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Abstract rithm and the underlying architecture. Evidently, in order
to achieve acceptable execution speedups and further ex-
This paper presents a complete end-to-end framework totend the popularity of clusters to the commercial commu-
generate automatic message-passing code for tiled itavati  nity, the programmer needs to be released from the tasks of
spaces. It considers general parallelepiped tiling tramsf  both writing message-passing code as well as optimizing it,
mations and general convex iteration spaces. We aim toby assigning these tasks to the compiler.
address all problems concerning data parallel code gener-  Tiling transformation is one of the most popular loop
ation efficiently by transforming the initial non-rectarlgu  transformations discussed in the literature, proposed-to e
tileto a rectangular one. In this way, data distribution and hance |oca|ity in uni-processors and achieve Coarse-grain
communication become simple and straightforward. We parallelism in multiprocessors. Tiling groups a number
have implemented our parallelizing techniques in a tool of jterations into a tile, which is executed uninterrupted|
which automatically generates MPI code and run several while communication between processors occurs just be-
experiments on a cluster of PCs. Our experimental resultsfore and after the computations within a tile. A lot of dis-
show the merit of general parallelepiped tiling transforma  cussion has been made concerning the selection of an opti-
tions, and confirm previous theoretical work on scheduling- mal tiling transformation. Ramanujam and Sadayappan in
optimal tile shapes. [12], Xue in [15] and Boulet et al. in [4] studied the effect
of the tile shape on the communication imposed by a tile,
Index Terms: Loop tiling, clusters, data parallel, code gen- and proved that the communication-minimal tiling can de-

eration, MPI. rive from the algorithm’s tiling cone. Moving one step fur-
ther, Hodzic and Shang in [9] discussed the effect of the tile
1 Introduction shape and size on the overall completion time of an algo-

rithm taking into account the iteration space bounds. I} [10

Using clusters to deliver high performance to scientific Hodzic and Shang proved that the scheduling-optimal tile
and commercial applications is considered as the state ofhape, i.e. the one that leads to minimum execution time,
the art in high performance computing. Clusters are becom-is derived from the algorithm’s tiling cone similarly to the
ing increasingly popular due to their affordable scalagili communication-optimal tiling, as described in [4, 15, 12].
low cost and high aggregate network bandwidth. On the Despite all these methods for the selection of a proper
other hand, it is generally accepted that they are difficult t tiling transformation to minimize communication volume
program, since they lack a virtually shared view of global and overall execution time in distributed memory machines,
memory. Clusters, in general, comply to the distributed- general parallelepiped tiling is not used by commercial and
memory model, since each node has its own local mem-research compilers ([1, 2, 5, 6, 13]). Furthermore, no com-
ory, and require therefore communication via message passplete approach has been presented concerning implementa-
ing, using libraries such as MPI or PVM. This means that, tion issues for non-rectangular tiling transformationer-P
in order to program clusters, one must be acquainted withforming proper data distribution and determining commu-
such message-passing libraries. Although this may be quitenication sets in this case are far from being straightfodwar
likely in the scientific community, it is definitely not the In this paper we present a complete approach to generate
usual case in the commercial one. More importantly, writ- data-parallel code, for arbitrarily tiled iteration spade
ing efficient hand-made message-passing code is a venpe executed onto distributed memory machines. We ad-
intricate task requiring deep knowledge of both the algo- dress issues such as transformed loop bound calculation,



iteration and data distribution and automatic message pass FORj; = I; TOu; DO

ing code generation. We continue previous work on effi- FORj> = I3 TOus DO

cient sequential tiled code generation. More specifically,

in [7] we presented an approach to drastically reduce the FORj,, = I, TOu, DO

compilation time for tiled iteration spaces. We transfodme Alfw()] = F(Alfw(G — d))], -, Alfw (G — dg)]);
the non-rectangular tile into a rectangular one using a non- ENDFOR

unimodular transformatiod!’ directly deriving from the

tiling transformationH. We called the transformed (rect- ENDFOR

angular) tile in the axes origins the Transformed Tile Iter-  ENDFOR

ation SpaceI‘TIS)_. We used the hermite normal form where: (1) = (usonin)s (2 di = (dir, ..., din),
H' of H' to determine the exact bounds and strides of the @3) I, and u, are rational-valued parameters, (4)
loop that will traverse th&'T'1S. The introduction of the I, and uy (k = 2..n) are of the form: I, ':
TTIS significantly reduces the difficulty brought about by maz([ fir (i i 1)']” [ for (in i 1)']) and
parallelepiped tile shapes, as far as code generation is con,, _ mm([g’k.l-(.j’l_ _ j;:l.)] , Lg,k. -(.j’l. _ o
cerned. We shall continue using this transformation in the where f;; and g;; are affine functions. We are dealing

parallelizatio_n process. We assign chains of transformedWith general and parameterized convex spaces, with the
rectangular tiles to e(;ich processor and allocate propal loc only assumption that the iteration space is defined as
data spaces. Using", local iteration and data spaces are o' pisection of a finite number of semi-spaces of the
bOt.h rectaqgular, enabling efficient memory management,, 4imensional space™. The requirement for perfectly

while transition between the two local spaces is also sim- | iaq loops is a trivial one so that loops can be tiled

ple and straightforward. In addition, following this schem ([12, 4, 15]). The dependencies are considered uniform and

v;/]e deduce very simple comp;\le-hme crlterlllal_to de_:ltedrmlne constant, i.e. independent of the indexes of computations
the communication points. Thus, we parallelize tiled iter- ;3¢ ‘expressed by dependence veatorh. .. .. d,.

ation spaces with a negligible compile-timg and run-ti-m.e To simplify our model, we consider single assignment
overhead, completely dwarfed by the considerable gain N statements with one array variable. Note, however, that thi
parallel execution speedup. is only a notational restriction, since all of the technigjue

q We ha\f :mplemedntedgtool that at:tomanclally genelrates resented in this paper can be easily adapted to multiple
ata parallel MPI code and run several examples on a cluste tatements on multiple arrays.

of workstations interconnected via FastEthernet. Our goal Throughout this paper the following notation is used:

is to accentuate the merit of non-rectangular tiling transf is the set of integers; is the number of nested FOR-loops
mations and to confirm previous theoretical work proposing of the algorithm and is the number of dependence vectors.

the selection of a tiling transformation parallel to thentl If A is a matrix. we denota.. the matrix element in the
. ) ij
cone. Indeed, our experimental results show that a Proper i row andj-th column. We denote a vector asor @

non-rectangular tiling transformation can lead to remark- according to the context. Thieth element of the vector

ableh|ncreasef|nhspeedup§. ed as foll _ is denotedu;,. The dependence matrix of an algorithm is
) The rest 0 the paper Is organized as 1ollows. In Sec- e set of all dependence vectolB: = {d,ds,...,d,}.
tion 2 we define our problem domain along with some no-

. d th h h q ibe til J" C Z" is the set of indexes, or the Iteration Space of an
tation used throughout the paper, we describe tiling tra_ns'algorithm:J” = (Gt ju)ljs € Z AL < s < w1 <
formation and review previous work on efficient sequential

ied cod ) In Section 3 .. i < n}. Each pointin this:-dimensional integer space is
tiled code generation. In Section 3 we present our Imple- , gigtinct instance of the loop body. Accordingly, the Data

mentation framework including computation distribution, Space, denotedS, is defined asDS = { f.(j)j € J"},
data distribution and message passing code generation. Se%vherefw is the write array reference.

tion 4 presents experimental results from the applicatfon o

our method to real problems. Finally, Section 5 summarizes2 2 Tiling Transformation

our results and proposes future work. '

In a tiling transformation, the index spack' is par-

2 Preliminary Concepts titioned into identicaln-dimensional parallelepiped areas
(tiles or supernodes) formed byindependent families of
2.1 Domain of the Algorithms - Notation parallel hyperplanes. Tiling transformation is defined by

then-dimensional square matrié{. Each row vector off
In this paper we consider algorithms with perfectly is perpendicular to one family of hyperplanes forming the
nested FOR-loops with uniform and constant dependen-tiles. Dually, it can be defined by matrik, which con-
cies. That is, our algorithms are of the form: tains the side-vectors of a tile as column vectors. It holds
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Figure 1. Traverse the T'1S with a non-unimodular transformation

P = H~'. Thetile size is given byet(P)| = 1/|det(H)|.
The following spaces are derived from a tiling transforma-
tion H, when applied to an iteration spagé.

1. The Tile Iteration SpacEIS(H) = {j € Z"||Hj] =
0}, which contains all points that belong to the tile
starting at the axes origins.

. The Tile SpaceJ®(J", H) = {j°|j° = |Hj],j €
J™}, which contains the images of all pointse J”
according to tiling transformation.

. The Tile Dependence Matri® = {d°|d° = |H(j+
d)],d € D,j € TIS}, which contains the dependen-
cies between tiles.

2.3 Sequential Tiled Code Generation

Figure 2. Steps and incremen-
tal offsets in TTIS derived
from matrix H'

0

using matricesd’ and P'. If j° € J° andj’ € TTIS,

the corresponding € J” is found by the expression:

j = Pj% + P'j'. Code generation for the loop that will
traverse th&'T'IS is straightforward: the lower and upper
bounds of control variablg; (I}, andu), respectively) can

be easily determined: it hold$;, = 0 andu), = vk — 1

(for boundary tiles these bounds can be corrected using in-
equalities describing the original iteration space). Ntftat
each loop control variable may have a non-unitary stride
and non-zero incremental offsets. We shall denote the in-
cremental stride of control variablg asc;. In addition,
control variablej;, may havet — 1 incremental offsets, one
for the increment of each of thke- 1 outermost control vari-
ables, denoted;, (I = 1...k —1). In[7]itis proven that
strides and initial offsets in our case can be directly dtiv
from the Hermite Normal Form (HNF) of matrik’, de-
notedH'. Specifically, it holdsic;, = h'kr andag; = h'iy

In [7] we have presented a complete method to efficiently (Fig. 2).
generate sequential tiled code, that is, code that reorders

the initial execution of the algorithm according to a gehera
tiling transformationH. The tiled iteration space is now
traversed by &n dimensional loop, the outermost loops
enumerating the tiles andinnermost sweeping the points

3 Data Parallel Code Generation

The parallelization of the sequential tiled code involves

within tiles. We presented an efficient method to calculate issues such as computation distribution, data distributio

the lower and upper boundg’(andu; respectively) for a
loop control variablgy belonging to thex outer loops. In
order to calculate the corresponding bounds forihie-

and communication between processors. Tang and Xue in
[14] addressed the same issues for rectangularly tiled iter
ation spaces. We shall generate efficient data parallel code

nermost loops, we transformed the original non-rectarrgula for non-rectangular tiles without imposing any further com

tile to a rectangular one, using a non-unimodular transfor-

mation H' directly derived fromH. Specifically, it holds
H' = VH, whereV is an x n diagonal matrix such that
vkehr € Z™, andhy is the k-th row of H ([7]). The in-

verse of matrixd’ is denotedP’. We shall continue using
this transformation in the parallelization process presgn

plexity. The underlying architecture is considered a-(1)-
dimensional processor mesh. Thus, each processor is iden-
tified by a @ — 1)-dimensional vector denotggdd. The
memory is physically distributed among processors. Pro-
cessors perform computations on local data and communi-
cate with each other with messages in order to exchange

in this paper and thus we need to introduce some basicdata that reside to remote memories. In other words, we

concepts and notations found in greater detail in [7]. Fig-

ure 1 shows the transformation of t&id S into a rectangu-
lar space called the Transformed Tile Iteration SEAZd S

consider a message-passing environment (like MPI) over
a NUMA architecture. Note, however, that the € 1)-
dimensional underlying architecture is not a physical re-



striction, but a convention for processor naming. It is glea
that, this abstract model can be easily implemented with
a cluster of computers, interconnected with a commercial
interconnection network. The general intuition in our ap-
proach is that since the iteration space is transformef by
andH' into a space of rectangular tiles, then each processor
can work on its local share of “rectangular” tiles and, fol-
lowing a proper memory allocation scheme, perform opera-
tions on rectangular data spaces as well. After all computa-
tions in a processor have been completed, locally computed
data can be written back to the appropriate locations of the
global data space. In this way, each processor essentially
works on iteration and data spaces that are both rectangu-
lar, and properly translates from its local data space to the
global one.

3.1 Computation and Data Distribution

Computation distribution determines which computa-
tions of the sequential tiled code, will be assigned to which
processor. The: innermost loops of the sequential tiled
code that access the internal points of a tile will not be par-
allelized and thus parallelization involves the distribat
of tiles (traversed by the outermastdimensional loop) to

mapping dimension
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Figure 3. Local Data Space LDS and Trans-
formed Tile Iteration Space TTIS

that reside in one node may be needed for the computa-

processors. Hodzic and Shang in [9] mapped all tiles alongtion in another. In our approach, we follow ttemputer-
a specific dimension to the same processor and used hypelbwns” rule, which dictates that a processor owns the data

planell = [1,...,1] as time schedule vector. In addition to

it writes and thus, communication occurs when one pro-

this, previous work [3] in the field of UET-UCT task graphs cessor needs to read data computed by another. So, the
has shown that if we map all tiles along the dimension with original location of an array element is where it is com-
the maximum length (i.e. maximum number of tiles) to puted. Substantially, the memory space allocated by a pro-
the same processor, then the overall scheduling is optimalcessor represents the space where computed data are to be
as long as the computation to communication ratio is one.stored. This means that each processor iterating over a
We follow this approach in order to map tiles to processors number of transformed rectangular tilé87{(1Ss), can lo-

trying to adjust tile size properly. Let us denote theth

cally store its computed data to a rectangular data space.

dimension as the one with the maximum total length. Ac- At the end of all its computations, the processor can place

cording to this, all tiles indexed bi (7, ..., 55, ..., 52),
wherej? = const,i = 1,...,m — 1,m + 1,...,n and
I
n — 1 coordinates of a tile (excluding’) will identify the
processor that a tile is going to be mappedi@y. All tiles

its locally computed data to the appropriate positions ef th
global Data Spacel{S). The data space computed by a
< jn < uy, are executed by the same processor. Thetile could be an exact image of tHeT'TS but in this case

the holes of thel'T'IS would correspond to unused extra
space. In addition to the space storing the computed data,

alongjs (denoted also a&’) are sequentially executed by each processor needs to allocate extra space for communi-
the same processor, one after the other, in an order specieation, that is memory space to store the data it receives
fied by a linear time schedule. This means that, after thefrom its neighbors. This means that we need to condense

selection of index> with the maximum trip count, we re-

the actual points of th&7'1.S and provide further space for

order all indexes so thgf) becomes the innermost index. receiving data. Since, after all transformations, we finall
This corresponds to loop index interchange or permutation.work with rectangular sets, this Local Data Space denoted

Since all dependence vectats in .J° are considered lex-
icographically positive, the interchanging or reorderaofg
indexes is valid (see also [11]).

LDS allocated by a processor can be easily defined as fol-
lows: LDS = {j" € Z™|0 < j} < of fr + vir/ck, k =
L...,nk#mA0< gl <of fm + |t|/vmm/cm}, Where

In a NUMA architecture, the data space of the original |¢| denotesthe number of tiles assigned to the particular pro-
algorithm is distributed to the local memories of the var- cessor. As shown in Figure 3,DS consists of the mem-
ious nodes forming the global data space. Data distribu-ory space required for storing computed data (black dots)
tion decisions affect the communication volume, since dataand for buffering receiving data (grey dots) of a tile, multi



plied by the number of tiles assigned to the processor. White
squares depict unused data. The ofégef;, which expands
the space to store receiving data, derives from the commu-

J"=map(j. 1)
gl =jifck +of fr k #m
Jm = (tmm + jin)/Cm + 0f fm

nication criteria of the algorithm as shown in the next sub- " pid = loc(j):

section. ‘ .
3% = [Hj]
= H'(j - Pj®)
L 3" =map(i, g — 1)
L4 DS pid = (G s Gt imits -2 Jn)
2
loA Table 1. Using function loc() to locate j € J»
A in the LDS of a processor
7 =map (7
= . t = (Jm — of fm)Cm/Vmm
Wl . . k-1 -~ .
i = ey —of fx) + (32 W) %ck, k # m
=1 )
“hAe . . m—1 ~ .
* Jin = Cm(Jm, — 0f fm) — tVmm + (> hlml]l,)%cm
=1

J = loc (5", pid):
7= map=1 (")

7pidm—17t + lr‘s;Lapidm+17 s
j: PjS +Pljl

Figure 4. Relations between DS, J" and LDS 5
] =

pidl, PN . pldn)

Recall that each processor iterates overfid S for as
many times as the number of tiles assigned to the proces-
sor. Ift is the current tile ang’ € TTIS the current in-
stance of the innes-dimensional loop, functiomap(j', t)
determines the memory location inD.S where the com-
putation for this iteration is to be stored (Figure 3). Appar
ently,map~1(j") is its inverse. Functiofoc(j) in Table 1
usesmap(j',t) in order to locate the procesqm}d and the

Table 2. Using function loc~!() to locate j" €
LDS of processor pidin J"

formation is applied. Our method, however, forces the local
data space of each processor to be rectangular, allowisg thu
more efficient memory management. In addition, if we also
memory locationj” € LDS, where the computed data of take into account that data spaces for common computation-
iteration pointj € J™ is to be stored. Inversely, Table 2 ally intensive algorithms are very large, and will probably
shows the series of steps in order to locate the correspondnot fit in each node’s memory, the compression of the local
ing j € J" for a pointj” € LDS of processopfd. Thus, space to thd. DS is in most cases necessary. Eventually,
loc71() is called by processors at the end of their compu- this leads to a trade-off between computational complex-
tations, in order to transit from theit DS to the original ity and allocated memory space, since extra expressions are
iteration space/™. In the sequel, the corresponding point needed to address thHeD S, but this minor overhead does
in the Data Spac® S is found viaf,, (Figure 4). All ex- not significantly affect performance. Finally, note thatrst
pressions in Tables 1 and 2 derive from the properties of theing data accessed by a non-rectangular tile to a dense rect-
two spaced DS andT'TIS and the Hermite Normal Form  angular data space also exploits cache locality.
of matrix H' denotedH’.

Under our scheme, each processor only allocates exactlyd.2 Communication
the amount of local memory needed for computation and
communication (minor over-allocation occurs in the few
boundary tiles). Note that direct allocation of a proce'ssor scribed before, data that reside in the local memory mod-
share in the originaD.S would lead to a waste of mem- ule of one processor may be needed by another due to al-
ory space, since this generally non-rectangular sharedvoul gorithmic dependencies. In this case, processors need to
lead to the allocation of the minimum enclosing rectangu- communicate via message passing. The two fundamental
lar memory space. Note also that each processor’s share iissues that need to be addressed regarding communication
the originalD.S (the footprint of a tile because ¢f,) is in are the specification of the processors each processor needs
general non-rectangular, even if a rectangular tilinggran to communicate with, and the determination of the data that

Using the iteration and data distribution schemes de-



need to be transferred in each message. RECEI VE(pid, t*, D5, CC) _
FOR d° ¢ DS DO /*For all tile dependencies...*/

As far as the communication data are concerned, we fo-| /l*---!f prede;:]essilor tile valid and current tL'/e
cus on the communication points, e.g. the iterations that exicographicafly minimum SUCCessor...

. > S o S
compute data read by another processor. We further ex I'F(vali d(@(ﬁ}% t)g):fﬂ_ )nSAUCC((p;d ) 5. (@)

ploit the regularity of thel'T'/S to deduce simple crite- /*...receive data from predecessor processor...*/
ria for the communication points at compile time. More MPI _Recv( buf f er, Rank( pid — d™(d5)), ...);
specifically, a poing’ € TTIS corresponds to a commu- /*...and unpack it talL DS of current processor.*/

count : =0;

nication point according to the-th dimension if thek-th FOR j{ — maa(l{,dSccr) TO uf STEP=c; DO

coordinate ofj’ + d; is greater than the respecti¥&'/S- o
bound at thek-th dimension for some transformed depen- FOR j!, =1', TO u!, STEP=c,, DO
dence vectoel) € D' (D' = H'D). In other words,j’

. . . . . . . oy R ! S ! —
is a communication point respective to theh dimension FOR jp, = maz(ly, dpcen) TO uy, STEP=c, DO

S S
when it holdsjj, + maz(d;) > vi, — 1 or equivalently LA map(j', 15 — 1) - (., )] o=
Jr > vk — maz(d),;). We define the communication vec- ENDEOR buf f er [ count ++] ;
tor CC = (ccr, ..., cen) Wherecey, = vg, — maz(dy,). o
It is obvious thatC'C' can be easily determined at compile ENDFCR
time. Note that the offsets ihDS referenced ir§3.1 can ENDECR
easily arise as followsof fr, = [max(d},;)/ck],k # m ENDI E
andof fm = Vmm /Cm- SEND( pid, 5, D™, CC)
L FOR d™ € D™ DO /*For all processor dependencies...*/
Communication takes place before and after the execus- /*...if a valid successor tile exists...*/
tion of a tile. Before the execution of a tile, a processor | F(3dS(d™) € DS:val i d((pid,t5) + dS(d™)))
must receive all the essential non-local data computed I*...pack communication data to buffer...*/

count : =0;

1ate
elsewhere, and unpack these data to the appropriate FOR j = max(l},dcer) TO ] STEP=c; DO

locations in itsLDS. Dually, after the completion of a o
tile, the processor must send part of the computed dats FOR j!, =1",
to the neighboring processors for later use. We adopt the

communication scheme presented by Tang and Xue in

TO u}, STEP=¢,, DO

FOR j;, = max(l,,d™ ,ccn) TO u, STEP=¢, DO
buf f er [ count ++] : =LA] map( 5/, t5 —15)1;

[14], which suggests a simple implementation for packing ENDEOR

and sending the data, and a more complicated one for

the receiving and unpacking procedure. The asymmetry| ENDFOR

between the two phases (send-receive) arises from the fagt ENDECR

that a tile may need to receive data from more than one /*...and send to SUCCESSOr processor.*/
tiles of the same predecessor processor, but it will send its MPI _Send( buf f er, Rank( pid + d™), . ..);

data only once to each successor processor, satisfying all __ ENDI F
the tile dependencies that lead to different tiles assigoed

the same successor in a single message. In other words, A
tile will receive from tiles, while it will send to processor

Let D™ be the projection oD in then — 1 dimensions, ~ FORACRGSS pid; = 1§ TO uf DO
when the mapping dimensiom is collapsed. D™ ex-

Summarizing, the generated data parallel code for the
op of §2.1 would have a form similar to the following:

presses processor dependencies, meaning that, in general,FORACROSS pid,—1 = 15_, TO u3_, DO
processomfd needs to receive from processdsl —dm /*Sequential execution of tiles*/

and send to processop%d + d™ forall d™ € D™. The FOR t° =15 TO uS DO

following schemes for receive-unpack and pack-send have [*Receive data from neighboring tiles*/

been adopted according to the MPI platformi™(d°) RECEI VE( pid, t5, DS, CC);

denotes the processor dependew€e that corresponds [*Traverse the internal of the tile*/

to a tile dependence®, while d°(d™) denotes all tile FOR j! =1, TO u| STEP=¢; DO
dependencied® that generate processor dependeiite o

Functionm nsucc(s,d™) denotes the lexicographically FOR j/, =1!, TO u!, STEP=¢, DO
minimum successor tile of til& in processor direction [*Perform computations on Local Data Spab® S*/
d™, while functionval i d(3) returns true if tile3 is ti=15 —12;

enumerated LA denotes an array in local memory which LA[map(j',t)] = F(LA[map(j' — d,t)],...,

implements the.DSS. LA[map(j' — dg,t)]);



ENDFCR Alt-1,i+1,j]+A[t-1,i,]+1])+

(L-w)At-1,i,j]1;
ENDFOR ENDFOR
/*Send data to neighboring processors*/ ENDFOR
SEND( pid, t5, DS, CC) ; ENDFOR
ENDFCR The dependence matrix of the skewed SORIs =
ENDFORACROSS 10110
o 1 1 0 1 0 | and the corresponding tiling cone is
ENDFORACROSS
2 0 2 11
. 100
4 Experimental Results 01 0
defined by the rows of matrig = 10 1| Al-
We have implemented our parallelizing techniques in a 9 1 1

tool which automatically generates C++ code with calls to though non-rectangular tiling can be directly applied ® th

the MP! library and run our examples on a cluster with 16 original loop nest, we choose to apply both rectangular and
identical 500MHz Pentium Il nodes with 128MB of RAM. non-rectangu|ar t|||ng to the skewed one for the compar-

The node_s run Linux with kernel 2.2.17 and are intercon- json to be more obvious. For a non-rectangular transfor-
nected with FastEthernet. We used the gcc v.2.95.2 com-mation, we select three vectors parallel to the first three
piler for the compilation of the sequential programs and Jines of matrix(, i.e. the tiling transformation is of the

mpiCC (which also uses gcc v.2.95.2) for the compilation % 0 0
of the generated data-parallel programs. In both cases theéorm: m,, = 0 L 0 [, while the rectangular
-O2 optimization option was applied. Our goal is to inves- 1 % 1

tigate the tile shape effect on the overall completion tifie 0 tjling transformation is defined by a matrix of the form:
an algorithm. We used three real problems, Gauss Succes- L 0 0

sive Over-relaxation (SOR), the Jacobi algorithm and ADI f7  — 0 0 |, wherez,y,z € Z+. Note that, if
integration. In each case, we applied rectangular and non- 0 0 1
rectangular tiling transformations. We present the speedu \ve select common factors y, = for H,,, and H, we have
obtained for various tile sizes and iteration spaces. equal tile sizesl(/|det(H,)| = 1/|det(H,,)| = zyz). Fur-
thermore, if we map tiles along the third dimension to the
4.1 Results for SOR same processor, the communication volume and the num-
ber of processors required are the same in both cases, since
the first two rows of the tiling transformation matrices are

@ =

The SOR loop nest is as follows:

FOR t=1 TO M DO identical. Thus, any differences in execution times will be
FOR i =1 TO N DO due to the different scheduling schemes imposed by the dif-
FOR j=1 TO N DO ferent tile shapes. In order to have a theoretical interpre-
At i, T =% (AL, -1, jT+At, T, ]-1]+ tation of the experimental results that follow, let us focus
Alt-1,i+1,j]+A[t-1,i,]+1])+ on the following general example. The linear scheduling
(1-w)ALt-1,1,i]; vector used in our approach 1§ = [1,1...1]. We de-
ENDFOR note the last executed point of the original iteration spzece
ENDFOR Jmaz- Apparently, this point will belong to tilé H j,,4. |
ENDEOR and will execute at time step = II|Hjmae]. In our

] . ) ] o skewed SOR examplg,.. = (M,M + N,M + 2N)
Since the dependencies contain negative coefficients, the,ng thus, using rectangular tiling this point will execute
loop needs to be skewed in order to be rectangularly tiled. 5 time stept, = M 4 M+N | 2M+N - accordingly

) 10 0 ] ) using non-rectanguxlar tiIinlé'mw will execute att,, =
Asin[15],weusel’= | 1 1 0 | as skewing matrix. % 4 MEN 4 2MEN M _ M 4 Thys, we
) , 2 01 expect rl{on-rectaﬁgular filing to exhibit lower total execu
The resulting loop nest is: tion times.

FOR t’'=1 TO M DO We performed our experimental results for four different
FORi’'=t’'+1 TOt’' +N DO iteration spaces. In each iteration space we held faators
FOR j’ =2t'+1 TO 2t’ +N DO andy constant, such that the required number of MPI pro-
tost'; Qii=-trH =2t 4 cesses would b&6 (one process per processor). We then

ALt i, j1i=%(At,i-1,]]+A[t,i,j-1]+ varied factorz in order to test different tile sizes. Figure 5



shows the maximum speedups obtained in each iteration

FORj'=t'+1 TOt'+J DO

space, while Figure 6 shows the speedups obtained in one tost; Qi=-tt T ji=-t 4

iteration space for various tile sizes.

O Rectangular Tiling m Non-rectangular Tiling

M=100 M=200 M=150 M=100
N=100 N=100 N=150 N=200

Iteration Space

Figure 5. SOR: maximum speedups for differ-
ent iteration spaces

Rectangular Tiling —e— Non-rectangular Tiling
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Speedup
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Figure 6. SOR: speedups for various tile sizes
(M =100, N = 200)

4.2 Results for Jacobi

The Jacobi loop nest is:

FORt=1 TO T DO
FOR i=1 TO| DO
FOR j=1 TOJ DO

Alt,i,jl:=0.25(A[t-1,i-1,j]+A[t-1,i,j-1]+
Alt-1,i+1,j]+At-1,i,j+1]);
ENDFOR
ENDFOR
ENDFOR

Note that this loop also needs to be skewed in order to be
1 0 0

legally tiled. Weusd = | 1 1 0 | asskewing matrix
1 0 1

and thus the skewed loop nest is:

FOR t'=1 TO T DO
FORi'=t'+1 TOt’+I DO

Alt,i,j]:=0.25(A[t-2,i-2,j]1+A[t-2,i,j-1]+
Alt-21,i+1,j]1+A[t-21,i,j+1]);
ENDFOR
ENDFOR
ENDFOR

The dependence matrix of the skewed Jacobiis=

1 1 1 1
2 1 0 1 | andthe corresponding tiling coneds=
12 1 0 |
[ -3 1 1]
1 -1 1 . .
1 -1 1 . In this case, in order to have the same
-1 1 1]
comparison features as in SOR, we applied non-rectangular
1 1
= —= 0
T 2
tiling transformation defined b¥f,,,. = 0 % 0
0 0 1

If we choose common, vy, z factors and map tiles along
the first dimension to the same processor, we have the same
tile size, communication volume and number of processors
required both for rectangular and non-rectangular tiling.
Choosing the tile’s cutting hyperplanes from the surface of
the tiling cone would probably lead to lower total execu-
tion times as proven in [10], but in this case comparison
with rectangular tiling would be difficult, since factorkei

tile size, communication volume and number of processors
would differ. In this case we havg,., = (T, T+1,T+J)

and following similar analysis as in the case of SOR we
havet, = £ + L 4 I while t,, = t, — Bt < ¢,

2z
Again here we expect non-rectangular tiling to achieve bet-

ter execution times.

In this example, we held; and z factors constant
throughout the experiments in each iteration space and var-
ied factorz in order to test different tile sizes. Figure 7
shows the maximum speedups obtained in each of the four
iteration spaces, while Figure 8 shows the speedups ob-
tained in one iteration space for various tile sizes.

D Rectangular Tiling @ Non-rectangular Tiling
12
0]

©

Speedup

o N b o

T=50 T=100 T=50 T=100
1=J=100 1=J=100 1=J=200 1=J=200

Iteration Space

Figure 7. Jacobi: maximum speedups for dif-
ferent iteration spaces
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Figure 9. ADI Integration: maximum
speedups for different iteration spaces

4.3 Results for Adi Integration

Adi Integration can be written in a triply nested loop as o 02 o Moo e
shown in Table 3. The dependence matrix of Adi integration 1
1 11
12
isD = | 0 1 0 | and the corresponding tiling cone _/_/./-—4-—-——'——'——*—*
0 0 1 5w
1 -1 -1 g,
isC =10 1 0 |. No skewing is needed in this
0 0 1 °
case since all dependence vectors are non-negative. In this 4 -
eXperIment SerIeS We used three dlﬁerent nOﬂ-reCtangUlar 8192 12288 16384 20480 24576 28672 32768 36864 40960 61440
1 1 Tile Size
-~ — 0
x
matrices defined byH,,,.; = 0 % 0 |, Hyo =
0o o0 !
L g -1t L1 1 Figure 10. ADI Integration: speedups for var-
0L 0landH,.=|0 I 0/ Note ious tile sizes (' = 100, N = 256)
Yy Yy '
o o0 1 o o 1

z

that the third one is parallel to the directions of the tiling

cr:)ne. Again here we rzﬁr:c tiles alonfg the f_irst dimelr_ls(ijonr'io we had an average speedup improvementia$%, in Ja-
the same processor. our transformations applied (t € cobi9.1% and in ADI Integrationl0.1%. This is a remark-

rectang_;lular and the thr.ee -non-chtangu:jar on(_es) L]ave eple result since the improvement only arose from a slight
same tile size, communication volume and require the Samechange in the rectangular tiling transformation mattx
number of processors. Similar to the analysis in the pre- fact, in the first two sets of experiments only one ele-

vious jgxpelr\;mer}\t,s, SNChnaz = ](VT= N, N), it hOI(IjVS that ment of matrixH was changed, while in the last set only
b=ty Tt =t = Puteey = 6 — AN 0 Note also that in the last set the gradual improvement
tnrs = tr — X — X Thus,tprs < tart. tnra < t,. Fig- from the rectangular tiling to the non-rectangular one make
ure 9 shows the maximum speedups obtained in each of thgrom the tiling cone is much more obvious. This is to con-

four iteration spaces, while Figure 10 shows the speedupsirm the theoretical work in [10], where it is proven that if

obtained in one iteration space for various tile sizes. any of the row vectors off lies in the interior of the tiling
cone, then the corresponding tiling transformation is et o
4.4 Comments on the Results timal. Non-rectangular tiling defined B¥,,,, andH,,,.» ex-

hibit the same speedups as expected (we used goprad
The first conclusion easily drawn from all sets of exper- z factors) and lower than the one definedMy,.5 (but still
iments is that, as expected, in all cases (i.e. for each al-higher than the rectangular one). We also need to point out
gorithm, iteration space and tile size) non-rectanguliaigti that our tool is not yet optimized for performance. Our main
leads to better execution speedups than rectangular. In SORjoal was to compare the total execution times imposed by



FOR t=1 TO T DO
FOR i =1 TO N DO
FOR j=1 TO N DO

Xt i, jl:=xX(t-1,i,j]+X[t-2,i,j-2]*A[i,j]/B[t-1,i,j-2]-X[t-1,i-2,j]1*A[i,j]/B[t-1,i-1,j];
B{t,i,jl:=B[t-1,i,j]1-Ali,j]l*Ali,j]l/B[t-1,i,j-1]-Ali,j]1*Ali,j]/B[t-1,i-1,j];
ENDFOR
ENDFOR
ENDFOR

Table 3. Code of Adi Integration
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