Measuring the Cost of Online Load-Balancing in Distributed
Range-Queriable Systems

JToannis Konstantinou, Dimitrios Tsoumakos and Nectarios Koziris
Computing Systems Laboratory, School of ECE, National Technical University of Athens
Email:{ikons, dtsouma, nkoziris } @cslab.ece.ntua.gr

Abstract

Distributed systems such as Peer-to-Peer overlays have
been shown to efficiently support the processing of range
queries over large numbers of participating hosts. In such
systems, uneven load allocation has to be effectively tackled
in order to minimize overloaded peers and optimize their
performance. In this work, we detect and analyze the two
basic methodologies used to achieve load-balancing: Itera-
tive key re-distribution between neighbors and node migra-
tion. Based on this analysis, we propose a hybrid method
that adaptively utilizes these two extremes to achieve both
fast and cost-effective load-balancing in distributed systems
that support range queries. As a case study, we offer an
implementation on top of a Skip Graph, where we validate
our findings in a variety of workloads. Our experimental
analysis shows that the hybrid method converges 10% faster
than simple neighbor item exchanges and is more than 70%
bandwidth efficient compared to simple node migrations.

1 Introduction

Data skew is a well-documented concern for a variety
of applications. For instance, it has been widely observed
that most Internet-scale applications, including P2P ones,
exhibit highly skewed workloads [1]. Failing or depart-
ing nodes further reduce the availability of various content.
Consequently, resources become scarce, servers get over-
loaded and throughput can diminish due to high workloads
that can by themselves cause denial of service [2].

Data replication techniques is one commonly utilized
solution to remedy these situations. Nevertheless, there
are cases in which the requested resources cannot be ar-
bitrarily replicated and retrieved across a distributed set
of nodes. Distributed data-structures that support range-
queries is such an example: The keys are stored in the net-
work nodes so that a natural order is preserved and range-
queries are efficiently handled. The interest in such struc-
tures is increasing, as they can be very useful in a variety of
situations: On-line games [3], web servers [4], etc. In such

cases, adaptive and on-line load-balancing schemes must be
employed in order to avoid resource unavailability and im-
prove performance in a variety of workloads.

In current bibliography, there exist a variety of methods
that try to achieve efficient load balancing for such struc-
tures. Yet, only two different mechanisms are usually em-
ployed: Node Migration (hence MIG) and Neighbor Item
Exchange (hence NEIX). These techniques represent two
different approaches to handling the problem: MIG uti-
lizes underloaded peers by placing them in overloaded ar-
eas of the network (see Figure 2, where node D is placed
between nodes A, B sharing part of their load). NEIX bal-
ances load through iterative item exchanges between neigh-
boring nodes (see Figure 1, where iterative key exchanges
between (A,B), (B,C) and (C,D) node pairs produce a bal-
anced load). The majority of proposed approaches utilize
a version of these two schemes in order to finally balance
load among peers each responsible for a given range of the
data [5-7]. While they both achieve their goal, their effec-
tiveness and cost greatly vary, making a method that utilizes
only one of them inefficient for all cases.

Our contribution: In this paper, we formally identify
these two different methodologies that, iteratively applied,
perform load balancing on distributed range-partitioned
data structures. An important result of our work is the ob-
servation that, through mere key exchanges the achieved re-
sult can be highly delayed, whereas using only node migra-
tions the cost of updating the structure is immense. Based
on this analysis, we describe NEIXMIG, a hybrid method
that utilizes both NEIX and MIG in order to minimize over-
loaded peers and balance the load distribution among them:
Load moves in a “wave-like” fashion from more to less
loaded regions of the structure adaptively, using our ver-
sion of the NEIX mechanism. When we locally identify
highly overloaded regions, we activate MIG. Furthermore,
we present a Skip Graph [8] implementation for both the
two simple mechanisms as well as the hybrid method. We
measure their behavior in a variety of skewed and dynamic
workloads. Our results validate our analysis and show
that our method can balance at low cost (70% less expen-

load //7ﬁ\\\\\§ load

keys

load

keys

. L 2 PN UL
L[] (I I L 2
B[N m] FIN m]' B[N p] FINp+1]

e {cefi]

A BC D AB C D A B C D

Figure 1. NEIX example.

sive than MIG) and high convergence rate (10% faster than
NEIX), adapts to changing workloads and is highly cus-
tomizable.

2 Notation and Problem Setup

We consider the indexing and storing of M keys
(k1,ko,...,ka) in N nodes, where N<M. We assume
that a key represents an object or item, hence we shall use
these terms interchangeably. Each server IV; stores and
serves arange 7 (t) = {ky, (1), - - -, kv, (1)} Of the key space,
1 < wj(t) < wj;(t) < M. The partition boundaries are con-
secutive, i.e., u;11(t) = v;(t). As item load 1;(t) of item
k; at time ¢, we define the number of user requests for this
specific item over a specific time interval. Item load can
be viewed as a portion of bandwidth (kb/sec) consumed on
queries for this key. The server load Sy, (t) of node N;
at time ¢ is the sum of the loads of the items that it stores:
Sn, (1) = X0 L) ,j=1...N.

We are interested in keeping the natural ordering of the
indexed keys, so as to facilitate the routing and answering
of range queries. Each stored item has a different time-
varying popularity. Users perform both exact match and
range queries (where more than one node may be contacted
in order for the correct answer to be computed). We as-
sume that each node IV;, according to its capabilities sets
a local load threshold, thres;. When the load exceeds this
value Sy, () > thres;, the node wishes to shed some of its
load according to the load balancing algorithm that is imple-
mented. Our goal is to transform the set of partition bound-
aries through consecutive either item exchanges or node mi-
grations after some time so that Sy, (t') < thres;,Vi. In
addition, our goal is to achieve a balanced load distribution.

3 Load Balancing using Neighbor Item Ex-
change and Node Migration

Balancing is performed by transferring keys from over-
loaded peers (which we will refer to as splitter peers) to less
loaded ones (helper peers). In the NEIX case, this is per-
formed without any overlay maintenance cost, unlike with
MIG: Distributed structures that support range queries per-
form routing in logarithmic time by maintaining a routing
table list of logN increasingly distant nodes (for an over-
lay of size N) placed in L,,,, levels (at the lowest level,
Ly, each node holds the IDs of its immediate neighbors,
etc). Figure 3 depicts the message exchanges that occur

Figure 2. MIG example.

I

t=t, t=t,

Figure 3. MIG Cost.

when node N,,, leaves its place at time ¢, and re-joins next
to node NV, at time ¢;. Solid lines represent routing links,
whereas dotted ones represent the messages required for
overlay maintenance. Every node contains 2L,,,, routing
entries. For simplicity, we describe the procedure for a ran-
dom level, L.. Before IV, leaves its place, it removes ev-
ery forward and backward link stored in tables F'[N,,]| and
B[N,,] respectively (lines marked with an X). This triggers
a number of message exchanges where nodes that were in
F[N,,] and B[N,,] contact a number of distant nodes in or-
der to fill their routing table “hole” (dotted lines on the left
side of Figure 3). This operation is carried out for every old
neighbor in 2L,,,, levels. When N, re-joins between N,
and N,41 (right side of Figure 3) at time ¢, it uses F'[Np 1]
as forward and B[N, as backward links in each level and
scans the structure to create its own routing table.

3.1 NEIX

In this section we describe the load exchange between
neighboring nodes. For simplicity, we describe the situa-
tion where nodes are linearly placed (i.e., each node has two
neighbors with consecutive ranges) and keys are transferred
from the node to its forward neighbor. The transferring node
sets a pointer j = v; and scans its range towards the back-
ward direction. The procedure stops when sufficient num-
ber of items have been found so as to fulfill its request. Nev-
ertheless, an obvious disadvantage of NEIX is that possibly
many consecutive such operations may be needed in order
to balance load inside large regions of loaded peers.

3.2 MIG

MIG is performed in three phases: In the probing phase,
the overloaded node scans its routing table to find a dis-
tant pair of underloaded nodes that are not participating in
another balancing operation to migrate next to it in the over-
lay. When this phase succeeds, the helper peer transfers its
partition to its neighboring nodes, and empties its routing
table info. In the final step, the helper peer places itself next
to the overloaded peer, accepts a portion of its partition and
creates a new routing table.

4 NEIXMIG

In this section we describe NEIXMIG, our proposed hy-
brid approach that is a NEIX-MIG combination. The goal of
NEIXMIG is to balance load by adaptively choosing to uti-
lize either NEIX or MIG. The rationale behind our method
is that MIG is fast but costly, whereas NEIX is slow and cost

effective. Hence, we devise a scheme that, using only local
knowledge, identifies conditions where MIG is necessary to
speed up the the balancing process but is not excessively uti-
lized. In short, when a large demand for NEIX operations
is detected in a neighborhood, our method employs node
migrations for faster load relief in that area.

NEIXMIG is performed in two phases: In the first phase,

the overloaded peer tries to reserve a number of its neigh-
bors and examines their current load status. If the locking
succeeds, the algorithm moves to the balancing phase: If the
node neighborhood is underloaded, the initiator starts an it-
erative procedure, which we will refer to as a NEIX wave,
where portions of ranges are transfered from one locked
node to its neighbor for all the participating nodes. In the
opposite case, it initiates a MIG procedure. In detail:
Locking phase: When the current load of an idle node ex-
ceeds its self-imposed threshold thres;, the node sends a
LockRequest message to one of its neighbors. When the
LockRequest succeeds by contacting an idle recipient, the
recipient node forwards the LockRequest to another neigh-
boring node, until a number of hopcount nodes have been
successfully locked. Locked nodes continue to answer user
queries but they do not participate in or initiate other balanc-
ing actions until they are unlocked by the wave initiator or
a timeout has occurred. During each LockRequest, the con-
tacted node calculates the Potential Load that would end up
to it if the NEIX wave were performed.
Balancing phase:The last node of the Locking phase de-
cides the balancing action: if its Potential Load is bigger
than a maximum threshold, it aborts the locking wave and
informs the initiator to perform a MIG operation, otherwise
it allows the initiator to begin a NEIX wave.

To sum up, NEIXMIG first examines the neighborhood
of an overloaded node: if its extra load can be absorbed by
its neighbors it performs a cost-effective “wave-like” set of
successive item exchanges. If this is not the case because,
for instance, the entire neighborhood is overloaded, it initi-
ates a fast but more expensive migration request.

5 Experimental Results

We now present a comprehensive simulation-based eval-
uation of our method on our own discrete event simulator
written in Java. Starting off from a pure Skip Graph imple-
mentation, we incorporate our online balancing algorithms
on top. By default, we assume a network size of 500 nodes,
all of which are randomly chosen to initiate queries at any
given time. During the start-up phase, each node stores and
indexes an equal portion of the data, that is % keys. We
assume 50K keys exist in the system, thus each node is ini-
tially responsible for 100 keys.

Queries occur at rate A, = 1req/sec with exponentially
distributed inter-arrival times in a 4000 sec total simulation
time (balancing is initiated at t=700sec). Each requester

peer creates a range by choosing a starting and ending value
according to a zipfian distribution, where the probability of
a key 4 being asked is analogous to i ~? or a pulse distribu-
tion, where a range of keys has a constant load and the rest
of the keys are not requested. In the following, we plan to
demonstrate the effectiveness of our protocol to minimize
overloaded peers and create a load-balanced image of the
system. In order to give a metric that summarizes the qual-
ity of load balancing achieved, we use the Gini coefficient,
as it has been proposed in [9].

5.1 NEIX and MIG Performance

In the first set of experiments, we plan to identify the cost
and speed of applying MIG and NEIX in a number of differ-
ent workloads. To apply NEIX, we use NEIXMIG without
the MIG operation. As our input workload we use a pulse
with a constant height of 500 reqs/sec and we vary its width
from 10% to 40%. In every case, nodes set their thres value
to 350reqs/sec. This thres value can also be seen as corre-
sponding to 350kb/sec bandwidth allocation, assuming that,
for each request, 1kb of data is transmitted.

In Figure 4 we present the completion time, the number
of exchanged messages and items of each algorithm for the
applied workloads. In the first graph, we notice that MIG
is not affected by the width of the pulse and balances load
faster than NEIX. On the other hand, NEIX is three times
slower for a pulse of width 40% than for a pulse of width
10%: alarger overloaded area requires more successive key
redistributions, thus more time to balance load. This is not
required in the case of MIG, as nodes that lie in the middle
of the overloaded area are able to initiate multiple parallel
node migration requests. Nevertheless, the speed of MIG
comes at a great cost. In the second graph we present the
cost of message exchange in the case of NEIX and MIG:
MIG constantly requires a larger number of messages com-
pared to NEIX. Finally, in the third graph we present the cost
of each algorithm in terms of item exchanges. We notice
that MIG item exchanges increase slowly when the pulse
width increases and are considerably less than in the NEIX
setting. This is not the case for NEIX: a pulse of width 40%
requires about 6 times more item exchanges than the ones
required by a pulse of 10% width. This happens because
nodes that exist in the middle of the overloaded structure
need to iteratively transfer a larger number of items until
they reach the underloaded area.

These experiments confirm that MIG is fast and costly
in terms of message exchanges, whereas NEIX is slow and
expensive in terms of item exchanges. Therefore, it is clear
that algorithms that rely only on MIG or NEIX operations
cannot balance efficiently an arbitrary input load.

5.2 Measuring the effectiveness of NEIXMIG

In this experiment, we compare NEIXMIG against MIG
and NEIX in a number of different input workloads.

&200x 2 600K £100 I : ; ‘
£ 1000 Z = 500K 15 sl 1 Bosf 1
£ 7500 1 E150K aNEIX f 1 3400K| 12 3
g 70 ANEIX] = OMIG Eﬂiggi 2 60/ 1 £o06f]
= o 51 L 1=K L 12
N e 2 200K] SMIG {2 40 13047]
£ 250t 15 sok! o 13 g k=
8 PR M = 100K} e 1B | 502t y
e p * e e 5
10 20 30 40 50° 0 Y Y . 10 20 30 40 50 L L] . 1 . I
% pulse width * 10, 20 30 30 %0 o palse w0 1000”1500 2000 2500 1000 " 1500 2000 2500

Figure 4. Completion time, exchanged messages and

items of NEIX and MIG for various pulse widths

Table 1. Percentage gains/losses of NEIXMIG
vs NEIX and MIG convergence time and cost

Load type | % Time |% of exchanged |% of exchanged
convergence messages items
WEIX | MIG INEIX | MIG |NEIX| MIG
zipf 6 =1 |11.4 |-18.7 |-26.9 | 90.7 |16.1 | -193.7
zipf 0 =2 123 |-21.3 |-304 | 82.8 |353 | -218.8
Pulse 25% | 4.2 |-280 |-10.3 | 69.5 [16.5 | -348.5
Pulse 10% | 9.0 [401.6 |-2.5 | 59.7 [18.3 | -375.7

We apply two zipfian loads with # = 1 and 0 = 2 (more
biased) and two pulse loads with width 10% and 25%. In
Table 1, we present the gains (as positive values) and losses
(as negative ones) of the hybrid version in terms of reduc-
tion in time, exchanged messages and exchanged items. In
the first two rows we present the gain/loss of our approach
for the zipfian workloads. We notice that NEIXMIG con-
verges faster than NEIX and is around 20% slower than
MIG. We also see that NEIXMIG is more expensive than
simple NEIX in terms of message exchange, as it performs
extra probing and routing maintenance messages. Neverthe-
less, NEIXMIG is less expensive than MIG around 90%. In
the last column, we compare NEIXMIG to NEIX and MIG in
terms of item exchange cost, where we observe that selec-
tive migrations help NEIXMIG to minimize item exchange
cost over 15% compared to NEIX. MIG proves more effi-
cient than NEIXMIG in item exchanges cost, but exchanges
more messages. In the final two rows we present the re-
sults for the pulse workloads where we notice NEIXMIG’s
similar behavior as in the zipfian setting.

5.3 NEIXMIG under dynamic workload

We now present results showing the performance of our
NEIXMIG method when the workload suddenly changes its
skew. We assume an initial pulse load of width 12.5% and
height 275. This pulse suddenly moves at time t=1400sec
from items [12500, 18700] to [31300, 37600]. Note that
this is the worst possible scenario for NEIXMIG, since the
skew changes completely and abruptly at this time.

Figure 5 shows how the number of overloaded peers
and the balancing efficiency changes over time. Naturally,
both metrics are affected immediately after the change in
load occurs: The Gini coefficient almost doubles in value
and so does the number of overloaded peers. Neverthe-
less, NEIXMIG adapts and manages to reduce both quan-

Figure 5. Overloaded peers and Gini
over time for the dyn. setting

tities. The reason that the convergence time is documented
to be larger than that of handling a single pulse is obvious:
The very sudden change in skew forces the invalidation of
many already performed balance operations and nodes with
no load problem suddenly become overloaded.

6 Conclusions

In this paper, we evaluated the performance in terms of
bandwidth cost and convergence speed of balancing range
queriable data structures using successive item exchanges
between neighbors or node migrations. Our experimental
results show that none of these methods by itself is ca-
pable of efficiently balancing arbitrary workloads: Neigh-
bor item exchanges are expensive in terms of item transfers
and slow in terms of convergence speed, whereas node mi-
grations are fast but costly in terms of message exchange.
Based on these findings, we proposed and evaluated a hy-
brid approach that adaptively decides the appropriate bal-
ancing action. Load moves in a “wave-like” fashion until
it is absorbed by underloaded nodes, and node migration is
triggered only when it is necessary. Our simulation results
show a gain of 10% and 70% compared to simple NEIX
and MIG in the algorithm convergence time and cost respec-
tively under a variety of skewed and dynamic workloads.

References

[1] S. Sen and J. Wong, “Analyzing peer-to-peer traffic across
large networks,” in SIGCOMM IM Workshop, 2002.

[2] J.Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds
and denial of service attacks: Characterization and implica-
tions for CDNs and web sites,” in WWW, 2002.

(3] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer
support for massively multiplayer games,’ Infocom, 2004.

[4] Q. Luo and J. F. Naughton, “Form-based proxy caching for
database-backed web sites,” in VLDB, 2001, pp. 191-200.

[5] D. R. Karger and M. Ruhl, “Simple efficient load-balancing
algorithms for peer-to-peer systems,” Theory of Computing
Systems, vol. 39, pp. 787-804, Nov. 2006.

[6] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online balanc-
ing of range-partitioned data with applications to peer-to-peer
systems,” in VLDB, 2004, pp. 444-455.

[7]1 S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and
I. Stoica, “Load balancing in dynamic structured peer-to-peer
systems,” Performance Evaluation, vol. 63, no. 3, pp. 217—
240, 2006.

[8] J. Aspnes and G. Shah, “Skip graphs,” ACM Trans. Algo-
rithms, vol. 3, p. 37, 2007.

[9] T. Pitoura, N. Ntarmos, and P. Triantafillou, “Replication, load
balancing and efficient range query processing in dhts,” in
EDBT, 2006, pp. 131-148.

