Programming in the Multicore Era

WISES 2010

Kornilios Kourtis

kkourt@cslab.ece.ntua.gr

Computing Systems Laboratory National Technical University of Athens

July 9, 2010

The free lunch

The free lunch:

- exponential increase in serial CPU performance (frequency scaling, ILP exploitation)
- exponential increase in number of transistors (Moore's law)

The free lunch is over!

The free lunch:

- exponential increase in serial CPU performance (frequency scaling, ILP exploitation)
- exponential increase in number of transistors (Moore's law)

is over:

- architects hit hard limits (power, available ILP)
- solution: multicore CPUs

 (use extra transitors for multiple cores)
- ▶ Moore's law ↔ exponential increase in cores

the "Multicore Era"

where only parallel programs benefit from new hw!

parallel programming is difficult:

- reasoning about parallel execution is harder (e.g., data races)
- parallel programming is an esoteric art
- absence of tools (programming languages, debuggers, profilers)

so in the last years:

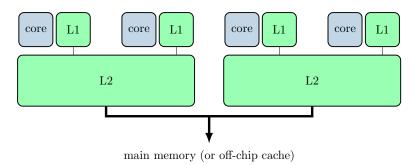
- effort to make parallel programming easier (and less error-prone)
- emerging parallel languages and paradigms

Outline

- Introduction
- Expressing parallelism
- Algorithmic concerns
- Cooperation

Multicore designs

current:

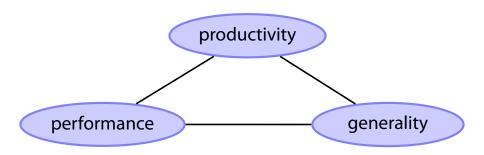


future:

- manycore
- heterogeneous (e.g., cell, GPUs)

Goals of parallel programming

[McKenney et. al. '09]



- No silver bullet! (pick 2 out of 3)
- language approach: provide constructs for generic or productive parallel programming

Parallel languages

this talk is about:

language constructs for expressing and managing parallelism.

this talk is **not** about: ways of automatically making a serial program parallel

- Why not a library ?
 - parallelism too pervasive to leave out of compiler/run-time system

Expressing parallelism

parallel programming paradigms

Data parallel

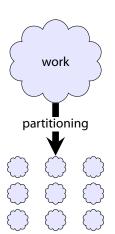
An operation is applied simultaneously to an aggregate of individual items (e.g., arrays). (productive, not general)

Task parallel

User explicitly defines parallel tasks. (general, not productive)

Basic concepts

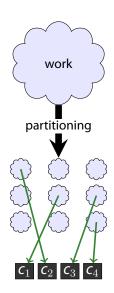
work partitioning (expressing parallelism)
work must be split in parallel tasks



Basic concepts

work partitioning (expressing parallelism) work must be split in parallel tasks

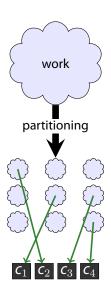
scheduling tasks must be mapped into cores



Basic concepts

work partitioning (expressing parallelism)
work must be split in parallel tasks
(data parallel: system, task parallel: user)

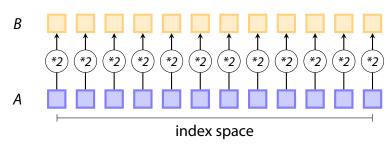
scheduling tasks must be mapped into cores (system)



data parallel constructs

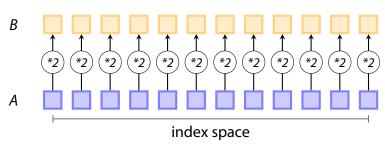
vector map (simple) data parallel example

B = 2*A;



vector map (simple) data parallel example

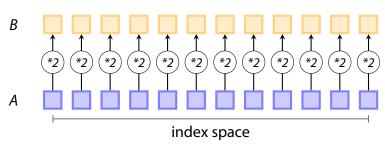
$$B = 2*A;$$



- each operation can be performed in parallel
- ▶ work partitioning ↔ index partitioning

vector map (simple) data parallel example

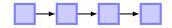
$$B = 2*A;$$



- each operation can be performed in parallel
- ▶ work partitioning ↔ index partitioning
- efficient parallelization requires
 efficient partitioning of aggregate structures

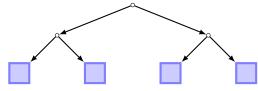
partitioning of aggregate structures

▶ linked lists: ☺



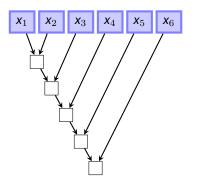
▶ arrays: ☺

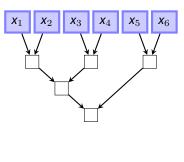
trees (if balanced): ③



reductions

reduction on an associative operation (e.g., + for producing sums)





- based on index space partitioning
- some languages support user-defined reductions

parallel for construct

parallelization of iteration space

```
#pragma omp parallel for /* OpenMP parallel for */
for (i=1; i<N; i++){
    B[i] = (A[i] + A[i-1])/2.0;
}</pre>
```

- parallel for: iterations can be executed in parallel
- work partitioning \rightarrow partition iteration space
- more flexibility on expressing an algorithm

parallel for construct

parallelization of iteration space

```
#pragma omp parallel for /* OpenMP parallel for */
for (i=2; i<N; i++){
    factorial[i] = i*factorial[i-1];
}</pre>
```

- parallel for: iterations can be executed in parallel
- work partitioning \rightarrow partition iteration space
- more flexibility on expressing an algorithm
- programmer must avoid data races

Data parallelism

Advanced issues:

- locality concerns
- heterogeneity in hardware

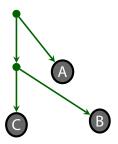
In conclusion:

- + performance, productivity
 - not general

Task parallelism

- user explicitly defines parallel tasks (task graph)
- generic (but not always productive)
- user defines:
 - task creation points

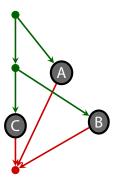
```
/* Cilk example */
x = spawn A();
y = spawn B();
z = C();
```



Task parallelism

- user explicitly defines parallel tasks (task graph)
- generic (but not always productive)
- user defines:
 - task creation points
 - task synchronization points

```
/* Cilk example */
x = spawn A();
y = spawn B();
z = C();
sync;
/* x,y are available */
```



divide & conquer is easily parallelized

```
Divide and Conquer:
   if cant divide:
        return unitary solution (stop recursion)
   divide problem in two
   solve first (recursively)
   solve second (recursively)
   combine solutions
```

- solve first/second can be performed in parallel
- recursive splitting
- example: quicksort

D&C vs accumulators

(conclusion points from Guy Steele's talk at ICFP '09)

DONTs:

- use linked lists (even arrays are suspect)
- use accumulators
 - split a problem into the "first" and the "rest"
 - incrementaly update solution

DOs:

- use trees
- use D&C:
 - split a problem
 - recursively solve sub-problems
 - combine solutions *

^{*} usually trickier than incremental update of a single solution

Example: Run-length encoding

```
a,a,a,a,b,b,b,c,c,c,c,c \rightarrow (a,4), (b,3), (c,5)
```

```
incrementaly update serial solution:
def rle(xs):
  ret, curr, freq = ([],xs[0],1)
  for item in xs[1:]:
    if item == curr:
     frea += 1
    else:
      ret.append((curr,freq))
      curr, freq = (item, 1)
  ret.append((curr,freq))
  return ret
```

Example: Run-length encoding

```
a,a,a,a,b,b,c,c,c,c,c → (a,4), (b,3), (c,5)

def rle_rec(xs):
    if len(xs) <= 1:
        return [(xs[0], 1)]
    mid = len(xs) // 2
    rle1 = rle_rec(xs[:mid])
    rle2 = rle_rec(xs[mid:])
    return rle_conc(rle1, rle2)</pre>
```

Example: Run-length encoding

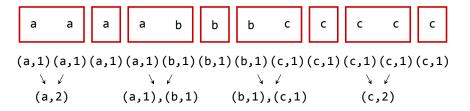
```
a,a,a,a,b,b,b,c,c,c,c,c \rightarrow (a,4), (b,3), (c,5)
def rle rec(xs):
     if len(xs) <= 1:
          return [(xs[0], 1)]
     mid = len(xs) // 2
     rle1 = rle rec(xs[:mid])
     rle2 = rle rec(xs[mid:])
     return rle conc(rle1, rle2)
 rle conc: combine 2 partial rle solutions
 if last(rle1), first(rle2) have the same symbol:
     merge them
 return rle1 + rle2
```

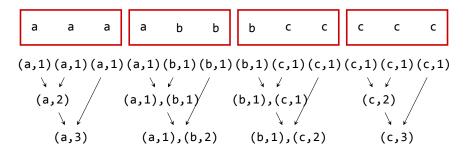
a a a a b b b c c c c c

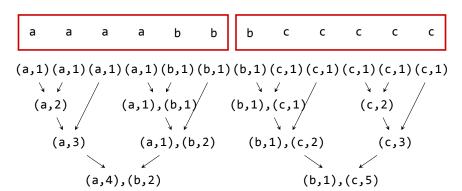
aaabbbcccc

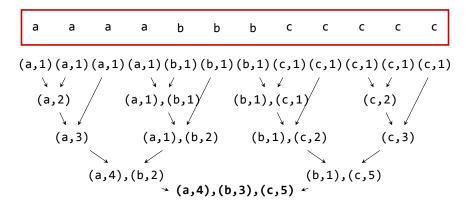
aaaabbbcccccc



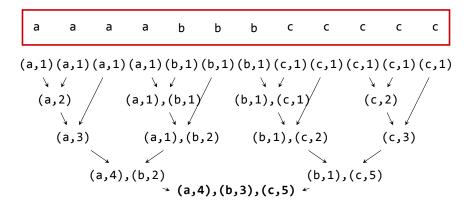








Example: RLE recursive splitting



data structure for (efficient) rle concatenation

Example: RLE recursive splitting

```
а
       а
                       h
                            h
                                 h
                                            C
                                                            C
(a,1)(a,1)(a,1)(a,1)(b,1)(b,1)(b,1)(c,1)(c,1)(c,1)(c,1)(c,1)
   data parallel solution:
      map all inputs to unitary solution
      reduce on rle conc
                                         (b,1),(c,5)
          (a,4),(b,2)
                    \rightarrow (a,4),(b,3),(c,5)
```

- data structure for (efficient) rle concatenation
- ▶ rle concatenation is associative → reduction

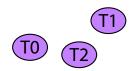
Outline

- Expressing parallelism
 - data parallel
 - parallel for
 - reductions
 - task parallel
 - recursive splitting
- Algorithmic concerns
 - Divide and conquer
- Cooperation of tasks
 - support for generic parallelization
 - data sharing
 - message passing

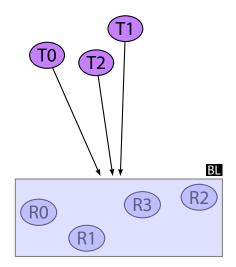
Data sharing

- shared memory architectures allow data sharing.
- applications can utilize it
- but: concurrent accesses may lead to inconsistencies
 (e.g., concurrent updates on a linked list)
- solution: mutual exclusion (locks).

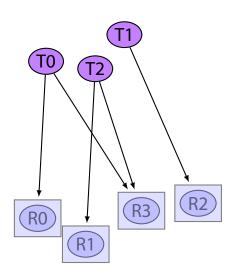
- Model:
 - T: Tasks
 - R: Resources



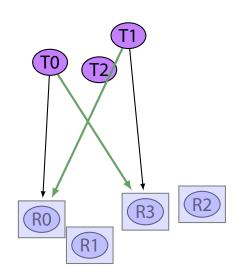
- Model:
 - T: Tasks
 - R: Resources
- ▶ Big Lock:
 - one lock for all
 - poor scalability



- Model:
 - T: Tasks
 - R: Resources
- Big Lock:
 - one lock for all
 - poor scalability
- Fine-grain locking:
 - one lock per R
 - possible deadlock
 - global order of Rs



- Model:
 - T: Tasks
 - R: Resources
- Big Lock:
 - one lock for all
 - poor scalability
- Fine-grain locking:
 - one lock per R
 - possible deadlock
 - global order of Rs



Locks are too hard!

- Ensuring ordering (and correctness) is really hard (even for advanced programmers).
 - rules are ad-hoc, and not part of the program (documented in comments at best-case scenario)
- Locks are not composable
 - how n thread-safe operations are combined?
 - internal details about locking are required
- Locks are pessimistic
 - worst is assumed
 - performance overhead paid every time

Composition example

atomic transfer of an element from queue to another

- lock solution:
 - ugly (intention of programmer is hidden)
 - internals exposed
 - broken (deadlock)

```
qXfer(q1, q2) {
   q1.lock()
   q2.lock()
   v = q1.dequeue()
   q2.enqueue(v)
   q2.unlock()
   q1.unlock()
}
```

Composition example

atomic transfer of an element from queue to another

- lock solution:
 - ugly

 (intention of programmer is hidden)
 - internals exposed
- broken (deadlock)

what the programmer really meant to say: do this attomically

```
qXfer(q1, q2) {
   atomic {
   v = q1.dequeue()
    q2.enqueue(v)
   }
}
```

Transactional Memory

User explicitly defines atomic code sections

- easier and less error-prone
- higher semantics
- composable
- analogy to garbage collection [Grossman 2007]
- optimistic by design (e.g., does not require mutual exclusion)

Transactional Memory conclusion

When sharing data accross different parallel tasks:

- locks are hard (almost unusable)
- TM the best solution at the moment
 - yet, still a long way to go

Transactional Memory conclusion

When sharing data accross different parallel tasks:

- locks are hard (almost unusable)
- TM the best solution at the moment
 - yet, still a long way to go

but: why share data?

Message passing

No data sharing!

Parallel tasks exchange messages to cooperate.

Usage example:

- one task per external request (e.g., in a server)
- on task per shared resource (e.g., cache)

Message passing approaches

- Actor model
 - erlang, scala
 - messages to tasks

- Communicating Sequential Processes (CSP)
 - google Go
 - explicitly create communication channels

Summary

- multicore era
- Expressing parallelism
 - data parallel: maps, reductions, parallel for
 - task parallel: recursive splitting, generic model
- Algorithmic concerns:
 - D&C vs accumulators
- Cooperation
 - sharing state: TM vs locks
 - message passing

What parallel programming languages can do for embedded systems?

- multicore trend
- popularized embedded systems development (e.g., iPhone development)
- hide details from programmer
- adapt to different architectures

Thank you!

(:)

Questions?