pipelined schedule, is very similar to the experimental
results.

However, if we could avoid all kernel initialization of
DMA, then the initial DMA startup time could have been
considerably reduced. Since DMA is initiated through calls
from kernel level, we thus introduce extra overhead, which
could increase overall execution time. User Level Network-



ing architectures, such as U-Net [7] and the ensuing VIA
standard [19], allow for direct access of the NIC from vir-
tual memory areas and without any kernel intervention (see
[2], [3D).

At the moment there is no public available hardware VIA
implementation for PCI-SCI cards, that uses DMA as com-
munication mode. In fact, in [8], a VIA solution for SCI
was presented, using PI1O as the only available communi-
cation mode. It is obvious that we do need overlapping, so
even avoiding kernel syscall overheads is not enough. In
[18] a novel hardware implementation of a PCI-SCI bridge
is presented, supporting both downstream and upstream Ad-
dress Translation Tables (ATTs), thus capable of exporting
any arbitrary virtual memory page and access it directly by
DMA.
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