Programming in the

Multicore Era
WISES 2010

Kornilios Kourtis
kkourt@cslab.ece.ntua.gr

Computing Systems Laboratory
National Technical University of Athens

July 9, 2010

1/33

The free lunch

The free lunch:

» exponential increase in serial CPU performance
(frequency scaling, ILP exploitation)

» exponential increase in number of transistors
(Moore’s law)

2/33

The free lunch is over!

The free lunch:

» exponential increase in serial CPU performance
(frequency scaling, ILP exploitation)

» exponential increase in number of transistors
(Moore’s law)

is over:
» architects hit hard limits (power, available ILP)

» solution: multicore CPUs
(use extra transitors for multiple cores)

» Moore’s law <+ exponential increase in cores

2/33

the “Multicore Era”
where only parallel programs benefit from new hw!

parallel programming is difficult:

» reasoning about parallel execution is harder
(e.g., data races)

» parallel programming is an esoteric art
» absence of tools
(programming languages, debuggers, profilers)
so in the last years:

» effort to make parallel programming easier
(and less error-prone)

» emerging parallel languages and paradigms

3/33

Outline

- Introduction
~ Expressing parallelism
» Algorithmic concerns

» Cooperation

4/33

Multicore designs

current:

future:
> manycore
» heterogeneous (e.g,, cell, GPUs)

Goals of parallel programming

[McKenney et. al. '09]
productivity

performance generality

» No silver bullet! (pick 2 out of 3)

» language approach: provide constructs for
generic or productive parallel programming

6/33

Parallel languages

this talk is about:

language constructs for
expressing and managing parallelism.

this talk is not about:
ways of automatically making a serial program parallel

» Why not a library ?

» parallelism too pervasive to leave out of
compiler/run-time system

7/33

Expressing parallelism

parallel programming paradigms

» Data parallel
An operation is applied simultaneously to an
aggregate of individual items (e.g., arrays).
(productive, not general)

» Task parallel
User explicitly defines parallel tasks.
(general, not productive)

8/33

Basic concepts

work partitioning (expressing parallelism)

work must be split in parallel tasks
partitioning

OO0
OO0
OO0

9/33

Basic concepts

work partitioning (expressing parallelism)

work must be split in parallel tasks
partitioning

4
O

O

scheduling
tasks must be mapped into cores

O

9/33

Basic concepts

work partitioning (expressing parallelism)

work must be split in parallel tasks

(data parallel: system, task parallel: user) partitioning

4
O

O

scheduling

tasks must be mapped into cores
(system)

O

9/33

data parallel constructs

10/33

vector map
(simple) data parallel example
B = 2*A;

dbibiiinid

index space

11/33

vector map

(simple) data parallel example
B = 2*A;

dbibiiinid

index space

» each operation can be performed in parallel
» work partitioning <> index partitioning

11/33

vector map
(simple) data parallel example
B = 2*A;

Sidobdobhond

index space

B

>

» each operation can be performed in parallel
» work partitioning <> index partitioning
» efficient parallelization requires

efficient partitioning of aggregate structures

11/33

partitioning of aggregate structures
» linked lists: ®

0 g B g I

» arrays: ©

N

» trees (if balanced): ®

PPN

O 0 0O O

12/33

reductions

» reduction on an associative operation
(e.g., + for producing sums)

PalPelpe]Palis]ie] PafPe|is]palps]ixs]

%@g‘// \ﬁ\%}

» based on index space partitioning
» some languages support user-defined reductions

13/33

parallel for construct

parallelization of iteration space

#pragma omp parallel for /* OpenMP parallel for */
for (i=1; i<N; i++){

B[i] = (A[i] + A[i-1])/2.0;

» parallel for: iterations can be executed in parallel
» work partitioning — partition iteration space
» more flexibility on expressing an algorithm

14/33

parallel for construct

parallelization of iteration space

#pragma omp parallel for /* OpenMP parallel for */
for (i=2; i<N; i++){
factorial[i] = i*factorial[i-1];

v

parallel for: iterations can be executed in parallel
work partitioning — partition iteration space
more flexibility on expressing an algorithm

v

v

v

programmer must avoid data races

14/33

Data parallelism

Advanced issues:
» locality concerns
» heterogeneity in hardware

In conclusion:
+ performance, productivity
- not general

15/33

Task parallelism

» user explicitly defines parallel tasks (task graph)
» generic (but not always productive)

» user defines:
» task creation points

/* Cilk example */
X = spawn A(); e
spawn B();

y
z = C();

16/33

Task parallelism

» user explicitly defines parallel tasks (task graph)
» generic (but not always productive)

» user defines:
» task creation points
» task synchronization points

/* Cilk example */
X = spawn A();

y = spawn B();
z = C();
sync;

/* X,y are available */

16/33

divide & conquer is easily parallelized

Divide and Conquer:
if cant divide:
return unitary solution (stop recursion)
divide problem in two
solve first (recursively)
solve second (recursively)
combine solutions

» solve first/second can be performed in parallel
» recursive splitting
» example: quicksort

17/33

D&C vs accumulators

(conclusion points from Guy Steele’s talk at ICFP '09)

DONTs:

» use linked lists (even arrays are suspect)
» use accumulators

» split a problem into the “first” and the “rest”
» incrementaly update solution

DOs:

» use trees
» use D&C:
» split a problem
» recursively solve sub-problems
» combine solutions *
* usually trickier than incremental update of a single solution

18/33

Example: Run-length encoding

a,a,a,a,bb,b,cc.ccc— (a4), (b3),(c5)

incrementaly update serial solution:
def rle(xs):

ret,curr,freq = ([],xs[0],1)
for item in xs[1:]:
if item == curr:
freq += 1
else:
ret.append((curr,freq))
curr,freq = (item,1)
ret.append((curr,freq))
return ret

19/33

Example: Run-length encoding

a,a,a,a,bb,b,cc.ccc— (a4), (b3),(c5)

def rle_rec(xs):
if len(xs) <= 1:
return [(xs[0], 1)]
mid = len(xs) // 2
rlel
rle2
return rle conc(rlel, rle2)

rle_rec(xs[:mid])

rle_rec(xs[mid:])

20/33

Example: Run-length encoding

a,a,a,a,bb,b,cc.ccc— (a4), (b3),(c5)

def rle_rec(xs):
if len(xs) <= 1:
return [(xs[0], 1)]
mid = len(xs) // 2
rlel = rle_rec(xs[:mid])
rle2 = rle_rec(xs[mid:])
return rle conc(rlel, rle2)

rle conc: combine 2 partial rle solutions

if last(rlel), first(rle2) have the same symbol:
merge them

return rlel + rle2

20/33

Example: RLE recursive splitting

a a a a b b b C C C C C

21 /33

Example: RLE recursive splitting

a

a

a

a

b

b

b

C

C

C

C

C

21 /33

Example: RLE recursive splitting

a

a

a

a

b

b

b

C

C

C

C

C

21 /33

Example: RLE recursive splitting

a

a

a

a

b

b

b

C

C

C

C

C

(a,1)(a,1)(a,1)(a,1) (b,1) (b,1) (b,1) (c,1) (c,1)(c,1)(c,1)(c,1)

21 /33

Example: RLE recursive splitting

a a

a

a b

b

b C

C

C C

C

(a,1)(a,1)(a,1)(a,1) (b,1) (b,1) (b,1) (c,1) (c,1)(c,1)(c,1)(c,1)

N
(a,2)

N Y
(a,1),(b,1)

N/
(b,1),(c,1)

N/
(c,2)

21 /33

Example: RLE recursive splitting

a

a

a

a b b

b C C

C

C

C

(a,1)(a,1)(a,1)(a,1) (b,1) (b,1) (b,1) (c,1) (c,1) (c,1)(c,1)(c,1)

(a2)/ (al)(by/ (bl)(cy/

(a,3)

(a,1),(b,2)

(b,1),(c,2)

N Y
(c,2) /
\

(c,3)

21 /33

Example: RLE recursive splitting

a a a a b b b C C C C C

(a,1)(a,1)(a,1)(a, 1)(b 1) (b,1) (b, 1)(C 1) (c,1) (c,1) (c,1) (c,1)

v/
(a2)/ (a,1), (by/ (b,1), (cy/ (c,z)/
\

(a,3) (a,1),(b,2) (b,1),(c,2) (c,3)
~N e ~ g
(a34)J(b12) (le))(C’5)

21 /33

Example: RLE recursive splitting

a a a a b b b C C C C C

(a,1)(a,1)(a,1)(a, 1)(b 1) (b,1) (b, 1)(C 1) (c,1) (c,1) (c,1) (c,1)

v/
(a2)/ (a,1), (by/ (b,1), (cy/ (c,z)/
\

(a,3) (a,1),(b,2) (b,1),(c,2) (c,3)
~N e ~ g
(a34)J(b12) (b)l))(c’5)

> (a,4),(b,3),(c,5) «

21 /33

Example: RLE recursive splitting

a a a a b b b C C C C C

(a,1)(a,1)(a,1)(a,1) (b,1) (b,1) (b,1) (c,1) (c,1)(c,1)(c,1)(c,1)

v Y v Y v Y v Y
(a,z)/ (a,l),(b,y/ (b,l),(c,y/ (c,Z)/
\ \ \ \

(a,3) (a,1),(b,2) (b,1),(c,2) (c,3)
™~ e ™~ o
(a34)J(b12) (b)l))(c’5)

> (a,4),(b,3),(c,5) «

» data structure for (efficient) rle concatenation

21 /33

Example: RLE recursive splitting

a a a a b b b C C C (e C

(a,1)(a,1) (a,1)(a,1)(b,1) (b,1) (b,1) (c,1) (c,1) (c,1)(c,1)(c,1)
N/ N/ N Y/ N/
data parallel solution:

map all inputs to unitary solution
reduce on rle conc

(a34)1(b12) (b)l)J(CJS)
> (a,4),(b,3),(c,5) «

» data structure for (efficient) rle concatenation
» rle concatenation is associative — reduction
21 /33

Outline

» Expressing parallelism
» data parallel

» parallel for
» reductions

» task parallel
» recursive splitting

» Algorithmic concerns
» Divide and conquer

» Cooperation of tasks
» support for generic parallelization

» data sharing
> message passing

22/33

Data sharing

» shared memory architectures allow data sharing.
» applications can utilize it

» but: concurrent accesses may lead to
inconsistencies
(e.g., concurrent updates on a linked list)

» solution: mutual exclusion (locks).

23/33

Locks

mutual exclusion

» Model:

- T:Tasks
- R: Resources

24/33

Locks

mutual exclusion
» Model: T
- T:Tasks
- R: Resources @

» Big Lock:
- one lock for all
- poor scalability

l,

24/33

Locks

mutual exclusion

» Model:

- T:Tasks

- R:Resources @ @
» Big Lock:

- one lock for all
- poor scalability

» Fine-grain locking:

- one lock perR

- possible deadlock

- global order of Rs

24/33

Locks

mutual exclusion

» Model:

- T:Tasks m
- R: Resources @ @,

» Big Lock:

- one lock for all
- poor scalability

» Fine-grain locking:

- one lock perR

- possible deadlock

- global order of Rs

24/33

Locks are too hard!

» Ensuring ordering (and correctness) is really hard
(even for advanced programmers).

» rules are ad-hoc, and not part of the program
(documented in comments at best-case scenario)

» Locks are not composable

» how n thread-safe operations are combined ?
» internal details about locking are required

» Locks are pessimistic

» worst is assumed
» performance overhead paid every time

25/33

Composition example

atomic transfer of an element from queue to another

» lock solution:

- ugly axfer(ql, q2) {
(intention of progammer is hidden) ql.lock()

- internals exposed 2.lock()

- broken (deadlock) s

v = dl.dequeue()
g2.enqueue(Vv)
g2.unlock()
gl.unlock()

26/33

Composition example

atomic transfer of an element from queue to another

» lock solution:

- ugly
(intention of progammer is hidden) gXfer(ql, q2) {
- internals exposed atomic {
- broken (deadlock) v = gql.dequeue()
g2.enqueue(Vv)
}

» what the programmer
really meant to say:
do this attomically

}

26/33

Transactional Memory

User explicitly defines atomic code sections

» easier and less error-prone
» higher semantics
» composable

» analogy to garbage collection
[Grossman 2007]

» optimistic by design
(e.g., does not require mutual exclusion)

27/33

Transactional Memory conclusion

When sharing data accross different parallel tasks:

» locks are hard (almost unusable)
» TM the best solution at the moment
» yet, still along way to go

28/33

Transactional Memory conclusion

When sharing data accross different parallel tasks:

» locks are hard (almost unusable)
» TM the best solution at the moment
» yet, still along way to go

but: why share data ?

28/33

Message passing

» No data sharing!

» Parallel tasks exchange messages to cooperate.

Usage example:

» one task per external request (e.g., in a server)
» on task per shared resource (e.g., cache)

29/33

Message passing approaches

» Actor model

» erlang, scala
» messages to tasks

» Communicating Sequential Processes (CSP)

» google Go
» explicitly create communication channels

30/33

Summary

multicore era

v

v

Expressing parallelism

» data parallel: maps, reductions, parallel for
» task parallel: recursive splitting, generic model

v

Algorithmic concerns:
» D&C vs accumulators

v

Cooperation

» sharing state: TM vs locks
» message passing

31/33

What parallel programming
languages can do for embedded
systems ?

multicore trend

popularized embedded systems development
(e.g., iPhone development)

v

v

hide details from programmer
adapt to different architectures

v

v

32/33

Thank you!
®

Questions ?

33/33

	Multicore era
	Introduction
	Expressing parallelism
	data parallelism
	task parallelism

	Algorithmic concerns
	Cooperation of parallel tasks

