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Programming language trends

make the programmer’s life easier:
(and the code less error-prone)

» garbage collection

» array bounds check

» everything is an object (even integers!)
» dynamic typing

The result:
+ Itis easier to write programs

- significant run-time overheads
= performance degradation
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Programming language trends

execution time vs code size - normalized to C GNU gcc
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Programming language trends

execution time vs code size=narmalizad ta C GNIl acc

run-time systems are improving:

- (more) efficient GC

Bcode size - JIT
1000 Mexecution tim

alidll

e“\) J
OX

1000.07

3’6“3

Computer language benchmarks game
(http://shootout.alioth.debian.org/, 21/06/10)

3/41



Programming language trends

execution time vs code size=narmalizad tan C GNI |l acc

1000.0

- (more) efficient GC
- JIT

if that does not work:

you can always buy
better (and inexpensive)

hardware!
(right ?)
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Computer language benchmarks game
(http://shootout.alioth.debian.org/, 21/06/10)

run-time systems are improving:
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The free lunch

exponential performance improvement

» Moore’s law: exponentential increase in number of
transistors

» Up until recently, exponential increase in CPU
performance
(frequency scaling, ILP exploitation)
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The free lunch is over!

» Moore’s law: exponentential increase in number of
transistors

» Up until recently, exponential increase in CPU
performance
(frequency scaling, ILP exploitation)

but:

» architects hit hard limits (power, available ILP)

» Moore’s law is inadequate for improving serial
performance
» solution: multicore CPUs

(use extra transitors for multiple cores)
4/41



the “Multicore Era”
where only parallel programs benefit from new hw!

difficulties:

» reasoning about parallel execution is harder
(e.g., data races)

» parallel programming is an esoteric art

» absence of tools
(programming languages, debuggers, profilers)

» effort to make parallel programming easier
(and less error-prone)

» emerging parallel languages and paradigms
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Outline

- Introduction
~ Expressing parallelism
» Algorithmic concerns

» Cooperation
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Multicore designs

current:

future:
> manycore
» heterogeneous



Goals of parallel programming

[McKenney et. al. '09]
productivity

generality

performance

» No silver bullet! (pick 2 out of 3)
» performance predictability
» language approach: give constructs for
both generic and productive
8



Parallel languages
» Why not a library ?

>

compiler/run-time system awareness

» Parallelism

>

>

>

>

explicit

implicit

semi-implicit

retain serial semantics

» Languages

openmp, cilk
erlang, scala
clojure, haskell
chapel, fortress
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Outline

» Introduction

- Expressing parallelism

. data parallelism
. task parallelism

» Algorithmic concerns
» Cooperation
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Basic concepts

expressing parallelism: partition work
work must be split in tasks that can execute in parallel

» scheduling: mapping of tasks into resources
(e.g., CPUs)

» balancing (static,dynamic)
» run-time system
» task granularity — how much work a task performs ?

» too fine — large overhead
» too coarse — not enough parallel slack
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Expressing parallelism

parallel programming paradigms

» Data parallel
An operation is applied simultaneously to an
aggregate of individual items (e.g., arrays).

» Task parallel
User explicitly defines parallel tasks.
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vector map
(silly) data parallel example

 bhabbbiblliy

index space

» each operation (f) can be performed in parallel
» work partitioning < index partitioning
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vector map
(silly) data parallel example

bdbisbidaly

index space

» each operation (f) can be performed in parallel
» work partitioning < index partitioning

» efficient parallelization requires
efficient partitioning of aggregate structures
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partitioning of aggregate structures
» linked lists: ®

0 g B g I

» arrays: ©

N

» trees (if balanced): ®

PPN

O 0 0O O
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simple data parallel language constructs
... that work by partitioning the index space
» map in Data Parallel Haskell:

Prelude GHC.PArr> A

[:40,40,40,40: ]

Prelude GHC.PArr> mapP (\x -> x + 2) A
[:42,42,42,42:]

» scalar promotion in Chapel:
C = A+ B*3

» comprehensions in Fortress:
s={x/2|x <« t}
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reductions

» reduction on an associative operation
(e.g., + for producing sums)

Palelpe]Palis]ie] PafPe]is]palps]ix]

» based on index space partitioning
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reductions

» reduction on an associative operation
(e.g., + for producing sums)

Palelpe]Palis]ie] PafPe]is]palps]ix]

» based on index space partitioning
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reduction support on languages

» OpenMP:

» reduction over a list of specific operators

» fortress, chapel:
» (will) support reductions on user-defined operators
» must be associative to allow parallelization

» different operator types
(e.g., better parallelization with commutativity)

» similar operation: prefix scans

17 /a1



parallel for construct

parallelization of iteration space

#pragma omp parallel for /* OpenMP parallel for */
for (i=1; i<N; i++){
B[i] = (A[i] + A[i-1])/2.0;

» parallel for: iterations can be executed in parallel
(forall in chapel, for in fortress, ...)

» work partion — partition iteration space

» more flexibility on expressing an algorithm

18/



parallel for construct

parallelization of iteration space

forall (i,j,k) in [1..n,1..n,1..n] do
C[i][J] += A[i][k] * B[k][J];

parallel for: iterations can be executed in parallel
(forall in chapel, for in fortress, ...)

work partion — partition iteration space

more flexibility on expressing an algorithm
iteration space can have > 1 dimensions

v

v

v

v
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parallel for construct

parallelization of iteration space

#pragma omp parallel for /* OpenMP parallel for */
for (i=2; i<N; i++){
factorial[i] = i*factorial[i-1];

» parallel for: iterations can be executed in parallel
(forall in chapel, for in fortress, ...)
» work partion — partition iteration space
» more flexibility on expressing an algorithm
» iteration space can have > 1 dimensions
» programmer must avoid data races
18,4



Data parallelism

Advanced issues:

» index space not necessary regular
(e.g., associative arrays)

» nested data parallel structures
(NESL, DP Haskell)

» locality concerns

In conclusion:
+ performance, productivity
- notgeneral
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Task parallelism

» user explicitly defines parallel tasks (task graph)
» generic (but not always productive)

» user defines:
» task creation points

/* Cilk example */
X = spawn A(); e
spawn B();

y
z = C();

20/4



Task parallelism

» user explicitly defines parallel tasks (task graph)
» generic (but not always productive)

» user defines:
» task creation points
» task synchronization points

/* Cilk example */
X = spawn A();

y = spawn B();
z = C();
sync;

/* X,y are available */
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The task graph unfolds dynamically

(in the general case ...)
cilk int fib(int n) {
if (n < 2) return (n);
x = spawn fib(n - 1); y = spawn fib(n - 2);
sync;
return (x + y);
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The task graph unfolds dynamically
(in the general case ...)
cilk int fib(int n) {
if (n < 2) return (n);
x = spawn fib(n - 1); y = spawn fib(n - 2);
sync;
return (x + y);

3 [—a——s] f @ M
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parallel quicksort

divide & conquer algorithms can be easily parallelized

def gsort(arr, low, high){
if high == low
return;
pivotVal = findPivot();
pivotLoc = partition(pivotVval);
gsort(arr, low, pivotLoc-1);
gsort(arr, pivotLoc+1l, high);

224



parallel quicksort

divide & conquer algorithms can be easily parallelized

def gsort(arr, low, high){

if high == low
return;

pivotVal = findPivot();
pivotLoc = partition(pivotVval);
spawn gsort(arr, low, pivotLoc-1);
gsort(arr, pivotLoc+1l, high);
sync;

» recursive splitting

224



D&C vs accumulators

(conclusion points from Guy Steele’s talk at ICFP '09)

DONTs:

» use linked lists (even arrays are suspect)
» use accumulators
» split a problem into the “first” and the “rest”

DOs:

» use trees
» use D&C:

» split a problem
» recursively solve sub-problems
» combine solutions *
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D&C vs accumulators

(conclusion points from Guy Steele’s talk at ICFP '09)

DONTs:

» use linked lists (even arrays are suspect)
» use accumulators
» split a problem into the “first” and the “rest”

DOs:

» use trees
» use D&C:

» split a problem
» recursively solve sub-problems
» combine solutions *

* usually trickier than incremental update of a single solution
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Example: Run-length encoding

a,a,a,a,bb,b,cc.ccc— (a4), (b3),(c5)

def rle(xs):
ret,curr,freq = ([],xs[0],1)
for item in xs[1:]:
if item == curr:
freq += 1
else:
ret.append((curr,freq))
curr,freq = (item,1)
ret.append((curr,freq))
return ret

24z



Example: Run-length encoding

a,a,a,a,bb,b,cc.ccc— (a4), (b3),(c5)

def rle(xs):
ret,curr,freq = ([],xs[0],1)
for item in xs[1:]:
if item == curr:
freq += 1
else:
ret.append((curr,freq))
curr,freq = (item,1)
ret.append((curr,freq))
return ret

def rle_rec(xs):

if len(xs) <= 1:

return [(xs[0], 1)]
mid = len(xs) // 2
rlel = rle_rec(xs[:mid])
rle2 = rle_rec(xs[mid:])
return rle_conc(rlel, rle2)

def rle_conc(rlel,rle2):
if rlel[-1][@] == rle2[0][0O]:
rl, rlel = rlel[-1], rlel[:-1]
r2, rle2 = rle2[0], rle2[1:]
rlel.append((ri[@],r1[1] + r2[1]))

return rlel + rle2

24z



Example: RLE recursive splitting

a a a a b b b C C C C C
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Example: RLE recursive splitting
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Example: RLE recursive splitting
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Example: RLE recursive splitting
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Example: RLE recursive splitting

a a a a b b b C C C C C
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Example: RLE recursive splitting

a a a a b b b C C C C C

(a,1)(a,1)(a,1)(a,1) (b,1) (b,1) (b,1) (c,1) (c,1)(c,1)(c,1)(c,1)

v Y v Y v Y v Y
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(a34)J(b12) (b)l))(c’5)

> (a,4),(b,3),(c,5) «

» data structure for (efficient) rle concatenation
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Example: RLE recursive splitting

a a a a b b b C C C C C

(a,1)(a,1)(a,1)(a,1) (b,1) (b,1) (b,1) (c,1) (c,1)(c,1)(c,1)(c,1)

v Y v Y v Y v Y
(a,z)/ (a,l),(b,l// (b,l),(c,y/ (c,Z)/
\ \ \ \

(a,3) (a,1),(b,2) (b,1),(c,2) (c,3)
™~ e ™~ o
(a34)J(b12) (b)l))(c’s)

> (a,4),(b,3),(c,5) «

» data structure for (efficient) rle concatenation
» rle concatenation is associative — reduction
254



Outline

» Expressing parallelism
» data parallel

» parallel for
» reductions

» task parallel
» recursive splitting

» Algorithmic concerns
» Divide and conquer

» Cooperation of tasks
» support for generic parallelization

» sharing data
» message passing
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Data sharing

» shared memory architectures allow data sharing.

» applications can utilize it
examples:

» one task per request on a network server
» tasks implementing different functionalities
(e.g., workers, logger, balancer, I/0)
» parallel tasks that operate on irregular data structures

» but: concurrent accesses may lead to
inconsistencies
(e.g., concurrent updates on a linked list)

» solution: mutual exclusion (locks).

27 14



Locks

mutual exclusion

» Model:

- T:Tasks
- R: Resources

284
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Locks

mutual exclusion

» Model:

- T:Tasks m
- R: Resources @ @,

» Big Lock:

- one lock for all
- poor scalability

» Fine-grain locking:

- one lock perR

- possible deadlock

- global order of Rs
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Locks are hard impossible

(...for application programmers)
» Ensuring ordering (and correctness) is really hard
(even for advanced programmers).

» rules are ad-hoc, and not part of the program
(documented in comments at best-case scenario)

» Locks are not composable

» how n thread-safe operations are combined ?

» internal details about locking are required

» hard for self-contained systems (e.g., OS kernel)
» almost impossible for application programmers

» moreover, locks are pessimistic

» worst is assumed
» performance overhead paid every time
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Composition example

atomic transfer of an element from queue to another

» lock solution:

- ugly axfer(ql, q2) {
(intention of progammer is hidden) ql.lock()

- internals exposed 2.lock()

- broken (deadlock) s

v = dl.dequeue()
g2.enqueue(Vv)
g2.unlock()
gl.unlock()

30/4



Composition example

atomic transfer of an element from queue to another

» lock solution:

- ugly
(intention of progammer is hidden) gXfer(ql, q2) {
- internals exposed atomic {
- broken (deadlock) v = gql.dequeue()
g2.enqueue(Vv)
}

» what the programmer
really meant to say:
do this attomically

}

30/4



Transactional Memory

User explicitly defines atomic code sections

| 2

easier and less error-prone
higher semantics
composable

analogy to garbage collection
[Grossman 2007]

optimistic
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Transactional Memory approaches

» Hardware TM

(currently, no wide-available hw implementation)

» Software TM

- imperative (e.g., fortress, chapel):
definition of atomic blocks

- functional (e.g., Haskell, Clojure):
Special types for shared variables, that can be
accessed only via transactions.

» Hybrid TM

324



Transactional memory conclusion

When sharing data accross different parallel tasks:

» locks are unusable for application writers
» TM the best solution at the moment
» yet, still along way to go
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Transactional memory conclusion

When sharing data accross different parallel tasks:

» locks are unusable for application writers
» TM the best solution at the moment
» yet, still along way to go

but: why share data ?

33/a



Message passing

» No data sharing!

» Parallel tasks exchange messages to cooperate.

Usage example:

» one task per external request (e.g., in a server)
» on task per shared resource (e.g., cache)

34z



Message passing approaches

» Erlang
» Actor model
» asynchronous messages to tasks
(less prone to deadlocks)
» pattern matching
» registration

» Scala
» similar to erlang
» supports synchronous messages

35/a



Message passing approaches

» Erlang
» Actor model
» asynchronous messages to tasks
(less prone to deadlocks)
» pattern matching
» registration

» Scala
» similar to erlang
» supports synchronous messages

» google Go
» Communicating Sequential Processes (CSP)
» explicit channels
» type-safe (type determined at creation)
» unbuffered / buffered (asynchronous)

35/a



Summary

multicore era

v

v

Expressing parallelism

» data parallel: maps, reductions, parallel for
» task parallel: recursive splitting, generic model

v

Algorithmic concerns:
» D&C vs accumulators

v

Cooperation

» sharing state: TM vs locks
» message passing
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Load balancing

cost

A

A

uniform

» data

» uniform computation cost (same for all data items):

» divide data by the number of processors

384



Load balancing

cost

A

A

A\ /\ uniform
AVE

» data

» un

>ge

iform computation cost (same for all data items):
» divide data by the number of processors

neral case: unknown cost for each data item:

» divide data in chunks
» assign chunks in processors dynamically
384



User-space scheduling of parallel tasks

informal problem description:
» A set of parallel tasks T

» P processors, where tasks execute
(actually, they are kernel threads)

» Tasks may spawn other tasks dynamically
» Tasks may wait for childern to finish

goals:
» execution time efficiency (load-balancing)
» space efficiency
» small overhead (independent of T)

39/m



scheduling approaches

» work sharing: when new tasks are created,
scheduler tries to migrate them to other
underutilized processors

» work stealing: idle processors attempt to “steal”
tasks.
work stealing is usually selected:
» better locality
» less synchronization overhead

» optimal theoritical bounds (time, space)
[Blumofe and Leiserson "99]
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work stealing

» a deque (double-ended queue) per P:
» pushBot E T
» popBot
» popTop bot
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work stealing

» a deque (double-ended queue) per P:

» pushBot E

Tx
» popBot Ty
T,
Tp

» popTop

bot

» task T is spawned from T,
» pushBot(Tp)
» execute(T;) P,
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work stealing

Py
» a deque (double-ended queue) per P: | T |
» pushBot
> popBot -—D Ty
> popTop T,
. bot Tp
» task T is spawned from T,
» pushBot(Tp)
» execute(T) P,
BA

» P;isidle:
» select random processor p

» p->popTop()
» execute result

41 /a
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