
Advanced Hybrid MPI/OpenMP Parallelization
Paradigms for Nested Loop Algorithms onto Clusters of

SMPs

Nikolaos Drosinos and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering

Computing Systems Laboratory
Zografou Campus, Zografou 15773, Athens, Greece

e-mail:fndros, nkozirisg@cslab.ece.ntua.gr

Abstract. The parallelization process of nested-loop algorithms onto popular
multi-level parallel architectures, such as clusters of SMPs, is not a trivial is-
sue, since the existence of data dependencies in the algorithm impose severe
restrictions on the task decomposition to be applied. In this paper we propose
three techniques for the parallelization of such algorithms, namely pure MPI
parallelization, fine-grain hybrid MPI/OpenMP parallelization and coarse-grain
MPI/OpenMP parallelization. We further apply an advanced hyperplane schedul-
ing scheme that enables pipelined execution and the overlapping of communica-
tion with useful computation, thus leading almost to full CPU utilization. We im-
plement the three variations and perform a number of micro-kernel benchmarks
to verify the intuition that the hybrid programming model could potentially ex-
ploit the characteristics of an SMP cluster more efficientlythan the pure message-
passing programming model. We conclude that the overall performance for each
model is both application and hardware dependent, and propose some directions
for the efficiency improvement of the hybrid model.

1 Introduction

Clusters of SMPs have emerged as the dominant high performance computing platform.
For these platforms there is an active research concern thattraditional parallelization
programming paradigms may not deliver optimal performance, since pure message-
passing parallel applications fail to take into consideration the 2-level SMP cluster ar-
chitecture. Intuitively, a parallel paradigm that uses memory access for intra-node com-
munication and message-passing for inter-node communication seems to match bet-
ter the characteristics of an SMP cluster. Since MPI has become the de-facto message
passing API, while OpenMP has grown into a popular multi-threading library, there is
important scientific work that addresses the hybrid MPI/OpenMP programming model.

The hybrid model has already been applied to real scientific applications ([3], [6]).
Nevertheless, a lot of important scientific work enlightensthe complexity of the many
aspects that affect the overall performance of hybrid programs ([2], [8], [10]). Also, the
need for a multi-threading MPI implementation that will efficiently support the hybrid
model has been spotted by the research community ([11], [9]).



However, most of the work on the hybrid OpenMP/MPI programming paradigm
addresses fine-grain parallelization, e.g. usually incremental parallelization of compu-
tationally intensive code parts through OpenMP work sharing constructs. On the other
hand, programming paradigms that allow parallelization and work distribution across
the entire SMP cluster would be more beneficial in case of nested loop algorithms. The
pure MPI code is generic enough to apply in this case too, but as aforementioned does
not take into account the particular architectural features of an SMP cluster.

In this paper we propose two hybrid MPI/OpenMP programming paradigms for
the efficient parallelization of perfectly nested loop algorithms, namely a fine-grain
model, as well as a coarse-grain one. We further apply an advanced pipelined hyper-
plane scheduling that allows for minimal overall completion time. Finally, we conduct
some experiments in order to verify the actual performance of each model.

The rest of the paper is organized as follows: Section 2 briefly presents our algo-
rithmic model and our target architecture. Section 3 refersto the pure MPI paralleliza-
tion paradigm, while Section 4 describes the variations of the hybrid parallelization
paradigm, as well as the adopted pipelined hyperplane schedule. Section 5 analyzes
the experimental results obtained for the ADI micro-kernelbenchmark, while Section 6
summarizes our conclusions and proposes future work.

2 Algorithmic model - Target architecture

Our model concernsn-dimensional perfectly nested loops with uniform data dependen-
cies of the following form:

FOR j0 = min0 TO max0 DO

FOR j1 = min1 TO max1 DO

...

FOR jn�1 = minn�1 TO maxn�1 DO

Computation(j0, j1, ..., jn�1);
ENDFOR

...

ENDFOR

ENDFOR

The loop computation is a calculation involving ann-dimensional matrixA which
is indexed byj0, j1, . . . , jn�1. For the ease of the analysis to follow, we assume that
we deal with rectangular iteration spaces, e.g. loop boundsmini, maxi are constant
(0 � i � n� 1). We also assume that the loop computation imposes arbitrary constant
flowdependencies, that is the calculation at a given loop instance may require the values
of certain elements of matrixA computed at previous iterations.

Our target architecture concerns an SMP cluster of PCs. We adopt a generic ap-
proach and assumenum nodes cluster nodes andnum threads threads of execution
per node. Obviously, for a given SMP cluster architecture, one would probably select
the number of execution threads to match the number of available CPUs in a node, but



nevertheless our approach considers for the sake of generality both the number of nodes
as well as the number of execution threads per node to be user-defined parameters.

3 Pure MPI paradigm

Pure MPI parallelization is based on the tiling transformation. Tiling is a popular loop
transformation used to achieve coarse-grain parallelism on multi-processors and en-
hance data locality on uni-processors. Tiling partitions the original iteration space into
atomic units of execution, called tiles. Each MPI node assumes the execution of a se-
quence of tiles, successive along the longest dimension of the original iteration space.
The complete methodology is described more extensively in [5]. It must be noted that
since our prime objective was to experimentally verify the performance benefits of the
different parallelization models, for the sake of simplicity we resorted to hand-made
parallelization, as opposed to automatic parallelization. Nevertheless, all parallelization
models can be automatically generated with minimal compilation time overhead ac-
cording to the work presented in [4], which reflects the automatic parallelization method
for the pure MPI model and can easily be applied in the hybrid model, as well.

Furthermore, an advanced pipelined scheduling scheme is adopted as follows: In
each time step, an MPI node concurrently computes a tile, receives data required for the
computation of the next tile and sends data computed at the previous tile. For the true
overlapping of computation and communication, as theoretically implied by the above
scheme, non-blocking MPI communication primitives are used and DMA support is
assumed. Unfortunately, the MPICH implementation over FastEthernet (chp4 ADI-2
device) does not support such advanced DMA-driven non-blocking communication, but
nevertheless the same limitations hold for our hybrid modeland are thus not likely to
affect the performance comparison.

Let tile = (tile0; : : : ; tilen�1) identify a tile,nod = (nod0; : : : ; nodn�2) iden-
tify an MPI node in Cartesian coordinates andx = (x0; : : : ; xn�1) denote the tile size.
For the control indexji of the original loop it holdsji = tilei � xi + mini, wheremini � ji � maxi and0 � i � n� 1. The core of the pure MPI code resembles the
following:tile0 = nod0;
...tilen�2 = nodn�2;
FOR tilen�1 = 0 TO bmaxn�1�minn�1xn�1 
 DO

Pack(snd buf, tilen�1 � 1, nod);
MPI Isend(snd buf, dest(nod));
MPI Irecv(recv buf, src(nod));
compute(tile);
MPI Waitall;

Unpack(recv buf, tilen�1 + 1, nod);
END FOR



4 Hybrid MPI/OpenMP paradigm

The hybrid MPI/OpenMP programming model intuitively matches the characteristics of
an SMP cluster, since it allows for a two-level communication pattern that distinguishes
between intra- and inter-node communication. More specifically, intra-node communi-
cation is implemented through common access to the node’s memory, and appropriate
synchronization must ensure that data are first calculated and then used, so that the
execution order of the initial algorithm is preserved (thread-level synchronization). In-
versely, inter-node communication is achieved through message passing, that implicitly
enforces node-level synchronization to ensure valid execution order as far as the differ-
ent nodes are concerned.

There are two main variations of the hybrid model, namely thefine-grainhybrid
model and thecoarse-grainone. According to the fine-grain model, the computation-
ally intensive parts of the pure MPI code are usually incrementally parallelized with
OpenMP work-sharing directives. According to the coarse-grain model, threads are
spawned close to the creation of the MPI processes, and the thread ids are used to
enforce an SPMD structure in the hybrid program, similar to the structure of the pure
MPI code.

Both hybrid models implement the advanced hyperplane scheduling presented in
[1] that allows for minimal overall completion time. The hyperplane scheduling, along
with the variations of the hybrid model are the subject of thefollowing Subsections.

4.1 Hyperplane scheduling

The proposed hyperplane scheduling distributes the tiles assigned to all threads of a
specific node intogroupsthat can be concurrently executed. Each group contains all
tiles that can be safely executed in parallel by an equal number of threads without
violating the data dependencies of the initial algorithm. In a way, each group can be
thought as of a distinct time step of a node’s execution sequence, and determines which
threads of that node will be executing a tile at that time step, and which ones will remain
idle. This scheduling aims at minimizing the total number ofexecution steps required
for the completion of the hybrid algorithms.

For our hybrid model, each group will be identified by ann-dimensional vector,
where the first n-1 coordinates will identify the particularMPI nodenod this group
refers to, while the last coordinate can be thought of as the current time step and will
implicitly determine whether a given threadth = (th0; : : : ; thn�2) of nod will be
computing at that time step, and if so which tiletile. Formally, given a group denoted
by then-dimensional vectorgroup = (group0; : : : ; groupn�1)
the corresponding nodenod can be determined by the first n-1 coordinates ofgroup,
namelynodi = groupi; 0 � i � n� 2
and the tiletile to be executed by threadth of nod can be obtained bytilei = groupi �mi + thi; 0 � i � n� 2
andtilen�1 = groupn�1 �Pn�2i=0 (groupi �mi + thi)



wheremi the number of threads to thei-th dimension (it holds0 � thi � mi � 1; 0 �i � n� 2).
The value oftilen�1 will establish whether threadth will compute during groupgroup: If the calculated tile is valid, namely if it holds0 � tilen�1 � bmaxn�1�minn�1t 
,

thenth will execute tiletile at time stepgroupn�1. In the opposite case, it will re-
main idle and wait for the next time step.

The hyperplane scheduling can be implemented in OpenMP according to the fol-
lowing pseudo-code scheme:

#pragma omp parallel num threads(num threads)f group0 = nod0;
...groupn�2 = nodn�2;tile0 = nod0 * m0 + th0;
...tilen�2 = nodn�2 * mn�2 + thn�2;
FOR(groupn�1)ftilen�1 = groupn�1 -

Pn�2i=0 tilei;
if(0 � tilen�1 � bmaxn�1�minn�1t 
)

compute(tile);
#pragma omp barriergg

The hyperplane scheduling is more extensively analyzed in [1].

4.2 Fine-grain parallelization

The pseudo-code for the fine-grain hybrid parallelization is depicted in Table 1. The
fine-grain hybrid implementation applies an OpenMPparallel work-sharing con-
struct to the tile computation of the pure MPI code. According to the hyperplane schedul-
ing described in Subsection 4.1, at each time step corresponding to a group instance the
required threads that are needed for the tile computations are spawned. Inter-node com-
munication occurs outside the OpenMP parallel region.

Note that the hyperplane scheduling ensures that all calculations concurrently exe-
cuted by different threads do not violate the execution order of the original algorithm.
The required barrier for the thread synchronization is implicitly enforced by exiting the
OpenMPparallel construct. Note also that under the fine-grain approach there is an
overhead of re-spawning threads for each time step of the pipelined schedule.

4.3 Coarse-grain parallelization

The pseudo-code for the coarse-grain hybrid parallelization is depicted in Table 2.
Threads are only spawned once and their ids are used to determine their flow of ex-
ecution in the SPMD-like code. Inter-node communication occurs within the OpenMP



parallel region, but is completely assumed by the master thread by means of the
OpenMPmaster directive. The reason for this is that the MPICH implementation
used provides at best an MPITHREAD FUNNELED level of thread safety, allowing
only the master thread to call MPI routines. Intra-node synchronization between the
threads is achieved with the aid of an OpenMPbarrier directive.

It should be noted that the coarse-grain model, as compared to the fine-grain one,
compensates the relatively higher programming complexitywith the fact that threads
are created only once, and thus the respective overhead of the fine-grain model is dimin-
ished. Furthermore, although communication is entirely assumed by the master thread,
the other threads will be able to perform computation at the same time, since they have
already been spawned (unlike the fine-grain model). Naturally, a thread-safe MPI im-
plementation would allow for a much more efficient communication scheme, according
to which all threads would be able to call MPI routines. Alternatively, under a non
thread-safe environment, a more sophisticated load-balancing scheme that would com-
pensate for the master-only communication with appropriately balanced computation
distribution is being considered as future work.

5 Experimental results

In order to evaluate the actual performance of the differentprogramming paradigms,
we have parallelized the Alternating Direction Implicit (ADI) Integration micro-kernel
([7]) and run several experiments for different iteration spaces and tile grains. Our
platform is an 8-node dual-SMP cluster. Each node has 2 Pentium III CPUs at 800
MHz, 128 MB of RAM and 256 KB of cache, and runs Linux with 2.4.20 kernel. We
used Intel icc compiler version 7.0 for Linux with followingoptimization flags:-O3
-mpcu=pentiumpro -static. Finally, we used MPI implementation MPICH v.
1.2.5, configured with the following options:--with-device=ch p4 --with-
comm=shared.

We performed two series on experiments in order to evaluate the relative perfor-
mance of the three parallelization methods. More specifically, in the first case we used
8 MPI processes for the MPI model (1 process per SMP node), while we used 4 MPI
processes� 2 OpenMP threads for the hybrid models. In the second case, westarted
the pure MPI program with 16 MPI processes (2 per SMP node), while we used 8 MPI
processes� 2 OpenMP threads for the hybrid models. In both cases we run the ADI
micro-kernel for various iteration spaces and variable tile heights in order to obtain the
minimum overall completion time. Naturally, all experimental results depend largely
on the micro-kernel benchmark used, its communication pattern, the shared-memory
parallelism that can be achieved through OpenMP and the hardware characteristics of
the platform (CPU, memory, network).

The experimental results are graphically displayed in Figure 2. Two conclusions
that can easily be drawn are that the pure MPI model is almost in all cases the fastest,
while on the other hand the coarse-grain hybrid model is always better than the fine-
grain one. Nevertheless, in the 16 vs 8� 2 series of experiments, the performance of the



coarse-grain hybrid model is comparable to that of the pure MPI, and in fact delivers
the best results in 16� 16� 524288 iteration space.

In order to explain the differences in the overall performance of the 3 models, we
conducted some more thorough profiling of the computation and communication times
(Fig 1). The computation times clearly indicate that the pure MPI model achieves the
most efficient parallelization of the computational part, while the fine-grain model is
always worse than the coarse-grain one as regards the time spent on the computational
part of the parallel code. The communication times follow a more irregular pattern, but
on average they indicate a superior performance of the pure MPI model.

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

T
i
m
e
 
(
s
e
c
)

Tile Height

Computation Time for 32x32x131072 Iteration Space

MPI (16 nodes)
fine-grain hybrid (8 nodes, 2 threads each)

coarse-grain hybrid (8 nodes, 2 threads each)

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100 200 300 400 500

T
i
m
e
 
(
s
e
c
)

Tile Height

Communication Time for 32x32x131072 Iteration Space

MPI (16 nodes)
fine-grain hybrid (8 nodes, 2 threads each)

coarse-grain hybrid (8 nodes, 2 threads each)

Fig. 1. Computation vs Communication Profiling for 32x32x131072 Iteration Space

The advantage of the coarse-grain model compared to the fine-grain one lies in that,
according to the first model threads are only spawned once, while according to the sec-
ond threads need to be re-spawned in each time step. This additional overhead accounts
for the higher computation times of the fine-grain model thatwere experimentally ver-
ified. However, the coarse-grain model suffers from the serious disadvantage of the
inefficient communication pattern, since the master threadin each node assumes more
communication than an MPI node in the pure MPI model. This disadvantage could be
diminished by either a more efficient load-balancing computation distribution scheme,
or by a thread-safe MPI implementation that would allow all threads to call MPI rou-
tines.

6 Conclusions-Future work

In this paper we have presented three alternative parallel programming paradigms for
nested loop algorithms and clusters of SMPs. We have implemented the three vari-
ations and tested their performance against the ADI Integration micro-kernel bench-
mark. It turns out that the performance of the hybrid coarse-grain OpenMP/MPI model
looks quite promising for this class of algorithms, although the overall performance of



each paradigm clearly depends on a number of factors, both application- and hardware-
specific. We intend to investigate the behavior of the three paradigms more closely with
a more extensive communication vs computation profiling, and apply a more efficient
computation distribution, in order to mitigate the communication restrictions imposed
by a non thread-safe MPI implementation.

References

1. M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Pipelined scheduling of tiled
nested loops onto clusters of SMPs using memory mapped network interfaces. InProceed-
ings of the 2002 ACM/IEEE conference on Supercomputing, Baltimore, Maryland, USA,
2002. IEEE Computer Society Press.

2. F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM SP for the NAS bench-
marks. InProceedings of the 2000 ACM/IEEE conference on Supercomputing, Dallas, Texas,
USA, 2000. IEEE Computer Society Press.

3. S. Dong and G. Em. Karniadakis. Dual-level parallelism for deterministic and stochastic
CFD problems. InProceedings of the 2002 ACM/IEEE conference on Supercomputing,
Baltimore, Maryland, USA, 2002. IEEE Computer Society Press.

4. G. Goumas, M. Athanasaki, and N. Koziris. Automatic Code Generation for Executing
Tiled Nested Loops Onto Parallel Architectures. InProceedings of the ACM Symposium on
Applied Computing (SAC 2002), Madrid, Mar 2002.

5. G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Compiling Tiled Iteration Spaces
for Clusters. InProceedings of the IEEE International Conference on Cluster Computing,
Chicago, Sep 2002.

6. Y. He and C. H. Q. Ding. MPI and OpenMP paradigms on cluster of SMP architectures: the
vacancy tracking algorithm for multi-dimensional array transposition. InProceedings of the
2002 ACM/IEEE conference on Supercomputing, Baltimore, Maryland, USA, 2002. IEEE
Computer Society Press.

7. George Em. Karniadakis and Robert M. Kirby.Parallel Scientific Computing in C++ and
MPI : A Seamless Approach to Parallel Algorithms and their Implementation. Cambridge
University Press, 2002.

8. G. Krawezik and F. Cappello. Performance Comparison of MPI and three OpenMP Program-
ming Styles on Shared Memory Multiprocessors. InACM SPAA 2003, San Diego, USA, Jun
2003.

9. B. V. Protopopov and A. Skjellum. A multi-threaded Message Passing Interface (MPI) ar-
chitecture: performance and program issues.JPDC, 2001.

10. R. Rabenseifner and G. Wellein. Communication and Optimization Aspects of Parallel Pro-
gramming Models on Hybrid Architectures.International Journal of High Performance
Computing Applications, 17(1):49–62, 2003.

11. H. Tang and T. Yang. Optimizing threaded MPI execution onSMP clusters. InProceedings
of the 15th international conference on Supercomputing, pages 381–392, Sorrento, Italy,
2001. ACM Press.



group0 = nod0;
. . .groupn�2 = nodn�2;
/*for all time steps in current node*/
FOR(groupn�1)f

/*pack previously computed data*/
Pack(sndbuf, tilen�1 � 1, nod);
/*send communication data*/
MPI Isend(sndbuf, dest(nod));
/*receive data for next tile*/
MPI Irecv(recvbuf, src(nod));

#pragma omp parallelf tile0 = nod0 * m0 + th0;
. . .tilen�2 = nodn�2 * mn�2 + thn�2;
/*calculate candidate tile for execution*/tilen�1 = groupn�1 -

Pn�2i=0 tilei;
/*if current thread is to execute a valid tile*/
if(0 � tilen�1 � bmaxn�1�minn�1t 
)

/*compute current tile*/
compute(tile);g

/*wait for communication completion*/
MPI Waitall;
/*unpack communication data*/
Unpack(recvbuf, tilen�1 + 1, nod);g

Table 1. Fine-grain hybrid parallelization

#pragma omp parallelfgroup0 = nod0;
. . .groupn�2 = nodn�2;tile0 = nod0 * m0 + th0;
. . .tilen�2 = nodn�2 * mn�2 + thn�2;
/*for all time steps in current node*/
FOR(groupn�1)f

/*calculate candidate tile for execution*/tilen�1 = groupn�1 -
Pn�2i=0 tilei;

#pragma omp masterf
/*pack previously computed data*/
Pack(sndbuf, tilen�1 � 1, nod);
/*send communication data*/
MPI Isend(sndbuf, dest(nod));
/*receive data for next tile*/
MPI Irecv(recvbuf, src(nod));g

/*if current thread is to execute a valid tile*/
if(0 � tilen�1 � bmaxn�1�minn�1t 
)

/*compute current tile*/
compute(tile);

#pragma omp masterf
/*wait for communication completion*/
MPI Waitall;
/*unpack communication data*/
Unpack(recvbuf, tilen�1 + 1, nod);g

/*synchronize threads for next time step*/
#pragma omp barriergg

Table 2. Coarse-grain hybrid parallelization



4

6

8

10

12

14

16

18

0 200 400 600 800 1000

T
i
m
e
 
(
s
e
c
)

Tile Height

Total Execution Time for 16x16x524288 Iteration Space

MPI (8 nodes)
fine-grain hybrid (4 nodes, 2 threads each)

coarse-grain hybrid (4 nodes, 2 threads each)

5

6

7

8

9

10

11

12

0 200 400 600 800 1000

T
i
m
e
 
(
s
e
c
)

Tile Height

Total Execution Time for 16x16x524288 Iteration Space

MPI (16 nodes)
fine-grain hybrid (8 nodes, 2 threads each)

coarse-grain hybrid (8 nodes, 2 threads each)

3

4

5

6

7

8

9

10

11

12

0 100 200 300 400 500

T
i
m
e
 
(
s
e
c
)

Tile Height

Total Execution Time for 32x32x131072 Iteration Space

MPI (8 nodes)
fine-grain hybrid (4 nodes, 2 threads each)

coarse-grain hybrid (4 nodes, 2 threads each)

3

3.5

4

4.5

5

5.5

6

6.5

7

0 100 200 300 400 500

T
i
m
e
 
(
s
e
c
)

Tile Height

Total Execution Time for 32x32x131072 Iteration Space

MPI (16 nodes)
fine-grain hybrid (8 nodes, 2 threads each)

coarse-grain hybrid (8 nodes, 2 threads each)

6

8

10

12

14

16

18

0 200 400 600 800 1000

T
i
m
e
 
(
s
e
c
)

Tile Height

Total Execution Time for 64x64x65536 Iteration Space

MPI (8 nodes)
fine-grain hybrid (4 nodes, 2 threads each)

coarse-grain hybrid (4 nodes, 2 threads each)

4

6

8

10

12

0 100 200 300 400 500 600 700 800

T
i
m
e
 
(
s
e
c
)

Tile Height

Total Execution Time for 64x64x65536 Iteration Space

MPI (16 nodes)
fine-grain hybrid (8 nodes, 2 threads each)

coarse-grain hybrid (8 nodes, 2 threads each)

Fig. 2. Experimental Results for ADI Integration


