Advanced Hybrid MPI/OpenM P Par allelization
Paradigms for Nested L oop Algorithms onto Clusters of
SMPs

Nikolaos Drosinos and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory
Zografou Campus, Zografou 15773, Athens, Greece
e-mail: {ndros, nkoziri$@cslab.ece.ntua.gr

Abstract. The parallelization process of nested-loop algorithm quapular
multi-level parallel architectures, such as clusters ofPSMis not a trivial is-
sue, since the existence of data dependencies in the algonihpose severe
restrictions on the task decomposition to be applied. Ia ggiper we propose
three techniques for the parallelization of such algorghmamely pure MPI
parallelization, fine-grain hybrid MPI/OpenMP parall@liion and coarse-grain
MPI1/OpenMP parallelization. We further apply an advancgoenplane schedul-
ing scheme that enables pipelined execution and the oyénigyof communica-
tion with useful computation, thus leading almost to fulllC&tilization. We im-
plement the three variations and perform a number of mierodd benchmarks
to verify the intuition that the hybrid programming modelué potentially ex-
ploit the characteristics of an SMP cluster more efficietithn the pure message-
passing programming model. We conclude that the overaibpaance for each
model is both application and hardware dependent, and pecpame directions
for the efficiency improvement of the hybrid model.

1 Introduction

Clusters of SMPs have emerged as the dominant high perf@aetamputing platform.
For these platforms there is an active research concernrtidhitional parallelization
programming paradigms may not deliver optimal performasage pure message-
passing parallel applications fail to take into considerathe 2-level SMP cluster ar-
chitecture. Intuitively, a parallel paradigm that uses ragnaccess for intra-node com-
munication and message-passing for inter-node commimicaéems to match bet-
ter the characteristics of an SMP cluster. Since MPI hasrhedbe de-facto message
passing API, while OpenMP has grown into a popular multe#tdling library, there is
important scientific work that addresses the hybrid MPI/@@E programming model.

The hybrid model has already been applied to real scienpifidi@ations ([3], [6]).
Nevertheless, a lot of important scientific work enlightémes complexity of the many
aspects that affect the overall performance of hybrid @ogr([2], [8], [10]). Also, the
need for a multi-threading MPI implementation that will eiéintly support the hybrid
model has been spotted by the research community ([11], [9])



However, most of the work on the hybrid OpenMP/MPI programgrparadigm
addresses fine-grain parallelization, e.g. usually ineraal parallelization of compu-
tationally intensive code parts through OpenMP work stiacionstructs. On the other
hand, programming paradigms that allow parallelizatiod ark distribution across
the entire SMP cluster would be more beneficial in case ofddsbp algorithms. The
pure MPI code is generic enough to apply in this case too, bat@ementioned does
not take into account the particular architectural fesgwfean SMP cluster.

In this paper we propose two hybrid MPI/OpenMP programmiagagdigms for
the efficient parallelization of perfectly nested loop aljons, namely a fine-grain
model, as well as a coarse-grain one. We further apply annaddapipelined hyper-
plane scheduling that allows for minimal overall complatione. Finally, we conduct
some experiments in order to verify the actual performafieach model.

The rest of the paper is organized as follows: Section 2 prig#sents our algo-
rithmic model and our target architecture. Section 3 retiethe pure MPI paralleliza-
tion paradigm, while Section 4 describes the variationshef hiybrid parallelization
paradigm, as well as the adopted pipelined hyperplane stdeSection 5 analyzes
the experimental results obtained for the ADI micro-keberichmark, while Section 6
summarizes our conclusions and proposes future work.

2 Algorithmic model - Target architecture

Our model concerns-dimensional perfectly nested loops with uniform data cejen-
cies of the following form:

FOR jo = ming TO maxzo DO
FOR ji = mini TO maz; DO

FOR jn—1 = min,—1 TO mazx,—1 DO

Comput ati on(jo, j1, -y Jn-1);
ENDFOR

ENDFOR
ENDFOR

The loop computation is a calculation involving ardimensional matrix4d which
is indexed byjg, j1, ..., jn_1. For the ease of the analysis to follow, we assume that
we deal with rectangular iteration spaces, e.g. loop bounds, max; are constant
(0 < i < n—1). We also assume that the loop computation imposes anpitoarstant
flowdependencies, that is the calculation at a given loop isstaray require the values
of certain elements of matriX computed at previous iterations.

Our target architecture concerns an SMP cluster of PCs. \wptadgeneric ap-
proach and assumeum _nodes cluster nodes andum_threads threads of execution
per node. Obviously, for a given SMP cluster architecture, would probably select
the number of execution threads to match the number of dlailaPUs in a node, but



nevertheless our approach considers for the sake of gépdath the number of nodes
as well as the number of execution threads per node to bede§ieed parameters.

3 PureMPI paradigm

Pure MPI parallelization is based on the tiling transfotioratTiling is a popular loop
transformation used to achieve coarse-grain parallelisnmalti-processors and en-
hance data locality on uni-processors. Tiling partitidmes ¢riginal iteration space into
atomic units of execution, called tiles. Each MPI node agsiithe execution of a se-
quence of tiles, successive along the longest dimensidmeobtiginal iteration space.
The complete methodology is described more extensivelglinf must be noted that
since our prime objective was to experimentally verify tlegfprmance benefits of the
different parallelization models, for the sake of simplicive resorted to hand-made
parallelization, as opposed to automatic parallelizatievertheless, all parallelization
models can be automatically generated with minimal cortipitatime overhead ac-
cording to the work presented in [4], which reflects the awtioparallelization method
for the pure MPI model and can easily be applied in the hybodeh as well.

Furthermore, an advanced pipelined scheduling schemeojstedi as follows: In
each time step, an MPI node concurrently computes a tilejves data required for the
computation of the next tile and sends data computed at #hequrs tile. For the true
overlapping of computation and communication, as thecallyiimplied by the above
scheme, non-blocking MPI communication primitives areduaad DMA support is
assumed. Unfortunately, the MPICH implementation ovetEthgrnet (chp4 ADI-2
device) does not support such advanced DMA-driven nonkihgawommunication, but
nevertheless the same limitations hold for our hybrid meahel are thus not likely to
affect the performance comparison.

Let tile = (tileo,. .., tile, 1) identify a tile,nod = (nody, .. .,nod, ) iden-
tify an MPI node in Cartesian coordinates ane- (zy, . .., z,_1) denote the tile size.
For the control indey; of the original loop it holdsj; = tile; x x; + min;, where
min; < j; < mazx; and0 < i < n — 1. The core of the pure MPI code resembles the
following:

tileg = mnodyp;

tilen,—o = mod,_»;

FOR tile, 1 =0 TO |Z*22—l-"mat| DO
Pack(snd_buf, tile,_1 —1, mod);
MPI _I send(snd_buf, dest(nod));
MPI _I recv(recv_buf, src(nod));
conput e( tile) ;

MPI Vaitall;
Unpack(recv_buf, tile,—1 +1, mnod);

END FOR



4 Hybrid MPI/OpenMP paradigm

The hybrid MP1/OpenMP programming model intuitively matshihe characteristics of
an SMP cluster, since it allows for a two-level communicapattern that distinguishes
between intra- and inter-node communication. More spadifidntra-node communi-
cation is implemented through common access to the nodetsame and appropriate
synchronization must ensure that data are first calculatédtlzen used, so that the
execution order of the initial algorithm is preserved (dddevel synchronization). In-
versely, inter-node communication is achieved throughsags passing, that implicitly
enforces node-level synchronization to ensure valid eti@eorder as far as the differ-
ent nodes are concerned.

There are two main variations of the hybrid model, namelyfthe-grainhybrid
model and theeoarse-grainone. According to the fine-grain model, the computation-
ally intensive parts of the pure MPI code are usually incnetaiéy parallelized with
OpenMP work-sharing directives. According to the coanmsgrgmodel, threads are
spawned close to the creation of the MPI processes, and thactlids are used to
enforce an SPMD structure in the hybrid program, similathi $tructure of the pure
MPI code.

Both hybrid models implement the advanced hyperplane sdimgdpresented in
[1] that allows for minimal overall completion time. The fggplane scheduling, along
with the variations of the hybrid model are the subject offtiwwing Subsections.

4.1 Hyperplane scheduling

The proposed hyperplane scheduling distributes the tdsgaed to all threads of a
specific node intgroupsthat can be concurrently executed. Each group contains all
tiles that can be safely executed in parallel by an equal murobthreads without
violating the data dependencies of the initial algorithmalway, each group can be
thought as of a distinct time step of a node’s execution secpieand determines which
threads of that node will be executing a tile at that time ,step which ones will remain
idle. This scheduling aims at minimizing the total numbeerécution steps required
for the completion of the hybrid algorithms.

For our hybrid model, each group will be identified by mamimensional vector,
where the first n-1 coordinates will identify the particuMPI nodenod this group
refers to, while the last coordinate can be thought of as tineent time step and will
implicitly determine whether a given threaéh = (tho,...,th,_2) of nod will be
computing at that time step, and if so which ti#e. Formally, given a group denoted
by then-dimensional vectogroup = (groupo, - . ., group, 1)
the corresponding nodeod can be determined by the first n-1 coordinategobup,
namely
nod; = group;,0 <i <mn —2
and the tiletile to be executed by thred& of nod can be obtained by
tile; = group; x m; +th;,0 <i<n—2
and
tile, 1 = group, 1 — Z?;OQ (group; x m; + th;)



wherem,; the number of threads to thigh dimension (it hold® < th; < m; — 1,0 <
i <mn—2).

The value oftile,_; will establish whether threath will compute during group
group: Ifthe calculated tile is valid, namely if it holds< tile,,_; < | FntTmnt |
thenth will execute tiletile at time steggroup,,—1. In the opposite case, it will re-
main idle and wait for the next time step.

The hyperplane scheduling can be implemented in OpenMPrdiogoto the fol-
lowing pseudo-code scheme:

#pragma onp parall el numt hreads(num_threads)
{

groupo = mnodo;

groupn_o2 = nod,_2;
tileo = nodo * mo + tho;

tilen_2 = modn—o2 * Mpn_o + thnfg;
FOR( groupn—1) {
tile,_1 = groupn,_1 - Z::OZ tile;;
i f(0< tile, ; < |Den1-MiMn 1 )
conput e( tile) ;
#pragma onp barrier
}
}

The hyperplane scheduling is more extensively analyzedi]in [

4.2 Fine-grain parallelization

The pseudo-code for the fine-grain hybrid parallelizat®mépicted in Table 1. The
fine-grain hybrid implementation applies an Openbi al | el work-sharing con-
struct to the tile computation of the pure MPI code. Accogdmthe hyperplane schedul-
ing described in Subsection 4.1, at each time step correapgpto a group instance the
required threads that are needed for the tile computatienspawned. Inter-node com-
munication occurs outside the OpenMP parallel region.

Note that the hyperplane scheduling ensures that all Galonk concurrently exe-
cuted by different threads do not violate the execution ood¢he original algorithm.
The required barrier for the thread synchronization is inithy enforced by exiting the
OpenMPpar al | el construct. Note also that under the fine-grain approaclke kem
overhead of re-spawning threads for each time step of thedipgdl schedule.

4.3 Coarse-grain parallelization

The pseudo-code for the coarse-grain hybrid paralletimats depicted in Table 2.
Threads are only spawned once and their ids are used to dietetineir flow of ex-
ecution in the SPMD-like code. Inter-node communicatioouss within the OpenMP



par al | el region, but is completely assumed by the master thread bysnafathe
OpenMPnast er directive. The reason for this is that the MPICH impleméntat
used provides at best an MPHREAD_FUNNELED level of thread safety, allowing
only the master thread to call MPI routines. Intra-node Byomgization between the
threads is achieved with the aid of an Openhd ri er directive.

It should be noted that the coarse-grain model, as compartitfine-grain one,
compensates the relatively higher programming complexitl the fact that threads
are created only once, and thus the respective overhead fiiigrain model is dimin-
ished. Furthermore, although communication is entirebpated by the master thread,
the other threads will be able to perform computation at #meestime, since they have
already been spawned (unlike the fine-grain model). Ndjmathread-safe MPI im-
plementation would allow for a much more efficient commuti@ascheme, according
to which all threads would be able to call MPI routines. Afiatively, under a non
thread-safe environment, a more sophisticated load-bmlgischeme that would com-
pensate for the master-only communication with approgigabalanced computation
distribution is being considered as future work.

5 Experimental results

In order to evaluate the actual performance of the diffepgagramming paradigms,
we have parallelized the Alternating Direction Implicit[4) Integration micro-kernel
([7]) and run several experiments for different iteratiggases and tile grains. Our
platform is an 8-node dual-SMP cluster. Each node has 2 deriti CPUs at 800
MHz, 128 MB of RAM and 256 KB of cache, and runs Linux with 2@ 2ernel. We
used Intel icc compiler version 7.0 for Linux with followirgptimization flags:- C3
-npcu=pentiunpro -static. Finally, we used MPI implementation MPICH v.
1.2.5, configured with the following options:-wi t h- devi ce=ch_p4 --wi t h-
conmeshar ed.

We performed two series on experiments in order to evalltedlative perfor-
mance of the three parallelization methods. More spedifidalthe first case we used
8 MPI processes for the MPI model (1 process per SMP node)ewdd used 4 MPI
processes 2 OpenMP threads for the hybrid models. In the second casstawied
the pure MPI program with 16 MPI processes (2 per SMP noddjewte used 8 MPI
processes 2 OpenMP threads for the hybrid models. In both cases we miADI
micro-kernel for various iteration spaces and variabktigights in order to obtain the
minimum overall completion time. Naturally, all experintehresults depend largely
on the micro-kernel benchmark used, its communicatiorepatthe shared-memory
parallelism that can be achieved through OpenMP and thenaaedcharacteristics of
the platform (CPU, memory, network).

The experimental results are graphically displayed in FEig2t Two conclusions
that can easily be drawn are that the pure MPI model is almaaif cases the fastest,
while on the other hand the coarse-grain hybrid model is ywzetter than the fine-
grain one. Nevertheless, in the 16 vg & series of experiments, the performance of the



coarse-grain hybrid model is comparable to that of the pulRd, nd in fact delivers
the best results in 1& 16 x 524288 iteration space.

In order to explain the differences in the overall perforeenf the 3 models, we
conducted some more thorough profiling of the computati@ahcmmunication times
(Fig 1). The computation times clearly indicate that theepMiPl model achieves the
most efficient parallelization of the computational parhile the fine-grain model is
always worse than the coarse-grain one as regards the tené@pthe computational
part of the parallel code. The communication times followa@eirregular pattern, but
on average they indicate a superior performance of the p&envbdel.
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Fig. 1. Computation vs Communication Profiling for 32x32x1310#&tdtion Space

The advantage of the coarse-grain model compared to thgfaie-one lies in that,
according to the first model threads are only spawned ondée atcording to the sec-
ond threads need to be re-spawned in each time step. Thisomddioverhead accounts
for the higher computation times of the fine-grain model thete experimentally ver-
ified. However, the coarse-grain model suffers from theoseridisadvantage of the
inefficient communication pattern, since the master thieach node assumes more
communication than an MPI node in the pure MPI model. Thiadiiantage could be
diminished by either a more efficient load-balancing corapiah distribution scheme,
or by a thread-safe MPI implementation that would allow latetds to call MPI rou-
tines.

6 Conclusions-Futurework

In this paper we have presented three alternative paratgirpmming paradigms for
nested loop algorithms and clusters of SMPs. We have impitadethe three vari-
ations and tested their performance against the ADI Integranicro-kernel bench-
mark. It turns out that the performance of the hybrid coapsén OpenMP/MPI model
looks quite promising for this class of algorithms, althbulge overall performance of



each paradigm clearly depends on a number of factors, bptltagon- and hardware-
specific. We intend to investigate the behavior of the theragigms more closely with
a more extensive communication vs computation profilingl, apply a more efficient
computation distribution, in order to mitigate the comnuation restrictions imposed
by a non thread-safe MPI implementation.
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groupo = nodyp;

groupy_2 = nod,_2;

[*for all time steps in current node*/

FOR(group,—1){
[*pack previously computed data*/
Pack(sndouf, tile,,_1 — 1, nod);
/*send communication data*/
MPI_lsend(sndbuf, destfiod));
[*receive data for next tile*/
MPI_lrecv(recvbuf, srcod));

#pragma omp parallel

{

tileo = nodg * mg +th0;

tilen_2 =nodn_2* m,_o + thnfg;
[*calculate candidate tile for execution*/
tile,_1 = group,_1 - Z;:(? tile;;
/*if current thread is to execute a valid tile
if(0 < tile, ; < | et L)
[*compute current tile*/
computetile);
}
[*wait for communication completion*/
MPI_Waitall;
/*unpack communication data*/
Unpack(recvbuf, tile,—1 + 1, nod);

#pragma omp parallel
groupo = nodyp;

groupn—s =nodn_»;
tileo = nody * mo + tho;

tilen_2 =nodn_2* my,_o + thnfg;
[*for all time steps in current node*/
FOR(groupn-1){
[*calculate candidate tile for execution*/
tile,_1 = group,_1 - Z?;OQ tile;;
#pragma omp master
{
[*pack previously computed data*/
Pack(sndouf, tile, -1 — 1, nod);
/*send communication data*/
MPI_lsend(sndbuf, destfiod));
[*receive data for next tile*/
MPI_Irecv(recvbuf, srcrod));
}
[*if current thread is to execute a valid tile
if(0 < tile, < |Tmt el )
[*compute current tile*/
computetile);
#pragma omp master

x

[*wait for communication completion*/
MPI_Waitall;

/*unpack communication data*/
Unpack(recvbuf, tile,—1 + 1, nod);

/*synchronize threads for next time step*/
#pragma omp barrier

}

Table 1. Fine-grain hybrid parallelization

Table 2. Coarse-grain hybrid parallelization

~
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Fig. 2. Experimental Results for ADI Integration



