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Abstract

This paper describes the performance benefits attained us-
ing enhanced network interfaces to achieve low latency
communication. We present a novel, pipelined scheduling
approach which takes advantage of DMA communication
mode, to send data to other nodes, while the CPUs are per-
forming calculations. We also use zero-copy communica-
tion through pinned-down physical memory regions, pro-
vided by NIC’s driver modules. Our testbed concerns the
parallel execution of tiled nested loops onto a cluster of
SMP nodes with single PCI-SCI NICs inside each node. In
order to schedule tiles, we apply a hyperplane-based group-
ing transformation to the tiled space, so as to group to-
gether independent neighboring tiles and assign them to the
same SMP node. Experimental evaluation illustrates that
memory mapped NICs with enhanced communication fea-
tures enable the use of a more advanced pipelined (overlap-
ping) schedule, which considerably improves performance,
compared to an ordinary blocking schedule, implemented
with conventional, CPU and kernel bounded, communica-
tion primitives.

Keywords: memory mapped network interfaces, DMA,
pipelined schedules, tile grouping, communication overlap-
ping, SMPs

1 Introduction

Modern high performance communication architectures
allow new, low latency messaging protocols [5, 6, 7, 17] to
provide the vehicle of very efficient communication in clus-
ters. Available bandwidth is constantly increasing, while
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there is a trend towards offloading host CPU from the bur-
den of communication [17] through the use of bus master-
ing, DMA enabled NICs. In this way, CPU has more time
to spend on useful application calculations.

When a (user level) process needs to access a conven-
tional network interface, overall communication is delayed
[13], since, through a system call, the OS switches to ker-
nel level and assumes the copying of data from user areas
to kernel areas for protection. Nevertheless, modern net-
work technologies (i.e. SCI, Myrinet, etc.) are mitigating
this startup latency with optimized communication proto-
cols (i.e. VIA) with Zero-Copy [4], DMA support and User-
Level [3] characteristics.

Not only these novel network interfaces are reducing
the message startup latency, but they can also alleviate the
communication burden from CPU. Current parallel applica-
tions should be rescheduled to exploit these enhanced fea-
tures. The parallel execution of any computationally inten-
sive code, containing nested loops, is a very good testbed for
such enhanced communication architectures for clusters.
Parallel loop execution requires for frequent synchroniza-
tion points and extensive exchange of data between differ-
ent nodes. Thus, loops are most suitable for being resched-
uled, if we adopt zero-copy, DMA enabled, messaging fea-
tures. The key issue is to mitigate communication overhead
by efficiently controlling the computation to communica-
tion grain. When using enhanced network interfaces, the
objective should also be to hide as much as possible this
communication overhead, gaining extra cycles for useful
computation, since the CPU is now disengaged.

In the past, many researchers presented methods for con-
trolling the computation to communication grain for paral-
lel loop execution. In order to alleviate the communication
overhead, Irigoin and Triolet proposed supernode partition-
ing [12] of the Iteration space, where neighboring iteration
points are grouped together to build a larger computation
node (tile) that can be atomically executed without any in-



tervention. Hodzic and Shang [11] proposed a method to
correlate optimal tile size and shape, based on overall com-
pletion time reduction. Their approach considers a straight-
forward time schedule, where each processor executes all
tiles along a specific dimension, by interleaving computa-
tion and communication phases.

In [9] an alternative method for the problem of schedul-
ing the tiles to single CPU nodes was proposed. Each
atomic tile execution involves a communication and a com-
putation phase and this is repeatedly done for all time
planes. This sequence of communication and computation
phases is compacted, by overlapping them for the different
processors. The proposed method acts like enhancing the
performance of a processor’s datapath with pipelining [14],
because a processor computes its tile at � time step and
concurrently receives data from all neighbors to use them
at � � � time step and sends data produced at � � � time
step. Since data communications involve some startup la-
tencies, the computation grain is adjusted to make room for
this overhead and try to overlap with all communication,
which can be done in parallel. Previous work in the field of
UET-UCT scheduling of grid graphs in [2], has shown that
this schedule is optimal when the computation to commu-
nication ratio is one.

In this paper we extend the method proposed in [9] for
executing tiled iteration spaces in SMP nodes. We group
together neighboring tiles along a hyperplane. Hyperplane-
grouped tiles are concurrently executed by the CPUs of the
same SMP node. In this way, we eliminate the need for
tile synchronization and communication between intranode
CPUs. As far as scheduling of groups is concerned, we
take advantage of the overlapping schedule of [9] in order
to “hide” each group communication volume within the re-
spective computation volume.

We compare our method, using blocking schedules and
vertical grouping of neighboring tiles along a specific di-
mension. Vertically grouped tiles are assigned to the same
node, and an optimal hyperplane time schedule is applied.
All experimental results show that when the hyperplane
grouping of tiles together with the overlapping schedule
are applied, the overall completion time is considerably re-
duced, under the condition of controlling the computation
to communication grain. One can easily deduce that the
performance of modern communication architectures is en-
hanced, provided that we carefully design the time schedule
and work partitioning among the CPU’s of SMP nodes.

The rest of this paper is organized as follows: Basic hard-
ware concepts used in the experiments are introduced in
Section 2. In Section 3 the non-overlapping and overlap-
ping schedules are briefly revised. In Section 4 we supply
an algorithm for the application of the overlapping scheme
proposed in [9] on clusters of SMP nodes and we investi-
gate the resulting time schedule. In Section 5 we describe

the experiments executed on a cluster of SMPs using PCI-
SCI Network Interface cards in order to verify our theory.
Finally, in Section 6 we summarize our results and propose
future work.

2 Background concepts

2.1 Hardware High Performance Features

Recent advances in high speed networks and improved
microprocessor performance are making clusters of work-
stations an appealing vehicle for cost effective parallel com-
puting. The trend in parallel computing is to move away
from custom-designed platforms of the established HPC in-
dustry to general purpose systems consisting of loosely cou-
pled components built up from single or multi-processor
workstations or PCs.

The de-facto 100Mbps networking of commodity clus-
ters can be a bottleneck for many applications, when scaling
beyond a small number of nodes. The last years, new net-
working technologies such as SCI [10], Myrinet and Gigabit
Ethernet offer increased bandwidth and low startup laten-
cies, which however, are never efficiently utilized by user
applications. Therefore, high-performance clusters are in-
troduced, which provide the computationally intensive ap-
plications with increased performance using special com-
munication primitives, such as Zero-Copy Protocols and
DMA transfers.

2.1.1 Zero-Copy Protocols

Network protocol stacks, such as TCP/IP, aggravate the
communication procedure with the extra copying of data
sent or received, to and from kernel space, respectively. As
Fig. 1 depicts, when sending data from an application (user
space) buffer to the network, data must be initially copied
from the application buffer to kernel buffers. TCP, IP and
network headers must be added and then, as a packet, trans-
ferred to NIC’s buffer for transmission. A respective proce-
dure takes place when data reach the receiving node.

The previous sequence of actions is unavoidable when
using legacy network technologies, but could be avoided
when novel communication technologies are used. SCI
achieves Zero-Copy Communication, since it supports a
Distributed Shared Memory approach, which is imple-
mented using kernel area memory mapped regions for com-
munication. An SCI communication scenario involves the
following stages: A process in an SCI node exports a mem-
ory segment which is imported by a process that resides in
another SCI node. Every imported memory segment is di-
rectly mapped to the PCI I/O space of the PCI-SCI NIC. It is
part of the importer’s (process) virtual memory through the
prior invocation of an SCIConnectSegment() driver
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Figure 1. Single-Copy Protocol and packeti-
zation process

call. When the importing node needs to send data, it just
writes them directly to the imported memory segment (thus,
no kernel copies). Data are transferred to the exporter’s
memory and communication is performed, without any ker-
nel intervention. No other data processing is needed within
each send.

2.1.2 DMA transfers

Message data can be usually transferred in two ways: Pro-
grammed I/O (PIO) mode and DMA mode. In PIO mode,
CPU handles data transferring completely, word by word.
For example, data transferring of 1Kwords involves the ini-
tial copying of these words from main memory to the NIC’s
buffers with the aid of CPU. From a parallel application’s
point of view, these are considered “lost” CPU cycles, since
useful calculations could have been executed instead. On
the contrary, using DMA mode, CPU just programs the
NIC’s DMA engine with the information of which data to
transfer from main memory and where to send it. CPU is
not used (or blocked from a program’s perspective) during
the transfer and can perform other (useful) tasks.

The DSM feature of SCI allows the efficient use of its
DMA capabilities. Using special SCI driver calls, the sys-
tem returns physically contiguous allocated memory. The
allocated memory is first “pinned down” and then mapped
to user’s virtual memory (Fig. 2). User is able to read/write
that memory region like the ordinary memory regions re-
turned by LIBC malloc(). Despite the fact that DMA
transfer is only invoked as a kernel system call, the com-
plete transfer of the specific memory area will be performed
with only one DMA invocation. On the contrary, even if
the NIC in Fig. 1 was DMA enabled, a new DMA invoca-
tion should take place for each �data,TCP,IP,NET� packet,
which would be time consuming.
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Figure 2. Locked and memory mapped "RAM
device" for SCI communications

2.2 Algorithmic model - Notation

In order to evaluate the performance benefits gained by
such advanced architectures, we consider algorithms with
perfectly nested FOR-loops and uniform data dependencies:

FOR ��=�� TO �� DO
...
FOR ��=�� TO �� DO

Loop Body
ENDFOR
...

ENDFOR

where ��, �� are affine functions of the outer loop indices.
Throughout this paper the following notation is used: �

is the set of natural numbers, � is the number of nested
FOR-loops of the algorithm. � � � �� is the set of loop
indices: �� � �����	 


	 ������ � � � �� 	 �� 	 ��	 � 	
� 	 ��. Each point in this �-dimensional integer space is a
distinct instantiation of the loop body. A dependence vec-
tor is denoted �� � ����	 


	 ����. The Dependence Matrix
 of an algorithm A is the concatenation of all dependence
vectors of this algorithm:  � �������


��� �.

Tiling transformation is defined by the � 
 � tiling ma-
trix � , or dually by the inverse tiling matrix � , as they
are defined in section 2 of [9]. The resulting Tile space
�� and the Tile Dependence matrix � are defined as fol-
lows: �� � ��� ��� � ����	 � � ���, � � ��� ��� �
����� � ���	 � � 	 �� � ���� 	 ����� 	 �� where ��
denotes the index points belonging to the first complete tile
starting from the origin of the Iteration space � �. The Tile
space can be also written as �� � ������� 	 
 
 
 	 ��� ����� �
� � ��� 	 ��� 	 ��� 	 � 	 � 	 ��, where ��� , ��� can be
directly computed from the functions ��	 
 
 
 	 ��	 ��	 
 
 
 	 ��
and the tiling matrix� , as described in [1, 8]

Given an algorithm with Dependence matrix , for a
tiling to be legal, it must hold�  � [12, 15]. In this pa-
per we assume that all dependence vectors are smaller than



the tile size, thus they are entirely contained in each supern-
ode’s area, which means that ��� � � [18] or alternatively
that the Tile Dependence matrix � contains only 0’s and
1’s. This assumption is quite reasonable since dependence
vectors for common problems are relatively small, while tile
sizes may result to be orders of magnitude greater in sys-
tems with very fast processors. In this case every tile needs
to exchange data only with its nearest neighbors, one in each
dimension of ��.

3 Non-overlapping vs. Overlapping Schedule

In [11], Hodzic and Shang have presented a scheme
for scheduling loops that have been transformed through a
tiling transformation. Their approach is to minimize total
execution time, as follows: Firstly the optimal tiling ma-
trix � is determined and then it is applied to the original
Iteration space. The resulting Tile space � � is scheduled
using a linear time hyperplane 	. All tiles along a certain
dimension are mapped to the same processor. Total execu-
tion of tiles consists of successive computation phases in-
terleaved with communication ones. A processor receives
the data needed to execute a tile at time step �, performs the
computations and sends to its neighboring processors the
boundary data, which will be used for tile calculations in
time step � � �. Thus the total execution time is given by
� � � ������ � ������	 where � is the number of time
hyperplanes needed to execute the algorithm, � ���� the ex-
ecution time of a tile and ����� the communication time.
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Figure 3. Non-overlapping Time Schedule

Therefore, the overall parallel loop execution consists of
atomic computations of tiles interleaved with communica-
tion for the transmission of the results to neighboring pro-

cessors. Since Tile space �� has only the unitary depen-
dence vectors (see �2.2), the optimal linear time schedule
can be easily proven to be: 	 � �� � 
 
 
 ��. In Fig. 3, the
non-overlapping schedule is shown for a Tile space us-
ing six processors. All tiles along the same dimension are
mapped to the same processor. If we cluster together the
receive and send subphases and call them “communication
subphase”, then we see that the overall schedule has com-
putation subphases interleaved with communication ones.

This quite straightforward model of execution results in
very good execution times, since it exploits all inherent par-
allelism at the tile level. However, an important drawback
of this execution model is that each processor has to wait
for essential data before starting the computation of a cer-
tain tile, and wait for the transmission of the results to its
neighbors, thus resulting in significant idle processor time.
It would be ideal if a node was able to receive, compute and
send data at the same time. Modern network interfaces have
DMA engines that enable them to work in parallel with the
CPU. This means that some communication work can be
overlapped with actual CPU cycles. When communication
work is finished, processor receives an interrupt. In fact,
even some part of the non-blocking communication needs
the CPU, i.e. DMA initialization. Nevertheless, all sub-
sequent data transferring actions can be ideally overlapped
with useful computation.

However, what really imposes such inefficient processor
utilization, is the data flow between successive time steps.
Specifically, it seems that computations and respective com-
munication substeps for each time step should be serial-
ized to preserve the correct execution order. Every proces-
sor should first receive data, then compute and finally send
the results to be used at the next time step by its neigh-
bor. A much more thorough look at the correct data flow in
the non-overlapping case, reveals the following interesting
property: If we slightly modify the initial linear schedule,
then we could overlap some communication time with com-
putations. This means that, in each time step, the processor
should send and receive data that are not directly dependent
to the data computed at this step. A valid time execution
scheme would be for a processor to receive data from all
neighbors to use them at � � � time step, send data pro-
duced at previous time step � � � and compute its results
(Fig. 4). In this case, every processor computes a tile, and
receives+sends data needed in next step or produced in the
previous one, respectively.

In Fig. 4 the overlapping scheduling is shown. Con-
sider, for example, processor �� at � time step: while it
makes the computation for a tile, it concurrently performs
the following: sends the results produced during �� � time
step and receives data from neighbors, to be used during the
computation of the next tile at � � � time step. The out-
come of this schedule is to have successive computations
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Figure 4. Overlapping Time Schedule

overlapped with communication phases, thus 100% proces-
sor utilization. A more detailed description of this schedule
can be found in [9] and [16].

If we consider the possibility to overlap computation
with communication using the advanced DMA features pre-
sented in �2.1, then we have the following scheme: A
processor first initiates all the non-blocking send opera-
tions and then performs the actual atomic tile computations.
While the processor performs computations, the NIC is re-
ceiving data from neighbors and sends previously computed
data to others as well. Another aspect is that the invoca-
tion of DMA communication should be done in user level
(User-Level DMA). Furthermore, zero-copy communica-
tions should be used, and finally, the software packetization
process involved in every communication must be avoided.

According to the previous properties, the total execution
time for the overlapping schedule, as deduced from Fig. 4,
is given by:

��	
��� �
� ������ �� �
��������	 ����� ��� � ���������	

(1)

where � is the number of execution steps of the resulting
algorithm. The time needed to initiate the DMA engine
is ����� ��, ����� is the tile execution time, ����� ��

is the communication time which can be overlapped with
computation and �������� is the required synchronization
time between successive time steps.

Since the concept of overlapping of actions is crucial, it
should be noted that the actions initiated by a non-blocking
call are overlapped with the actions initiated by calls fol-

lowing the non-blocking call. On the contrary, a blocking
call implies no overlapping of actions, since a following call
can be initiated only after the blocking call has completed.

4 Application of the Overlapping Schedule to
SMP nodes

In the sequel, we shall generalize the overlapping sched-
ule proposed in [9] for a cluster of SMP nodes containing
more than one CPUs each. In order to mathematically sup-
port this generalization, we need to introduce the concept of
grouping transformation, which is a supernode transforma-
tion applied to tiles.

4.1 Grouping Transformation

We shall group together the tiles of � � that will be con-
currently executed by the CPU’s of the same SMP node.
That is, we further apply an additional supernode transfor-
mation to the Tile space �� . Thus, from the Tile space � �

we produce the Group Space

�� � ������ � ������	 �� � ���


This grouping transformation is defined by the � 
 � non-
singular matrix ��. In correspondence to the tiling matrix
� [9], we call the � 
 � matrix �� as grouping matrix.
Each row-vector of�� is perpendicular to one of the fami-
lies of hyperplanes that define the boundaries of the groups
in �� . The � 
 � matrix �� � ������ is called inverse
grouping matrix.
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Figure 5. Hyperplane grouping

Example 1: Let us consider a -dimensional Tile space
�� and a cluster of SMP nodes containing  CPUs each.
We want to assign all tiles along of the same dimension
��� to the same CPU of an SMP node. Since all CPUs
within a node have access to the shared memory, we are
assigning neighboring rows of tiles, which exchange data to



the CPU’s of the same node (Fig. 5). We seek for an ap-
propriate grouping transformation that will group together
the tiles that can be executed simultaneously by different
CPU’s. So, we shall group together the tiles included by
the grey areas in Fig. 5. The appropriate inverse group-

ing matrix is �� �

�
� �
� 

�
. In the sequel, we shall

call this grouping scheme as hyperplane grouping. On the
contrary, any other grouping scheme along a specific dimen-
sion, such as the one presented in Fig. 6, which can be more
easily deduced by intuition, will be called vertical group-
ing. It is obvious that the tiles grouped together by a vertical
grouping scheme cannot be simultaneously executed unless
they are split into subtiles. Thus, additional synchronization
overhead is imposed due to subtile dependencies. �
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Figure 6. Vertical grouping

4.2 Determining �� according to the number of
CPU’s within a node

Consider now the general case, where we have an �-
dimensional tiled Iteration space and a cluster of SMP
nodes, each with � processors inside. Our objective is to
assign the tiles of �� along of the �-st dimension to the
same CPU of an SMP node. Let us assume that the natural
number � can be written as � � �� 
 �� 
 
 
 
 
 ��,
where ��	��	 
 
 
 	�� � � . Then, we select the inverse
grouping matrix and the corresponding grouping matrix to
be

�� �

�
���

� ��� � � � ���

� �� � � � �
...

...
. . .

...
� � � � � ��

�
��� �

�� � ������ �

�
���

� � � � � �
� �

��
� � � �

...
...

. . .
...

� � � � � �

��

�
���

(2)

The maximum number of tiles contained inside a group is
������� � �, exactly equal to the number of CPU’s inside
each SMP node.

In order to prove that�� defines a legal grouping trans-
formation, it suffices to prove that ���  �, where �

is the dependence matrix of the Tile Space � � and that any
two tiles ��� 	 ��

� � ��� within the same group are inde-
pendent. We have assumed (see �2.2) that the dependence
matrix � contains only �’s and �’s. Consequently, the
first condition is apparently valid. In order to prove the sec-
ond condition, we assume that the dependence matrix �

is equal to the unitary matrix. Even if there is a dependence
vector with more than one �’s, it is the sum of more than
one unitary dependence vectors. So it will be included in
the following proof as an indirect dependence:

If tiles �� 	 ��
� � �� belong to the same group �� then

it holds that: ������ � �����
�� � ��� � ��� � 
 
 
 �

����� � �
�
� � ���

�

� ���
�

� 
 
 
 � �����
�

� ���
�

In addition,

if there is a direct or an indirect dependence from � � to ��
�

then it holds that ��
�

� �� �
	�

��� ����, where �� � �
and �� is a unitary dependence vector. Thus, � ��

�

� ��� ���,
� � �	 
 
 
 	 �. Therefore, the equality ��� ��

�
� �
 
 
��

�
����

��� � ���
�

� ���
�

� 
 
 
 � �����
�

� ���
�

can be rewritten as
follows: �� � �� � 
 
 
 � �� � �. As ��	 
 
 
 	 �� � � , it
holds that �� � 
 
 
 � �� � �. Consequently, there is no
direct or indirect dependence between two tiles belonging to
the same group �� � �� and all tiles of a group in �� can
be computed simultaneously by the CPU’s of an SMP node.
Thus the above grouping transformation is valid according
to our algorithmic model.

Example 2: We have a cluster of SMP nodes with  CPU’s
and a NIC each. We assume a -dimensional rectangular
Tile space �� . Let us assign the tiles along of the dimen-
sion ��� to the same CPU, as indicated in Fig. 7 by the grey
arrows. The CPU’s of the same SMP node will undertake
two neighboring rows of tiles.
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Then, during the time step t=0, the CPU-� of the SMP
node� computes tile ��	 ��. During the time step � � � the
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CPU-� of node� computes tile ��	 ��, while the CPU-� of
the same SMP node computes tile ��	 ��. Similarly, during
the time step � �  the CPU-� computes tile �	 ��, while
the CPU-� computes tile ��	 ��. At the same time, the data
computed in tile ��	 ��, which are necessary for the compu-
tation of tile ��	 �, can be sent to node�. During the time
step t=3, the CPU’s of node0 can continue the execution as
above, while the CPU’s of node1 start executing the same
routine with the rows of tiles ��	 � and ��	 ��.

In order to construct a time schedule for this example,
we group together the tiles that should be concurrently
executed by the same SMP node. In particular, we per-
form grouping to the Tile space � � , as indicated in Fig. 7
and derive the Group Space ��. The appropriate group-
ing matrices according to the formula (2) for this case are

�� �

�
� �
� 

�
and �� � ������ �

�
� �
� �

�

�
.

In this way, tiles ��	 �� and ��	 �� which, as we have al-
ready mentioned, are simultaneously executed by the same
SMP node, are grouped together in �� � �����	 ��� � �
�����	 ��� � � ��	 ��� . Similarly, tiles �	 �� and ��	 ��
are grouped together in �� � �	 ��� . In Fig. 7 the time
step when each group will be computed is shown, together
with the time step where each data transfer will take place.
In Fig. 8, the corresponding Group Space is also shown.

Table 1. Execution steps of a -D example on
a cluster of SMP nodes with  CPU’s each

time node� node�
step CPU� CPU� group CPU� CPU� group
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In Table 1, we indicate the tiles of the Tile space � � that
will be executed by each CPU of the first  SMP nodes dur-
ing a time step and their corresponding group coordinates.
It can be easily deduced that a group �� � ���� 	 �

�
� � � ��

will be executed during the time step ����� � ��� � ���
in the SMP node ��� . Therefore the linear time scheduling
vector for this example is 	� � ��	 ��. �

4.3 Linear time schedule of groups

In order to produce an optimal time schedule, we
assume that the Dependence matrix � is equal to the
unitary matrix. Even if there is a dependence vector
with more than one �’s, it may be written as a sum of
unitary dependence vectors. So it will be included in
the following proof as an indirect dependence. Thus,
applying the above grouping transformation, the �-st
column-vector of the Tile Dependence matrix � � � is
transformed to the vector ���

�

� ����� � ��	 �	 
 
 
 	 ��� .
In addition, the �-th column-vector of the Dependence
matrix � � � , � � 	 
 
 
 	 �, is transformed to the
vector ���

�

� ����� � ��	 �	 
 
 
 	 �	 �
��
	 �	 
 
 
 	 ��� .

This vector imposes the dependencies ��	 �	 
 
 
 	 �	
� �
��
�	 �	 
 
 
 	 ��� � ��	 �	 
 
 
 	 �	 �	 �	 
 
 
 	 ��� and

��	 �	 
 
 
 	 �	 � �
��
�	 �	 
 
 
 	 ��� � ��	 �	 
 
 
 	 �	 �	 �	 
 
 
 	 ���

in the Group Space. Thus, the Dependence matrix of the
Group Space can be written as:

�� �

�
�

� � � � � � �
� � � � � � �
...

...
. . .

...
...

� � � � � � �
� � � � � � �

�
�����.

We are searching for an appropriate linear time schedul-
ing vector 	� � ���� 	 
 
 
 	 �

�
� � such that each group �� �

�� is computed during the time step � � 	���. Consider
the last ����� coordinates of a group indicating which SMP
node of the cluster will execute this group. Then the groups
�� � ���� 	 
 
 
 	 �

�
� � and ��

�

� ���� ��	 ��� 	 
 
 
 	 �
�
� � will be

successively computed within the same SMP node. There
is a dependence between them, as indicated by the first col-
umn of �, but there is no need for a communication step
between their successive computation steps, because the
necessary data are already located in the local shared mem-
ory of the SMP node. Consequently, their time distance
	���

� � 	��� � ��� may be equal to �. Thus ��� � �.
In addition, the �-th column of � �� � 	 
 
 
 �� imposes
a dependence between the groups �� � ���� 	 
 
 
 	 �

�
� � and

��
�

� ���� � �	 ��� 	 
 
 
 	 �
�
���	 �

�
� ��	 �����	 
 
 
 	 �

�
� �. These

groups are executed in neighboring SMP nodes, thus a
communication step is required between their computation
steps. It means that their time distance 	���

� � 	��� �
��� � ��� must be equal to . Consequently ��� � �,
� � 	 
 
 
 	 �. So the vector 	� � ��	 �	 
 
 
 	 �� is selected
for the linear time scheduling of our Group Space � �.

Notice that in [16],[9], for the single CPU pipelined
schedule, the 	 was ��	 	 
 
 
 	 � according to the UET-
UCT theory. In other words, the optimal overlapping sched-



ule could be achieved when we had equal computation to
communication times, so that all communication could be
hidden (overlapped) with the computation phase. Neverthe-
less, in the SMP case, presented here, the labeling of coor-
dinates of groups, that is the grouping transformation � �

slightly skews the space (see Fig. 7 and the resulting Group
Space in Fig. 8 the relative positions of groups ��	 �� and
��	 ��), so the optimal overlapping schedule is achieved by
��	 �	 
 
 
 	 ��.

4.4 CPU Tile Assignment

For node labelling reasons, consider that the available
SMP nodes form a virtual �����-dimensional mesh. Thus,
each node is identified by a �� � ��-dimensional vector.
Note, however, that it is not a physical layout restriction,
but a convention to give each node a unique tag. Then, the
last �� � �� coordinates of a group indicate the SMP into
which it will be executed. The first coordinate affects only
the time of its execution. Thus, a tile �� � ���� 	 
 
 
 	 �

�
� �,

belonging to group �� � ���� 	 
 
 
 	 �
�
� �, will be executed in

node ���� 	 
 
 
 	 �
�
� � � �� �����

�	 
 
 
 	 � �����
��.

Similarly, inside each SMP we consider a �� � ��-
dimensional CPU virtual mesh containing labels � ���� �
������ 	 ���� � ����	 � 	 � 	 � � ��. Then,
a tile �� � ���� 	 
 
 
 	 �

�
� � will be executed by CPU

�������	 
 
 
 	 �
�
����� of SMP node �� �����

�	 
 
 
 	 � �����
��.

So, apparently, only tiles with the same coordinate � �� will
be assigned to the same CPU of the same node. In addition,
note that if one of the inverse grouping matrix diagonal el-
ements �� equals to � then the corresponding coordinate
of the CPU identification vector can be omitted, as it will
always equal �.

4.5 Generalization: Grouping along an arbitrary
dimension of ��

If we want to assign the iterations along the �-th dimen-
sion of �� to the same CPU of an SMP node, then it can be
similarly proven that the appropriate inverse grouping ma-
trix and the corresponding grouping matrix are

�
� �

�
����������

�� � � � � � � � � � �
...

. . .
...

...
...

...
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� � � � � � ���� � � � �
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. . .
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� � � � � � � � � � ��

�
����������
�

�
� �

�
�����������

�

��
� � � � � � � � � �
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. . .
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� � � � �

����
� � � � � �

� � � � � � � � � � �
� � � � � � �

����
� � � �

...
...

...
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. . .
...

� � � � � � � � � � �

��

�
�����������
� (3)

respectively, where��
 
 
 

����
����
 
 
 

�� �
�. As previously, the time scheduling vector is
	� � ��	 
 
 
 	 ��. In addition, a tile �� � ���� 	 
 
 
 	 �

�
� �

belonging to group �� � ���� 	 
 
 
 	 �
�
� �, will be ex-

ecuted within node ���� 	 
 
 
 	 �
�
���	 �

�
���	 
 
 
 	 �

�
� � �

�� �����
�	 
 
 
 	 � �

�
���

����
�	 � �

�
���

����
�	 
 
 
 	 � �����

�� by CPU

�������	 
 
 
 	 �
�
��������	 �

�
��������	 
 
 
 	 �

�
�����. As

previously, if one of the inverse grouping matrix diagonal
elements�� � �	 � �� � then the corresponding coordinate
of the CPU identification vector can be omitted.
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Figure 9. 3D example

Example 3: We have a cluster of SMP nodes with  CPU’s
and a NIC each. We assume a �-dimensional rectangular
Tile space �� . Let us assign the tiles along of the dimen-
sion ��� to the same CPU, as indicated in Fig. 9 by the grey
arrows. The CPU’s of the same SMP node will execute two
neighboring rows of tiles which belong to the same � �� � ���
plane. In respect to the formula (3), we choose the grouping
matrices to be

�� �

�
�  � �

� � �
� �� �

�
� and�� �

�
�

�
� � �
� � �
� � �

�
�.

In Fig. 9 we show the grouping of tiles and when each
computation step and each communication step will be exe-
cuted. It can be easily deduced that a group ���� 	 �

�
� 	 �

�
� � �

�� will be executed in node ���� 	 �
�
� � during the time step

����� � ��� � ��� � ��� . Therefore, the linear time schedul-
ing vector for this example is 	� � ��	 �	 ��.



Let us assume that the rectangular Tile space has bounds:
� 	 ��� � �����, � 	 ��� � �����, � 	 ��� �

�����, where ����� is an even number. Then the bounds
of the corresponding Group Space will be � 	 ��� 	
� ��������

� � � ������

� � �, � 	 ��� 	 ����� � �, � 	 ��� 	
����� � ����� � ����� � �. During the first time step
� � �, the group ��	 �	 �� will be computed. During the last

time step � � �������

� � ����� � ����� � �, the group

�
������

� ��	 ����� � �	 ������ �
�
���� �

�
������ will be

computed. Thus, the number of steps required for the com-

pletion ofthe algorithm is � �
�������

� ��������
�
�����.

4.6 Comparison

In this section we shall compare vertical grouping, which
is indicated in Fig. 6, with the proposed scheme of hyper-
plane grouping, which is shown in Fig. 6, 7 in the case of
a -dimensional algorithm and a cluster of SMP’s with 
CPU’s each.

CPU0

CPU1

x

y

y

y

x/N
(a) (b) (c)

hyperplane

Figure 10. Splitting tiles in vertical scheme

As we have already mentioned, vertical grouping can-
not exploit the computational power of both CPU’s of our
SMP’s unless we split each tile into smaller subtiles and
compute some of them in parallel, as shown in Fig. 10. Let
us assume that a CPU needs time � for the computation of
a tile with dimensions �, � (Fig. 10a). Consequently, it will
need time �

� for the computation of a respective subtile with
dimensions �

� , � (Fig. 10c). The subtiles which are created
can be computed by  CPU’s in� �� computational steps,
interleaved with � synchronization steps, following an op-
timal linear time schedule ��	 �� as in Fig. 10c. If the aver-
age time consumed for the synchronization of  CPU’s of
an SMP node is ������ ��, then the total time required for
the computation of a pair of initial tiles is:

� � �
	 � �

	
�	
����� ��� (4)

The time required for the computation of a pair of tiles is
minimized when

	 �

�
�


����� ��

� (5)

Therefore, the minimum value of � is ���� � � �

�
������� �� � �.

If we consider an Iteration Space with size  
 ! ,
tiled with rectangular tiles with size � 
 �, (for example
in Fig. 6,5 we have �

� � ��	 �� � �), then we have the
following options:

1. Following the non-overlapping scheme (which can
be implemented using blocking calls) in combination
with vertical grouping, the number of time steps re-
quired for the completion of the algorithm is � �
�
� � �

�� � �. The minimum duration of a time step is
����������, where ����� is the time required for the
communication between two SMP nodes. Thus, the
total time required is ����������	
����� � � ����� �
������ � ��� � �

�� ������ � ������.

2. Following the overlapping scheme (which can be
implemented using non-blocking calls) in combi-
nation with vertical grouping, the number of time
steps required for the completion of the algorithm is
� � �

� � �
� �. According to the formula ��	
��� �

� ������ �� � 
��������	 ����� ��� � ���������
(explained in [9]), if we set ����� � ����,
the minimum duration of a time step is
����� ����"������	 ����� ������������. Thus,
the total time required is ��������������	
����� �
� ������ ����"������	 ����� ������������� �
��� � �

� ������� �� � �"������	 ����� ��� �

���������. If ����  ����� ��, then
��������������	
����� � ��� � �

� ������� �� �

���� � ���������.

3. Following the overlapping scheme in combination
with hyperplane grouping, the number of time
steps required for the completion of the algorithm is
� � �

� �
��
�� �. According to the formula ��	
��� �

� ������ ���
��������	 ����� �������������, if
we set ����� � �, the minimum duration of a time step
is ����� �� ��"���	 ����� ��� � ��������. Thus
the total time required is �����������������
����
 �
� ������ �� � �"���	 ����� ��� � ��������� �
��� � ��

�� ������� �� � �"���	 ����� ��� �

���������. If �  ����� ��, then
�����������������
����
 � ��� � ��

�� ������� �� �

�� ���������.

In most real problems it holds that ���
��� � �� �. There-

fore, the overlapping scheme in combination with vertical
grouping is more efficient than the non-overlappingscheme,
in case that ����  �����, when ����� �

 
� ������ ���

���� � ���������. In addition, the overlapping scheme,
in combination with hyperplane grouping, is more efficient
than the overlapping scheme, in combination with vertical
grouping, when ��� � ��

�� ������� �� � � � ��������� �

��� � �
� ������� �� � � � 

�
������� �� � ���������. If



we consider ����� �� � �������� � �, then, we get


�

��	�
� ��

� �
 ��
�� �  

� � ������ �� � �
�
 
�

��
. This is

due to the fact that, using vertical grouping, the pipeline fill-
ing is faster, while, using hyperplane grouping, the pipeline
throughput is faster. So, hyperplane grouping is preferable
when a comparatively great amount of computations should
be performed within each node. However, in any case, the
hyperplane grouping has the advantage that it needs no extra
tiling inside each tile in order to exploit the computational
force of the CPU’s.

5 Experimental results

In [16] the pipelined schedule proposed in [9] was ap-
plied, using a cluster of single CPU nodes with Dolphin’s
PCI-SCI NICs. In this paper, in order to evaluate the pro-
posed methods, we now use a Linux SMP cluster with 8
identical nodes. Each node had 128M of RAM and 2 Pen-
tium III 800 MHz CPU’s. The cluster nodes are inter-
connected with an SCI ring, using SCI Dolphin’s PCI-SCI
D330 cards. SCI NICs support shared memory program-
ming, either through PIO messaging or through DMA. We
are using the NICs’ kernel-level DMA support for messag-
ing. Invoking kernel system calls, causes extra CPU cy-
cles overhead. However, we avoid extra copying from user
space to kernel space (physical memory) when using DMA
by allocating user level pages, which correspond to phys-
ically contiguous pre-reserved memory regions, for DMA
communications.

We performed several series of experiments in order to
evaluate and compare the practical execution times of verti-
cal vs. hyperplane grouping schemes and blocking vs. non-
blocking schemes. The hyperplane grouping scheme, in
combination with non-blocking communication among the
SMP nodes resulted in the minimum total execution times.

Our test application was the following code:

for (i=1; i<=X; i++)
for(j=1; j<=Y; j++)
for(k=1; k<=Z; k++)
A[i][j][k]=func(A[i-1][j][k],

A[i][j-1][k],A[i][j][k-1]);

where# is an array of 
! 
� floats and � ! �� �.
Without lack of generality, we select as a tile a rectangle
with ��, �� and �� sides. The dimension � is the largest
one, so all tiles along the �-axis are mapped onto the same
processor, as proposed in [9]. Each tile has �, � dimensions
equal to � and the tile’s “height” along �-axis equal to $.
There are �

� tiles along of the dimensions � and � and !
"

tiles along of the dimension �. Tile’s volume is equal to
% � ��$, and since the number of available processors is
initially known, the only unknown parameter is $.

Table 2. Non-overlapping scheme
Thread 0: Thread 1:

foreach group assigned foreach group assigned
to node(i,j) do� to node(i,j) do�

receive from node(i-1,j)
receive from node(i,j-1) receive from node(i,j-1)
compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)

send to node(i+1,j)
send to node(i,j+1) send to node(i,j+1)
semaphore post(sem s1) semaphore post(sem s2)
semaphore wait(sem s2) semaphore wait(sem s1)

� �

We applied both vertical and hyperplane grouping, us-
ing both blocking and non-blocking communication primi-
tives. For each exemplary Iteration space and each possible
tile height, we calculated the total execution time for the
above schemes. In order to implement these schemes we
used Linux POSIX threads with semaphores for the syn-
chronization among the processors of an SMP node and the
SISCI driver and libraries for the communication among the
SMP nodes.

First of all, as far as the implementation of vertical
grouping is concerned, we experimentally verified formula
(5), in order to find the optimal execution time for a cou-
ple of tiles by an SMP node. We assigned the computa-
tion of two tiles to the two processors of an SMP node and
measured their execution time in respect to the number of
subtiles into which each tile was cut, in order not to vio-
late the iteration dependencies. The experimental results,
as long as the theoretically expected curve, are plotted in
Fig. 11. The theoretical plot was calculated using the for-
mula (4) with � � ���&�� and ������ �� � ��'&��. These
values were experimentally measured by running a simple
code fragment thousands of times and calculating the aver-
age execution time. If we find the ��
�����
��
����, that is
the point� where the theoretical minimum is achieved and
for this � we find the corresponding experimental overall
time, then the difference between this value and the exper-
imental minimum is less than �	 ���. So we can safely
use ��
�����
��
���� as ��
��. This can be simply justi-
fied as follows: If we consider a shift Æ� of � , then the
shift of � will be Æ� � �� Æ�

����Æ�	 � ������ ��Æ� . If
in this formula we set � � ��
�����
��
���� we get that:
Æ#

#���
�

� Æ�
�������������
��

	�

�� Æ�
�������������
��

�
��
�

�
��	�
� ��

. Therefore, the

less the parameter ������ �� is in comparison to �, the less
important the exact selection of � is. Intuitively, in the
extreme case, where ������ �� is trivial, we could always
achieve the same results, no matter how fine grained the
parallelism is (i.e. for very large� ’s). However, ������ ��is
always considerable and cannot be ignored for real life SMP
architectures.
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Figure 11. Vertical grouping - Tile execution time in respect to the number of slices a tile is cut

Table 3. Overlapping scheme Implementation
Thread 0: Thread 1: Explanation

foreach group assigned to node(i,j) do� foreach group assigned to node(i,j) do�
trigger interrupt to node(i-1,j) Inform “previous” nodes:
trigger interrupt to node(i,j-1) trigger interrupt to node(i,j-1) “I am ready to accept data”

wait interrupt from node(i+1,j) Wait until “next” nodes
wait interrupt from node(i,j+1) wait interrupt from node(i,j+1) are ready to accept data

send dma(node(i+1,j),data) Initialization of DMA transfer
send dma(node(i,j+1),data) send dma(node(i,j+1),data) to neighboring nodes
compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)

wait dma() Wait for DMA to complete
wait dma() wait dma()

trigger interrupt to node(i+1,j) Inform “next” nodes:
trigger interrupt to node(i,j+1) trigger interrupt to node(i,j+1) “Your data has arrived”
wait interrupt from node(i-1,j) Wait until “previous” nodes
wait interrupt from node(i,j-1) wait interrupt from node(i,j-1) have finished sending data
semaphore post(sem s1) semaphore post(sem s2)
semaphore wait(sem s2) semaphore wait(sem s1)

Implementation of a barrier

� �

i

j

(i,j-1) (i,j-1)

(i,j+1) (i,j+1)

(i+1,j)(i-1,j)

CPU 0 CPU 1

SMP node(i,j)

Figure 12. CPU communication directions

Once vertical grouping was implemented and pre-
cisely approximated with a theoretical formula, we im-
plemented both blocking and non-blocking communication
schemes.As far as the blocking communication scheme is
concerned, it was implemented using the pseudo-code of
Table 2. On the other hand, the non-blocking scheme was
implemented using the pseudo-code of Table 3, because
during each time step, every SMP node in the �� plane

with coordinates ��	 �� receives from neighboring nodes
�� � �	 �� and ��	 � � ��, computes and sends to nodes
����	 ��,��	 ���� (Fig. 12). Since the send dma() call is
not blocking, the computation of the tiles will be performed
concurrently with the transferring of data among the SMP
nodes. After the execution of wait dma(), it is assured
that both computation and communication are already com-
pleted.

The implementation of vertical and hyperplane grouping
was achieved by a proper compute tile(i,j,k,CPU�) proce-
dure. In order to implement vertical grouping we used the
pseudocode of Table 4. The number of subtiles inside a tile
was selected according to the formula (5). Notice that, the
implementation of hyperplane grouping was much simpler
as it is shown in Table 4.

The problem was solved using various values of  �
! and �. For each schedule, we are interested in the
overall minimum execution time achieved at an optimally
selected tile height (see [16],[9],[11]). The experimen-
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Figure 14. Experimental Results

Table 4. Vertical vs. Hyperplane Grouping
Vertical Grouping Implementation

compute tile(i,j,k,CPU0): compute tile(i,j,k,CPU1):
foreach subtile of this tile do� foreach subtile of this tile do�

compute each iteration
of this subtile

semaphore post(sem1) semaphore post(sem2)
semaphore wait(sem2) semaphore wait(sem1)

compute each iteration
of this subtile

� �

Hyperplane Grouping Implementation
compute tile(i,j,k,CPU0): compute tile(i,j,k,CPU1):
compute each iteration of this tile compute each iteration of this tile
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Figure 13. Experimental Results

tal results, shown in Figs 13,14, illustrate that in every
case non-blocking communication (overlapping schedule)
is preferable to blocking communication (non-overlapping
schedule) and hyperplane grouping is preferable to vertical
grouping. The lowest minimum is clearly achieved when
using hyperplane grouping in combination with overlapping



schedule, in all cases.
As far as hyperplane grouping, in combination with

non-blocking communication, is concerned, according to
our scheduling theory, as in Example 3, the number of
time steps required for the completion of an experiment is
� ��	 �	 $� � ��

�� � ��
� � !

" � �. Thus, according to the

formula (1), �����������������
����
 � � ���� � ��
� � !

" �
�������� �� � ����� � ���������. This formula was used
to produce the theoretical curves of Figs 13, 14 with values
����� �� � �������� � ���'&�� and ����� � �

�$������,
where ������ is the execution time of a single iteration and
it was measured equal to ��	 ��&��.

It can be easily verified from Figs 13,14 that the graphs
of the theoretical model are very close to the correspond-
ing experimental graphs not only at the desired minimum,
but along the whole graph. Thus, the theoretical model of
scheduling is strongly verified by the experimental results.

6 Conclusions - Future Work

In this paper we presented a novel approach for the time
scheduling of tiled nested loops on a cluster of SMP nodes
using advanced features (DMA, Zero Copy) of latest com-
munication architectures. We minimized the total execu-
tion time by overlapping the computation with communi-
cation (as in [16],[9]). In addition, we achieved the maxi-
mum CPU’s utilization with a proper grouping transforma-
tion. What remains open is an analytical computation of the
parameters ��	 
 
 
 	�� of our grouping matrix according
to the initial space shape and communication minimization
criteria. Furthermore, a study on the use of multi-NIC SMP
nodes can be carried out.
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