
Enhancing the Performance of Tiled Loop Execution onto Clusters using
Memory Mapped Network Interfaces and Pipelined Schedules

Aristidis Sotiropoulos, Georgios Tsoukalas and Nectarios Koziris
National Technical University of Athens

Dept. of Electrical and Computer Engineering
Computing Systems Laboratory

Zografou Campus, Zografou 15773, Greece
e-mail: �sotirop, gtsouk, nkoziris�@cslab.ece.ntua.gr

Abstract

This paper describes the performance benefits attained
using enhanced network interfaces to achieve low latency
communication. Our experimental testbed concerns the
parallel execution of tiled nested loops onto a Linux PC
cluster with PCI-SCI NICs (Dolphin D330). Tiles are nec-
essarily exchanging data and should also have large com-
putational grain, so that their parallel execution becomes
beneficial. We schedule tiles much more efficiently by ex-
ploiting the inherent overlapping between communication
and computation phases among successive, atomic tile ex-
ecutions. The applied nonblocking schedule resembles a
pipelined datapath where computation phases are over-
lapped with communication ones, instead of being inter-
leaved with them. We are using DMA communication mode,
to remote write (send) data to other nodes, while the host
CPU is computing all iterations within each tile. We achieve
zero-copy communication through pinned-down physical
memory regions for DMA (PCI exported segments to SCI
global space). Results illustrate that when using enhanced
communication features such as DMA transfers, memory-
mapped interfaces and zero-copy mechanisms, overall per-
formance is considerably enhanced than when typically us-
ing conventional, CPU and kernel bounded, communication
primitives.

1 Introduction

One of the most difficult areas in the field of paral-
lel computing is loop parallelization and efficient map-
ping onto different parallel architectures. The key issue in
loop mapping is to mitigate communication overhead by
efficiently controlling the computation to communication
grain. In distributed memory machines, explicit message

passing incurs extra time overhead due to message startup
latencies and data transfer delays.

Supernode partitioning of the iteration space was pro-
posed by Irigoin and Triolet in [13]. In order to alleviate the
communication overhead, neighboring iteration points are
grouped together to build a larger computation node (tile)
that can be atomically executed without any intervention.
Data exchanges are also grouped and performed within a
single message for each neighboring processor, at the end
of each atomic supernode execution.

In their paper Ramanujam and Sadayappan [16] gave a
linear programming formulation for the problem of finding
optimal tile shapes (thus determining optimal tile transfor-
mation �) that reduces communication by adjusting the tile
shape accordingly. The use of a communication function
that has to be minimized by linear programming approaches
was also used by Boulet et al. in [4]. Thus they gave a lin-
ear programming approach to determine optimal tile shape
for any given volume. The problem of determining the opti-
mal shape was surveyed, and more accurate conditions were
also given by others as Xue [22].

Nevertheless, all above approaches ignore the actual it-
eration space boundaries. Although tile shape is a deter-
minant of communication reduction, the ultimate objective
should be the overall tiled space completion time. Since
modern microprocessors are very fast and capable of exe-
cuting several computations in very few microseconds, tile
sizes are assumed very large, sometimes grouping together
thousands of iterations. So, for a computation to commu-
nication grain to be meaningful, tiles are large enough to
encapsulate all dependence vectors. Thus every tile needs
to exchange data only from its neighbors, one in each di-
mension. This is a very reasonable assumption, i.e. very
large tiles, taking into consideration the high computational
power of modern processors in comparison with network
latencies.



Hodzic and Shang [12] proposed a method to correlate
optimal tile size and shape, based on overall completion
time reduction. Their approach considers a straightforward
time schedule, where each processor executes all tiles along
a specific dimension, by interleaving computation and com-
munication phases. All processors first receive data, then
compute and finally send result data to neighbors in explic-
itly distinct phases, according to the hyperplane scheduling
vector.

In [10] we proposed an alternative method for the prob-
lem of scheduling the tiles to processors. Each atomic
tile execution involves a communication and a computa-
tion phase and this is repeatedly done for all time planes.
We are compacting this sequence of communication and
computation phases, by overlapping them for the differ-
ent processors. The proposed method acts like enhanc-
ing the performance of a processor’s datapath with pipelin-
ing [15], because a processor computes its tile at � time
step and concurrently receives data from all neighbors to
use them at � � � time step and sends data produced at
� � � time step. Implementation was done using MPI
send-receive blocking and non-blocking primitives. Com-
mon MPI send, MPI receive primitives are usually imple-
mented as non-blocking ones. In fact, to overcome this, we
used synchronous primitives to emulate the blocking (non-
overlapping case) and non-blocking asynchronous ones for
the overlapping case. Results have shown that the overlap-
ping schedule is much better, however, in real world, hard-
ware should provide support for it.

It is obvious that, in order to achieve true overlapping of
computations with communication phases, we have to alle-
viate the CPU from the burden of carrying the data transfers
between neighboring nodes. In fact, when using common
communication libraries with regular send-receive primi-
tives (i.e. sockets, or PVM or MPI calls etc.), then CPU
is mainly responsible for the copying of the message from
user space to kernel space and then to NIC buffers. Even,
when calls are claimed to be non-blocking, the invoked sys-
tem calls are stealing CPU cycles. How could it be possible
under this scheme to achieve actual overlapping? Solution
is given from the DMA. Although DMA incurs extra initial
latency, it assumes all transfer without annoying the CPU,
which in its turn can perform actual computations. DMA
startup latency is due to copying from user (virtual) memory
area, to specific (physical memory) pinned down regions,
especially reserved for DMA transfers.

In this paper, we extend our work of [10] by proposing
the use of a cluster of Linux PCs with SCI Network Inter-
face Cards (NIC) connected to the I/O PCI bus. SCI NICs
support shared memory programming either through PIO
(Programmed-IO) messaging or through DMA. We are us-
ing their kernel-level DMA support for messaging. Invok-
ing kernel system calls, causes extra CPU cycles overhead.

However, we can avoid extra copying from user space to
kernel space (physical memory) when using DMA. We al-
locate user level pages which correspond to physical pre-
reserved memory regions, for DMA communications.

Under the above implemented scheme, we avoid most
of communication overhead and allow for actual computa-
tion to communication overlapping. All experimental re-
sults show that when the overlapping schedule is applied,
the overall completion time is considerably reduced, under
the condition of controlling the computation to communi-
cation grain.

The rest of the paper is organized as follows: In Sec-
tion 2, we present the modern communication architecture
features used in clusters and elaborate on SCI approach. In
Section 3 we analyze the properties of the non-overlapping
optimal time schedule of tiles, whereas in Section 4 we
introduce the pipelined approach of an overlapping time
schedule. In Section 5 we present the experimental re-
sults by implementing both scheduling approaches using
SCI primitives. Finally, in Section 6 we propose future
work.

2 Clusters of Workstations – High Perfor-
mance Features

Recent advances in high speed networks and improved
microprocessor performance are making clusters of work-
stations an appealing vehicle for cost effective parallel com-
puting. The trend in parallel computing is to move away
from custom-designed platforms of the established HPC in-
dustry to general purpose systems consisting of loosely cou-
pled components built up from single or multi-processor
workstations or PCs.

The de-facto 100Mbps networking of commodity clus-
ters can be a bottleneck for many applications, when scaling
beyond a small number of nodes. The last years, new net-
working technologies such as SCI [11], Myrinet and Gigabit
Ethernet offer increased bandwidth and low startup laten-
cies, which however, are never efficiently utilized by user
applications. Therefore, high-performance clusters are in-
troduced, which provide the computationally intensive ap-
plications with increased performance using special com-
munication primitives, such as Zero-Copy Protocols and
DMA transfers.

2.1 Zero-Copy Protocols

Network protocol stacks, such as TCP/IP, aggravate the
communication procedure with the extra copying of data
sent or received, to and from kernel space, respectively. As
Fig. 1 depicts, when sending data from an application (user
space) buffer to the network, data must be initially copied
from the application buffer to kernel buffers. TCP, IP and



network headers must be added and then, as a packet, trans-
ferred to NIC’s buffer for transmission. A respective proce-
dure takes place when data reach the receiving node.

TCP IP NET

1 2

user space

kernel space

TCP IP NET

buffer

su
pe

r f
as

t

NIC

packet 2packet 1

Figure 1. Single-Copy Protocol and packeti-
zation process

SCI Zero-Copy: The previous procedure is unavoidable
when using customary network technologies, but could be
avoided when novel communication technologies are used.
SCI achieves Zero-Copy Communication, since it supports
a Distributed Shared Memory approach, which is imple-
mented using kernel area memory mapped regions for com-
munication. An SCI communication scenario involves the
following stages: A process in an SCI node exports a mem-
ory segment which is imported by a process that resides in
another SCI node. Every imported memory segment is di-
rectly mapped to the PCI I/O space of the PCI-SCI NIC. It is
part of the importer’s (process) virtual memory through the
prior invocation of an SCIConnectSegment() driver
call. When the importing node needs to send data, it just
writes them directly to the imported memory segment (thus,
no kernel copies). Data are transferred to the exporter’s
memory and communication is performed, without any ker-
nel intervention. No other data processing is needed within
each send.

2.2 DMA transfers

Message data can be usually transferred in two ways;
Programmed I/O (PIO) mode and DMA mode. In PIO
mode, CPU handles data transferring completely, word by
word. For example, data transferring of 1Kwords involves
the initial copying of these words from main memory to the
NIC’s buffers with the aid of CPU. From a parallel applica-
tion’s point of view, these are considered “lost” CPU cycles,
since useful calculations could have been executed instead.
On the contrary, using DMA mode, CPU just programs the
NIC’s DMA engine with the information of which data to
transfer from main memory and where to send it (Fig. 2).

CPU is not used (or blocked from a program’s perspective)
during the transfer and can perform other (useful) tasks.

SCI DMA approach: The DSM feature of SCI al-
lows the efficient use of its DMA capabilities. Using
special SCI driver calls, the system returns physically
contiguous allocated memory. This is performed using
the get free pages() kernel routine. The allocated
memory is first “pinned down” and then mapped to user’s
virtual memory (Fig. 3). User is able to read/write that
memory region like the ordinary memory regions returned
by LIBC malloc(). Despite the fact that DMA transfer is
only invoked as a kernel system call, the complete transfer
of the specific memory area will be performed with only one
DMA invocation. On the contrary, even if the NIC in Fig. 1
was DMA enabled, a new DMA invocation should take
place for each �data,TCP,IP,NET� packet, which would be
time consuming.

1 2

MEM

SA

0

SA+SZ

DMA controller

start_address= SA
size= SZ
read/write= R/W
start= GO

CPU

SCI
card SCI network

Figure 2. DMA or nonblocking send

CPU

VMA

PMA

SCI

process

SCI
network

memory mapped
"RAM device"

segment

mapped to

Figure 3. Locked and memory mapped "RAM
device" for SCI communications



2.3 Preliminaries - Supernode Transformation

In a supernode (tiling) transformation, the loop index
space �� is partitioned into identical �-dimensional paral-
lelpiped areas (tiles or supernodes) formed by � indepen-
dent families of parallel hyperplanes. Supernode transfor-
mation is defined by the �-dimensional square matrix � .
Each row vector of � is perpendicular to one family of hy-
perplanes forming the tiles.

Dually, supernode transformation can be defined by �
linearly independent vectors, which are the sides of the
supernodes. Similar to matrix � , matrix � contains the
side-vectors of a supernode as column vectors. It holds
� � ���. The reader is referred to [10] for a thorough
analysis.

Formally supernode transformation is defined as follows:

� � �� �� ���� ���� �

�
����

� ��������

�
�

where ���� identifies the coordinates of the tile that index
point ����� ��� 	 	 	 � ��� is mapped to and ��������� gives
the coordinates of � within that tile relative to the tile origin.
Thus the initial �-dimensional index space is transformed
to a ��-dimensional one, the space of tiles and the space
of indexes within tiles. Indexes within tiles have to be se-
quentially executed, while tiles themselves can be assigned
to processors and executed in parallel according to a valid
hyperplane schedule as we will see in Sections 3 and 4. The
tiled space �� and the supernode dependence matrix 
�

are defined as follows: �� � ������ � ����� � � ���,

� � ��� ��� � ����� � ���� � � 
� �� � ���� �
����� � �� where �� denotes the index points belonging
to the first complete tile starting from the origin of the index
space �� (details can be found in [10]).

In this paper we assume that all dependence vectors are
smaller than the tile size, thus they are entirely contained in
each supernode’s area, which means that ��
� � � or al-
ternatively that the supernode dependence matrix 
� con-
tains only 0’s and 1’s. This assumption is quite reasonable
since dependence vectors for common problems are rela-
tively small, while tile sizes may result to be orders of mag-
nitude greater in systems with very fast processors. In this
case every tile needs to exchange data only with its nearest
neighbors, one in each dimension of � �. The number of in-
dex points contained in a supernode expresses the respective
computation cost of this supernode (tile), and is calculated
by ���� �. Thus we define ����� � ���� � � �, where �
is called the tile grain or size.

The communication cost of a tile is proportional to the
number of iteration points that need to send data to neigh-
boring tiles, in other words, the sum of dependence vec-
tors cutting the supernode’s boundaries. An analytical for-
mula to calculate the exact communication cost was given in

[22],[4] thus enabling the calculation of matrix � that im-
poses the minimum amount of communication for a given
supernode size.

Finally, if �
 	 �, tiles are atomic and preserve the
initial execution order. Consequently the tiled index space
�� can be scheduled using similar techniques to the initial
index space ��. In this paper we use linear schedules, thus,
a tile �� � �� will be executed at ��� � ��� � �� where
�� � ������� � �� � �� .

3 Non-overlapping Schedule

In [12], Hodzic and Shang have presented a scheme for
scheduling loops that have been transformed through a su-
pernode transformation. Their approach is to minimize total
execution time, as follows: The optimal tile size � is de-
termined by the actual parallel architecture parameters i.e.
communication to computation grain. Given the tile size,
they calculate the optimal tile transformation� that reduces
communication cost for each tile. The rows of matrix �
determine the actual tile shape. Relative sizes for tile sides
and shape are defined by the dependence vectors of the al-
gorithm, whereas tile volume ����� (size �) is defined by
the hardware parameters. Once � is fully determined, it
is applied to the original index space. The resulting tiled
space �� is scheduled using a linear time hyperplane �.
All tiles along a certain dimension are mapped to the same
processor. Total execution of tiles consists of successive
computation phases interleaved with communication ones.
A processor receives the data needed to execute a tile at time
step �, performs the computations and sends to its neighbor-
ing processors the boundary data, which will be used for tile
calculations in time step �� �.

Thus the total execution time is given by:

� � � ��������� � ������� (1)

where � ��� is the number of time hyperplanes needed to
execute the algorithm, ����� the execution time of a tile,
����� is the communication time and consists of a startup
latency and transmission time ���	�
���, thus ����� �
�
�	���� � ���	�
���. Clearly, the total execution time de-
pends on the tile size �, since it affects the number of time
planes, the computation cost (����� � ������� , where
������ is computation cost of a single iteration) and the
communication volume (�����).

Let us now consider the implementation of the above
schedule in a cluster of workstations, interconnected with
a fast local area network. In this context, the execution
time of a computation and communication phase consists
of: the computation time �����, the startup communication
time �
�	���� and the send transmission time ���	�
���.

The overall parallel loop execution consists of atomic
computations of tiles interleaved with communication for



the transmission of the results to neighboring processors.
Since tiled space �� has the unitary dependence vectors,
the optimal linear time schedule can be easily proved to be:
� � 	� � 	 	 	 �
. Analytically, each time step between suc-
cessive hyperplanes contains a triplet of compute-startup-
transmit non-overlapped subphases for each tile. There is
no separate receive phase, since receive is performed auto-
matically by the recipient’s NIC, without any intervention
of the respective CPU. All tiles along a specific dimension
are mapped to the same processor. If we cluster together
the startup and transmit subphases and call it ”communica-
tion subphase” (�����), then we see that the overall sched-
ule has computation subphases interleaved with communi-
cation ones(Fig. 4).

4

receive(data,p1)

3

2

send(data,p2)

compute

P3

P

P

P
P

comm
comm
comm

compute

compute

4P

2

P

P

P1

5

6

t t t t t t1 2 3 4 5 6

compute
compute
compute comm

comm
comm

compute
compute

compute

comm
comm
comm

Figure 4. Non-overlapping Time Schedule

This quite straightforward model of execution results in
very good execution times, since it exploits all inherent par-
allelism at the tile level. However, an important drawback
is that each processor has to wait for essential data before
starting the computation of a certain tile, and wait for the
transmission of the results to its neighbors, thus resulting in
a significant idle processor time.

4 Overlapping Schedule

The linear schedule presented in the previous section
achieves a moderate processor utilization. All processor
nodes are concurrently either computing or communicating
their results to their neighbors. It would be ideal if a node
was able to compute and send data at the same time. Mod-
ern network interfaces have DMA engines that enable them

2

3

4

1

2

3

4

5

6

t t t t t t

k−1 k k+1 k+2

1 2 3 4 5 6

P

P

P

P

P

P

P

P

P

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit dma transmit
compute

dma transmit
compute

transmitdma

dma transmit

compute

compute compute

Figure 5. Overlapping Time Schedule

to work in parallel with the CPU. This means that some
communication work can be overlapped with actual CPU
cycles. When communication work is finished, processor
receives an interrupt. In fact, even some part of the non-
blocking communication needs the CPU, but the transmis-
sion phase can be ideally overlapped with useful computa-
tion.

However, what really imposes such inefficient processor
utilization is the data flow between successive time steps.
Specifically, it seems that computations and respective com-
munication substeps for each time step should be serialized
to preserve the correct execution order. Every processor
should first compute data, then initiate the communication
and finally send the results to be used at the next step by its
neighbor (Fig. 4).

A much more thorough look at the correct data flow in
the non-overlapping case, reveals the following interesting
property:

If we slightly modify the initial schedule, then we could
overlap some of actual communication time with compu-
tations. This means that, within each time step, the node
should send and receive data that is not directly dependent
to the data computed at this step. A valid execution scheme
would be for a processor to compute data received the previ-
ous time step, receive data that will be used in computations
the next time step, send data that were computed the previ-
ous time step. In this case, every processor computes a tile,
and receives+sends data needed in the next step or produced
in the previous step, respectively.

In [1] a linear hyperplane for the optimal time schedul-



ing of Unit Execution Times–Unit Communication Times
grid task graphs was presented. Grid graphs are like itera-
tion spaces with unitary dependence vectors. Considering
UET–UCT model, it is like having communication phases
that need equal time to computation ones. In [1], it was
also proven that the optimal space schedule for UET–UCT
was to assign all points along the maximal dimension to the
same processor.

The analogy of equal computation to communication
times with our case is obvious. If we could achieve a com-
putation to communication grain �, so that the time needed
to communicate with others is equal to the time needed
for the CPU to compute, then we could apply this slightly
modified linear schedule and the respective space schedule.
The optimal time schedule for tile ������ � �

�
� � 	 	 	 � �

�
� � in this

case is ���� ����� � 	 	 	������� �������� 	 	 	����� � ��� ,
(starting from � � �) where � is the dimension along which
all tiles are mapped to the same processor.

In Fig. 5 the overlapping schedule is shown. Consider,
for example, processor P3 at � time step: While it makes
the computation for a tile, he concurrently sends the results
produced during � � � time step and receives data from
neighbors, to be used during the computation of next tile
at � � � time step. Note the arrows show in Fig. 5. They
depict the actual flow of data between successive time steps
(computes–dma setups –transmits) in pipelined way. The
outcome of this schedule is to have successive computations
overlapped with communication phases, thus a 100% theo-
retical processor utilization.

If we consider the possibility to overlap computation
with communication, then we could have the following
scheme: A processor first initiates all the nonblocking send
operations and then performs the actual atomic tile com-
putations. While the processor performs computations, the
NIC is receiving data from neighbors and sends previously
computed data to others as well.

According to the previous properties, the total execution
time for the overlapping schedule is given by:

�����	� � � ����


��
�	�� ��	 ���������� ����� ��	� � �
�����

(2)

where� ���� � ��������������	 	 	�����������������
	 	 	 � ������ � ����� � � � �

�
� ��� ����� � ����� � �

is the total number of hyperplanes and � is the maximal
coordinate. The time needed to initiate the DMA engine
is �
�	�� ��	, ����� is the tile execution time, ����� ��	

is the communication time which can be overlapped with
computation and �
��� is required synchronization time be-
tween successive time steps.

5 Experiments

5.1 Execution Environment

We used 9 800MHz Pentium-III nodes interconnected
with an SCI network based on Dolphin’s D330 SCI NICs.
Each node has 128MB of main memory. The OS is Linux
with kernel from the 2.4.x series. In order to assess the ben-
efits of high performance cluster characteristics to the prob-
lem’s solution, we ran two type of experiments. The first
one implements the overlapping algorithm, and is compared
to the second one which implements the non-overlapping
algorithm.

The test application was implemented using C and the
SISCI API [9]. Execution times were measured using
gettimeofday() Linux system call.

5.2 Experimental Application

We experimented using the following 3-D loop:

for(i=1; i<DIMX; i++)
for(j=1; j<DIMY; j++)
for(k=1; k<DIMZ; k++)
A[i][j][k] =
func(A[i-1][j][k],A[i][j-1][k],A[i][j][k-1]);

The 9 cluster nodes were organized as a � 
 � array of
processors. The optimal tiling is in rectangular tile shapes.
Each tile is a cube with ��, �� and �� sides. Without lack of
generality, we selected � dimension to be the largest one, so
all tiles along �-axis are mapped to the same processor � �,
� ��� 	 	 	 � ��. During each time step, every processor in the
�� plane with coordinates ��� �� receives from neighboring
processors �� � �� �� and ��� � � ��, computes and sends to
processors ��� �� �� and ��� � � ��.

The internal part of the nonblocking program’s main
loop can be seen in Table 1. Since send dma() is not
blocking, the compute() call is concurrently executed.
After the execution of wait for dma(), it is assured
that both computation and communication are already com-
pleted. The blocking program is implemented by swapping
the compute() and send dma(n+1, data) calls.

When evolving from a multicycle non-pipelined data-
path to a pipelined one, we introduce pipeline registers
among consecutive stages [15]. Similarly, when evolving
from non-overlapping schedule to the overlapping one, we
added extra buffers for receiving and sending data, while
transforming the data on the tile’s cube (Fig. 6).

The above test application was executed using various
DIMX 
 DIMY 
 DIMZ initial �� index spaces. Typical
experimental values for DIMX=DIMY were 12 or 24 and
for DIMZ were ���
 ����, ���
 ����, or ����
 ����.
We measured execution times for the following overlapping



Table 1. Internal Part of Program’s Main Loop.
sequence of functions respective SCI calls Action performed

trigger interrupt(n-1) SCITriggerInterrupt() Inform “previous” node(s) (n-1) “I am ready to accept data”
wait for interrupt(n+1) SCIWaitForInterrupt() Wait till “next” node(s) (n+1) is ready to receive data
send dma(n+1, data) SCIPostDMAQueue() Initiation of DMA transferring to neighboring nodes
compute() compute() Computation
wait for dma() SCIWaitForDMAQueue() Wait for DMA to complete
trigger interrupt(n+1) SCITriggerInterrupt() Inform “next” node(s) (n+1) “Your data have arrived”
wait for interrupt(n-1) SCIWaitForInterrupt() Wait till “previous” node(s) (n-1) has finished sending data

send(to processor, time produced)
receive(from processor, time to be used)

k

j

i

receive(from_proc(i,j−1), k+1)

receive(from_proc(i−1,j), k+1)

send(to_proc(i+1,j), k−1)

send(to_proc(i,j+1), k−1)

Figure 6. Extra Buffering for the Overlapping
Case

and non-overlapping cases ��
 ��
 ���� (also in [19]),
��
 ��
 ���� and ��
 ��
 �����.

From (2), the total (theoretical) execution time for the
overlapping case is:

�����	���� �
��
�
����

�� � �� � ����
�	�� ��	 � ����� � �
����� (3)

where in our case, because there are 3 processors in each
dimension � and �, we have

�
���� �� � �
 ��� ��. Since

the initial space height is DIMZ and tile height � is the prob-
lem’s variable, there are DIMZ�� tiles in � dimension, so ��
is equal to DIMZ�� � �.

The communication phase of a node with each neighbor-
ing node involves the receiving or sending of � � 
 � floats
or �
 �� 
 � bytes.

Due to need for synchronization between any two suc-
cessive time steps, nodes have to signal each other using
SCI interrupts that impose a constant delay, �
��� � � 

�
�� ���������. We ran several ping-pong tests and derived
the values �
�� 
�	�� ��	 � ��	���� and �
�� ��������� �
��	����.

The total computation time for each application execu-
tion, either overlapping or non-overlapping, is constant and
can be seen in Fig. 7 for the ”non-overlapping case” and

the ”overlapping case without SCI”. The latter concerns the
execution of the overlapping case, having commented out
all the SCI communication functions. In this way we only
measure the pure computation time. This is measured using
the following code:

gettimeofday(start, NULL);
compute();
gettimeofday(end, NULL);

The computation time for the overlapping case, when in-
cluding the SCI communication functions is shown in
Fig. 7. The decreasing plot is due to the frequent kernel
invocations which are servicing interrupts for SCI commu-
nication: local CPU, apart from compute(), also handles
both SCITriggerInterrupt executed on a neighbor-
ing node and SCIPostDMAQueue executed on the current
node. In the beginning of each experiment, the tile size is
small, so there is a substantial number of exchanged inter-
rupt signals (SCITriggerInterrupt) and data trans-
missions (SCIPostDMAQueue) routines existing in main
loop body. When the number of iterations is reduced due
to increased tile size, the CPU time consumed on handling
interrupts is decreased, and finally converges to the non-
overlapping case. Thus, the pure compute time used to
calculate the theoretical plots should come from the non-
overlapping case.

Overlapping and non-overlapping overall execution
times for each problem are plotted in Figs. 8, 9 and 10. It
can be seen that, in all cases, overlapping (pipelined) exe-
cutions, which take advantage of the cluster’s high perfor-
mance communication features, are considerably faster than
the non-overlapping (blocked) ones.

In Fig. 11, the experimental result is compared to our an-
alytical result derived from (3). The plot for the experimen-
tal time measured, is very close to the theoretical function.
This is due to the fact that (3) includes a thorough and de-
tailed analysis of actual possible time delay parameters. For
example, from the minimum of each function in Fig. 11, it
can be easily calculated that the difference between experi-
mental minimum and theoretical minimum is nearly �	��,
achieved in very close values of tile heights.



0.335

0.34

0.345

0.35

0.355

0.36

0.365

2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
(s

ec
)

Tile Height

Computation Time for 12x12x512K Iteration Space

overlapping with sci
overlapping without sci

non-overlapping

Figure 7. Comparison of Experimental Com-
putation Times for ��
 ��
 ����

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
(s

ec
)

Tile Height

Total Execution Time for 12x12x512K Iteration Space

experimental overlapping
theoretical overlapping

experimental non-overlapping

Figure 8. Experimental Total Execution Times
for ��
 ��
 ����

6 Conclusions – Future Work

In this paper we proposed a novel approach for the prob-
lem of minimizing the completion time for loop tiles. We
reduced overall execution time by overlapping computation
and communication for each tile execution. Experimental
results have shown that the theoretically calculated overall
time, following the optimal hyperplane transformation and
the pipelined schedule, is very similar to the experimental
results.

However, if we could avoid all kernel initialization of
DMA, then the initial DMA startup time could have been
considerably reduced. Since DMA is initiated through calls
from kernel level, we thus introduce extra overhead, which
could increase overall execution time. User Level Network-
ing architectures, such as U-Net [7] and the ensuing VIA

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
(s

ec
)

Tile Height

Total Execution Time for 24x24x256K Iteration Space

experimental overlapping
theoretical overlapping

experimental non-overlapping

Figure 9. Experimental Total Execution Times
for ��
 ��
 ����

5.5

6

6.5

7

7.5

8

8.5

2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
(s

ec
)

Tile Height

Total Execution Time for 24x24x2048K Iteration Space

experimental overlapping
theoretical overlapping

experimental non-overlapping

Figure 10. Experimental Total Execution
Times for ��
 ��
 �����

standard [21], allow for direct access of the NIC from vir-
tual memory areas and without any kernel intervention (see
[2], [3]).

At the moment there is no public available hardware VIA
implementation for PCI-SCI cards, that uses DMA as com-
munication mode. In fact, in [8], a VIA solution for SCI
was presented, using PIO as the only available communi-
cation mode. It is obvious that we do need overlapping, so
even avoiding kernel syscall overheads is not enough. In
[20] a novel hardware implementation of a PCI-SCI bridge
is presented, supporting both downstream and upstream Ad-
dress Translation Tables (ATTs), thus capable of exporting
any arbitrary virtual memory page and access it directly by
DMA.



0.72

0.731587
0.733535

0.77
51

2

14
84

15
36

35
00

T
im

e 
(s

ec
)

Tile Height

Total Execution Time for 24x24x256K Iteration Space

X
O

experimental overlapping
theoretical overlapping

Figure 11. Comparison of Experimental and
Theoretical Minima (Fig. 9 zoomed in)

References

[1] T. Andronikos, N. Koziris, G. Papakonstantinou, P.
Tsanakas, Optimal Scheduling for UET/UET-UCT General-
ized N-Dimensional Grid Task Graphs, Journal of Parallel
and Distributed Computing, vol. 57, no. 2, pp. 140–165, May
1999.

[2] M. Banikazemi, B. Abali, L. Herger, and D. K. Panda, De-
sign Alternatives for VIA and an Implementation on IBM
Netfinity NT Cluster, Special Issue of Journal of Parallel and
Distributed Computing on Cluster and Network-Based Com-
puting, to appear.

[3] M. Blumrich, Network Interface for Protected, User-Level
Communication, PhD thesis, Princeton University, April
1996.

[4] P. Boulet, A. Darte, T. Risset, Y. Robert, (Pen)-ultimate
tiling?, INTEGRATION, The VLSI Jounal, volume 17, pp.
33–51, 1994.

[5] F. O’ Carroll, H. Tezuka, A. Hori and Y. Ishikawa, The De-
sign and Implementation of Zero Copy MPI Using Commod-
ity Hardware with a High Performance Network, Proceed-
ings of the International Conference on Supercomputing, pp
243–249, Melbourne, Australia, 1998.

[6] M. Eberl, H. Hellwagner, B. Herland, M. Schulz, SISCI -
Implementing a Standard Software Infrastructure on an SCI
Cluster, 1st Workshop Cluster Computing, TU-Chemnitz,
November 1997.

[7] Th. Eicken, A. Basu, V. Buch and W. Vogels, U-Net: A User-
Level Network Interface for Parallel and Distributed Com-
puting, Proceedings of the 15th ACM Symposium on Op-
erating System Principles, Copper Mountain,Colorado, pp.
40–53, Dec 1995.

[8] K. Ghouas, K. Omang and H. Bugge VIA over SCI - Con-
sequences of a Zero Copy Implementation and Comparison
with VIA over Myrinet, in Proceedings of the Workshop on
Communication Architecture for Clusters (CAC’ 2001) in
conjunction with Int’l Parallel and Distributed Processing
Symposium (IPDPS ’01) San Francisco, April 2001.

[9] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser,
B. Johnsen, H. Kohmann, R. Nordstrom, P. Werner,
Low Level SCI software functional specification-
Software Infrastructure for SCI, ESPRIT Project
23174, http://www.dolphinics.com/downloads/nt/pdf zip/
SISCI API-2 1 1.pdf.

[10] G. Goumas, A. Sotiropoulos and N. Koziris, Minimizing
Completion Time for Loop Tiling with Computation and
Communication Overlapping, in Proceedings of IEEE Int’l
Parallel and Distributed Processing Symposium (IPDPS’01),
San Francisco, April 2001 (best paper award).

[11] H. Hellwagner, The SCI Standard and Applications of SCI,
Scalable Coherent Interface-Architecture and Software for
High-Performance Computer Clusters, edited by H. Hell-
wagner and A. Reinefield, Springer-Verlag, pp. 3–34, Sept.
1999.

[12] E. Hodzic, W. Shang, On Supernode Transformation with
Minimized Total Running Time, IEEE Trans. on Parallel and
Distributed Systems, vol. 9, no. 5, pp. 417–428, May 1998.

[13] F. Irigoin, R. Triolet, Supernode Partitioning, Proc. 15th
Ann. ACM SIGACT-SIGPLAN Symp. Principles of Pro-
gramming Languages, pp. 319–329, San Diego, California,
Jan 1988.

[14] V. Karamcheti and A. Chien, Software Overhead in Messag-
ing Layers: Where Does the Time Go?, Proceedings of the
6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 51–60,
October 1994.

[15] D. Patterson, J.Hennessy, Computer Organization & Design.
The Hardware/Software Interface. Morgan Kaufmann Pub-
lishers, pp.364–367, San Francisco, CA, 1994.

[16] J. Ramanujam, P. Sadayappan, Tiling Multidimensional It-
eration Spaces for Multicomputers, Journal of Parallel and
Distributed Computing, vol. 16, pp.108–120, 1992.

[17] M. Schulz, SISCI Pthreads Implementation report Technical
Report, ESPRIT Project 23174 - SISCI, Deliverable 4.1.4,
November 1999.

[18] F. Seifert, Development of system software to integrate the
Virtual Interface Architecture (VIA) into the Linux operating
system kernel for optimized message passing, Diploma The-
sis, University of Technology Chemnitz, September 1999.

[19] A. Sotiropoulos, G. Tsoukalas and N. Koziris, A Pipelined
Execution of Tiled Nested Loops onto a Cluster of PCs us-
ing PCI-SCI NICs, in Proceedings of the 2001 SCI-Europe
Conference, Dublin, Ireland, October 2001.

[20] M. Trams, W. Rehm, D. Balkanski and S. Simeonov, Mem-
ory Management in a Combined VIA/SCI Hardware, In pro-
ceedings of Intl. Workshop on Personal Computer based Net-
works of Workstations (PC-NOW 2000), held with IPDPS
2000,pp. 4-15, Cancun/Mexico, May 2000.

[21] The Virtual Interface Specification. Version 1.0,
http://www.viarch.org.

[22] J. Xue, Communication-Minimal Tiling of Uniform Depen-
dence Loops, Journal of Parallel and Distributed Computing,
vol. 42, no.1, pp. 42–59, 1997.


