
Fast and Cost-Effective Online Load-Balancing
in Distributed Range-Queriable Systems

Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios Koziris, Member, IEEE

Abstract—Distributed systems such as Peer-to-Peer overlays have been shown to efficiently support the processing of range queries
over large numbers of participating hosts. In such systems, uneven load allocation has to be effectively tackled in order to minimize
overloaded peers and optimize their performance. In this work, we detect the two basic methodologies used to achieve load-balancing:
Iterative key redistribution between neighbors and node migration. We identify these two key mechanisms and describe their relative
advantages and disadvantages. Based on this analysis, we propose NIXMIG, a hybrid method that adaptively utilizes these two
extremes to achieve both fast and cost-effective load-balancing in distributed systems that support range queries. We theoretically
prove its convergence and as a case study, we offer an implementation on top of a Skip Graph, where we thoroughly validate our
findings in a variety of static, dynamic and realistic workloads. We compare NIXMIG with an existing load-balancing algorithm
proposed by Karger and Ruhl [1] and our experimental analysis shows that, NIXMIG can be as much as three times faster, requiring
only one sixth and one third of message and item exchanges, respectively, to bring the system to a balanced state.

Index Terms—Peer-to-peer systems, load-balancing, range queries.
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1 INTRODUCTION

DATA skew is a well-documented concern for a variety of
applications. It has been widely observed that most

Internet-scale applications, including P2P ones, exhibit
highly skewed workloads (e.g., [2], [3], etc). Failing or
departing nodes further reduce the availability of various
content. Consequently, resources become scarce, servers get
overloaded and throughput can diminish due to high
workloads that, in many cases, can by themselves cause
denial of service [4].

One way to handle hotspots and balance load is by
applying hash functions that transform skewed data access
patterns to uniform distributions. Nevertheless, this trans-
formation comes at the cost of destroying content locality, and
thus cannot be used in situations where objects need to placed
in an order-preserving way. Distributed data structures that
support range queries is such an example: The keys are
partitioned in the network nodes so that a natural order is
preserved and each range query is efficiently handled by a
small number of peers. The interest in such structures is
increasing, as they can be very useful in a variety of situations:
distributed databases [5], online games [6], web servers [7],
data warehousing [8], etc.

Another orthogonal way to deal with data skew is the
replication of popular items in numerous nodes. However,
the content locality constraint minimizes available replica
candidates (allowing, for instance, only few-hop away
neighbors), something that makes balancing even more
difficult. What is more, replication not only needs to change

the underlying routing protocol to handle multiple replica
locations during item searches and insertions, but it must
also deal with consistency issues during object updates.

In such cases, load-balancing methods that redistribute
items between nodes are an appealing solution. The highly
dynamic and large-scale nature of these distributed data
structures, where it is difficult for a single node to have a
total network workload overview, poses two basic require-
ments: online functionality (i.e., the property to make
correct decisions only with partial, local workload knowl-
edge) and workload adaptivity (i.e., the ability to quickly
respond to workload changes).

In current bibliography, a variety of methods exists
focusing on achieving efficient load-balancing for such
structures, whether they utilize the notion of “virtual
servers” [9], [10], [11], [12], [13], [14] or not [1], [14], [15],
[16], [17], [18], [19], [20], [21]. Yet, they can be categorized in
two general strategies: Node Migration and Neighbor Item
Exchange. These techniques represent two different ap-
proaches to handling the problem: Node Migration utilizes
underloaded peers by placing them in overloaded areas of
the network (see Fig. 1, where the height of the bars shows
the load of each node, while their width reflects the number
of keys served). The newly arriving peer takes up part of the
load of its new neighbors. Neighbor Item Exchange balances
load through iterative item exchanges between neighboring
nodes (see Fig. 2). The majority of proposed approaches
utilize a version of these two schemes in order to finally
balance load among peers each responsible for a given
range of the data. While they both achieve their goal, their
speed and cost greatly vary, making a method that utilizes
only one of them inefficient for all cases.

Our contribution1 can be summarized in the following:

. We formally identify these two different methodolo-
gies that, iteratively applied, perform load-balancing
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on distributed range-partitioned data structures. We
describe their mechanisms and analyze their perfor-
mance in terms of completion time and communica-
tion cost. An important result of our work is the
observation that, through mere key exchanges the
achieved result can be highly delayed and the number
of exchanged items can be very large, whereas using
only node migrations the cost of updating the
structure is considerably increased.

. Based on this analysis, we describe a hybrid method
that utilizes both item exchange and node migration
in order to minimize overloaded peers and balance
the load distribution among them. This method
manages to adjust the use of migrating nodes with
the neighbor item exchange operations: Load moves
in a “wave-like” fashion from more to less loaded
regions of the structure adaptively, using our
version of the Neighbor Item Exchange mechanism.
When we locally identify highly overloaded regions,
we activate Node Migration. We also present smart,
“skew aware” remote underloaded node location
and placement mechanisms that further decrease
NIXMIG’s bandwidth consumption. We theoreti-
cally study the algorithm’s convergence existence
and speed along with the preconditions that need to
hold for the system to reach an equilibrium.

. We present a Skip Graph [23] implementation on top
of which we apply and compare the hybrid versus
simple node migrations, neighbor item exchanges,
and another load-balancing algorithm proposed by
Karger and Ruhl [1]. We measure and compare their
behavior in a variety of skewed, dynamic, and
realistic workloads. Our results validate the analysis
of the previous sections and show that our method
balances at low cost (requires only one sixth and one
third of message and item exchanges, respectively,
compared to [1]) and high convergence rate (it is
three times faster than [1]), adapts to changing
workloads and is highly customizable.

Theremainderof this paper isorganizedas follows:Section
2 gives the reader the basic notation and formulation of our
problem. Section 3 describes and analyzes the two different
primitive mechanisms for load-balancing, while in Section 4,
we present and theoretically analyze our hybrid method. Our
experimental results are detailed in Section 5, while Related
Work and the Conclusions Section conclude our work.

2 NOTATION AND PROBLEM SETUP

We consider the indexing and storing of M keys ð1; . . . ;MÞ
in N nodes ð1; . . . ; NÞ, where N� M. We assume that a key

represents an object or item, hence we shall use these terms
interchangeably. We consider that M keys are divided along
N partitions (ranges) with boundaries r1 <¼ r2 <¼ � � � <¼
rN (obviously, ri 2 ½1;M�; 8i 2 ½1; N �). Each node Ni stores
and indexes keys for the partition ½ri; riþ1Þ. Nodes that
manage adjacent ranges are said to be neighbors. We
consider two different directions: forward, toward which
indexed values are increasing and backward, where values
are decreasing. Node Ni’s forward and backward neighbors
are Node Niþ1 that is responsible for the adjacent range
½riþ1; riþ2Þ and Node Ni�1 that is responsible for the adjacent
range ½ri�1; riÞ, respectively. As item load ljðtÞ; j 2 ½1;M� at
time t, we define the number of user requests for this
specific item over a specific time interval (for instance,
keys/sec). Item load can be viewed as a portion of
bandwidth (kb/sec) consumed on queries for this key.
The server load LiðtÞ of node Ni at time t is the sum of the
loads of the items that it stores: LiðtÞ ¼

Priþ1

j¼ri ljðtÞ.
We are interested in keeping the natural ordering of the

indexed keys, so as to facilitate the routing and answering of
range queries. Each stored item has a different popularity
that is assumed not to be known beforehand and to change
over time. Users perform both exact match and range queries.
In the case of range queries, more than one node may be
contacted in order for the correct answer to be computed.

We assume that each node Ni, according to its
capabilities sets a local load threshold, thresi. When the
load exceeds this value LiðtÞ > thresi, the node wishes to
shed some of its load according to the load-balancing
algorithm that is implemented.

Our goal is to transform the set of partition boundaries
through consecutive item exchanges or node migrations
after some time so that Liðt0Þ < thresi; 8i 2 ð0; N�. In
addition, our goal is to achieve a balanced load distribution.

3 LOAD BALANCING USING NEIGHBOR ITEM

EXCHANGE AND NODE MIGRATION

Balancing is performed by transferring keys from over-
loaded peers to less loaded ones. The necessity for
preserving order in a range-queriable data structure
requires that any item exchange must be performed only
between neighboring nodes in the structure. Nevertheless,
there are situations where several neighboring nodes
experience similar load stress. In that case, distant under-
loaded peers can gracefully depart from their place, join in
the overloaded area, and take a portion of its keys. While
this operation seems more efficient, a large number of
message exchanges is required for the remote node location
and the overlay structure maintenance.
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Fig. 1. Node Migration example. Node D is placed between nodes A and

B and shares part of their load.

Fig. 2. Neighbor Item Exchange example. Iterative key exchanges

between (A,B), (B,C), and (C,D) node pairs produce a balanced load.



Distributed structures that support range queries per-
form routing in logarithmic time by maintaining a routing
table list of logN increasingly distant nodes (for an overlay
of size N). Without loss of generality, we consider these
nodes to be placed in Lmax levels (at the lowest level, L0,
each node holds the IDs of its immediate neighbors, etc).
The maintenance cost of this overlay is a costly procedure in
terms of communication exchange between the participat-
ing nodes: Fig. 3 depicts the message exchanges that occur
when node Nm leaves its place at time ta (left part of Fig. 3)
and rejoins next to node Np at time tb (right part of Fig. 3).
Solid lines represent node routing links, whereas dotted
ones represent the messages required for overlay main-
tenance. In the described structure, every node contains
2Lmax routing entries (backward and forward for every
level). For simplicity, we describe the procedure for a
random level, Lc: Before node Nm leaves its place, it
removes every forward and backward link stored in tables
F ½Nm� and B½Nm�, respectively (lines marked with an X).
This triggers a number of message exchanges where nodes
that were in F ½Nm� and B½Nm� (i.e., Nm’s old neighbors)
contact a number of distant nodes in order to fill their
routing table “hole” (dotted lines on the left side of Fig. 3).
This operation is carried out for every old neighbor in 2Lmax
levels. When node Nm reenters between nodes Np and Npþ1

(right side of Fig. 3) at time tb, it uses F ½Npþ1� as forward
and B½Np� as backward links, scans the structure (dotted
lines) and creates its own routing table (solid lines).

We now describe two different load-balancing algo-
rithms: Neighbor Item Exchange (NIX), that transfers only
keys between neighboring nodes and Node Migration
(MIG) that transfers both keys and nodes from remote
arbitrary locations.

3.1 NIX

The load exchange between neighboring nodes is described
in Algorithm 1. For simplicity, we describe the situation
where keys are transferred from Node Ni to its forward
neighbor Niþ1. The transferring node (which we will refer to
as the splitter peer) sets a pointer j ¼ riþ1 and scans its range
backwards. The procedure stops when sufficient number of
items have been found so as to fulfill its request. Moreover,
helper nodes can alleviate their neighbors immediately: the
helper can answer queries on behalf of the neighbor while
the process is not completed, as they are both aware of
the location of the pointer j. We note here that the splitter-
helper node ID change caused by the range adjustment does
not have to be reflected immediately to their remote
neighbor’s routing tables, as the overlay consistency is
preserved (the node ordering remains unaltered). There-
fore, the new IDs can be disseminated lazily with the first

routing maintenance message exchange. Nevertheless, it is
obvious that a major disadvantage of NIX is that possibly
many iterative such operations may be needed in order to
balance load inside large regions of loaded peers.

Algorithm 1. NIX(Ni ! Niþ1; load)
1: {Ni calculates key range to pass to Niþ1}

2: j  riþ1

3: while j � ri do

4: if
Priþ1

m¼j lm � load then

5: key range is ½j; riþ1�
6: break

7: else

8: j  j� 1

9: end if

10: end while

11: Ni transfers ½j; riþ1� to Niþ1

12: New Ni partition : ½i; j�
13: New Niþ1 partition : ½j; riþ2�

3.2 MIG

In Algorithm 2, we describe the situation where Node Nm

leaves its place to join next to overloaded Node Np and take
a portion of its keys. Np locates Nm by issuing probing
messages to its routing table neighbors until it locates an idle
and underloaded peer that could migrate next to it. MIG is
performed in two phases: In the first phase, Node Nm

transfers its partition to its neighboring node Nm�1, clears its
routing links, and informs them to search for a new entry
(leave phase, lines 1-5 of Algorithm 2). In the second step of
the procedure (the join phase), Node Nm places itself next to
the overloaded peer, accepts a portion of its load and creates
its new routing table (lines 6-7 of Algorithm 2). This process
was thoroughly described in Fig. 3.

Algorithm 2. MIG ðNode Nm ! Node Np; loadÞ
1: NIX(Nm ! Nm�1; Lm)

2: for all Ni in Nm’s routing table do

3: Nm removes link to Ni

4: Ni searches for new routing entry

5: end for

6: NIX(Np ! Nm; load)

7: Nm creates new routing table

3.3 Analysis

In the following, we present an analysis to calculate the
theoretical worst upper bounds for the completion time and
amortized balancing costs (i.e., costs per balancing opera-
tion) of NIX and MIG. We consider three types of amortized
balancing costs, with respect to bandwidth consumption
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Fig. 3. Overlay maintenance communication cost for migration of node Nm next to node Np.



for: item exchanges between nodes (Citx), overlay main-
tenance during migrations (Covm), and locating underloaded
peers during probing (Cprb).

In Theorems 1 and 2, we use the aggregate method of
amortized analysis to calculate the average cost of each
balancing operation and completion time of NIX and MIG
in the worst case of an initial setup (i.e., worst upper bound
of amortized cost). We utilize the notations of Section 2.

Theorem 1. In the worst case, the running time of NIX is OðNÞ
and the amortized cost per balancing operation is OðMÞ.

Proof. In the first picture of Fig. 4, we present an initial setup

of node and item combination that leads NIX to its worst

behavior in terms of completion time and item exchanges.

Buckets represent nodes and balls depict items. Bars

above items represent the unit item load lj ¼ 1. For

simplicity, we consider that for each node, thresi ¼ 1. At

the beginning,N1 contains all M objects, of which only the

leftmost N are requested (i.e., they have lj ¼ 1; j 2 ð0; N �)
and the rest M-N are not queried (i.e., lj ¼ 0;

j 2 ðM �N;M�). All other nodes are empty. Since

L1 ¼ N > thres1, N1 will perform a NIX operation with

its neighborN2 at t0 and it will transfer to it a total ofM � 1

keys, keeping only the leftmost key, so that L1 ¼ l1 ¼
1 <¼ thres1. Likewise, at t1 node N2 will transfer M � 2

keys to its right neighborN3 keeping only its leftmost key.

Finally, afterN � 1 steps, in the second picture of Fig. 4 all

nodes are balanced, since they will be responsible for a

single item whose load is 1. NN will also contain the

remaining M �N zero load keys. Given that N � 1 steps

are needed, the running time of NIX is OðN � 1Þ ¼ OðNÞ.
By summing all moved items in every step, we have the

total cost
PN�1

i¼1 ðM � iÞ ¼MðN � 1Þ � ðN�1ÞN
2 . As no

probing and overlay maintenance is necessary, the cost

per operation then is Citx ¼ MðN�1Þ�ðN�1ÞN
2

N�1 ¼M � N
2 ¼

OðM �NÞ. Since N �M, the cost then is OðMÞ. tu
Theorem 2. In the worst case, the running time of MIG is

constant Oð1Þ and the amortized cost per balancing operation
is OðMN þ logNÞ.

Proof. In the third picture of Fig. 4, we depict a worst initial
network setup for the MIG case. Similar to NIX, N1

contains all M objects, of which only N are requested and
every node sets thresi ¼ 1. All other N � 1 nodes are
empty at first. Requested items are evenly distributed in
the ID space: for every M

N objects, there is one with lj ¼ 1
(for instance, lj ¼ 1 if j mod N ¼ 0, and 0 otherwise). In this
setup,N1 will initiateN � 1 migrations with the rest of the
nodes, where in each migration M

N keys are offloaded from
N1 to the helper. Finally (fourth picture of Fig. 4), a total ofPN�1

i¼1
M
N ¼ ðN � 1ÞMN keys are transferred. The cost for

item exchanges then is Citx ¼ ðN�1ÞMN
N�1 ¼ OðMNÞ which is

basically the cost for a node insertion or deletion (see
Theorem 3 of Karger’s work [1]). The probing cost Cprb is
OðlogNÞ since it involves contacting logN neighbors.
Moreover, in most DHT-like networks, overlay main-
tenance costs Covm ¼ OðlogNÞ messages. Therefore, the
total MIG cost is Citx þ Covm þ Cprb ¼ OðMN þ logNÞ.
Migrations take a constant number of steps as, unlike
NIX operations, they are executed in parallel: therefore,
we consider MIG running time to be Oð1Þ (although
overlay maintenance usually takes OðlogNÞ time, this can
happen lazily after the key transfer phase). tu

To gain insight into the behavior of the two algorithms

in a more general case, let us consider a typical “balls into

bins” setup, with N items being uniformly distributed

among N nodes (we only consider N out of M items, since

these items affect node loads). The fraction of underloaded

nodes, i.e., nodes with a load less or equal to 1, is

calculated by estimating the probability of a node to hold

either one or no popular item. Utilizing the equation that

calculates the probability of a particular bin to have exactly

k balls we have: P ½Nj is underloaded� ¼
P1

k¼0 P ½Lj ¼ k� ¼P1
k¼0

N
k

� �
ð 1
NÞ

kð1� 1
NÞ

N�k. For large N, this is equal to
1
e þ 1

e ¼ 0:74. Moreover, the maximum load of a node is
logN
loglogN . Thus, only 26 percent of the nodes is overloaded and

the most loaded node(s) are well under the initial load of N

in the worst case of NIX and MIG. Both algorithms benefit

in this case: NIX will initiate small concurrent waves of

item exchanges, finishing faster than OðNÞ (as more waves

are done in parallel) and less costly than OðMÞ (as waves

involve a smaller number of nodes and transfer a smaller

amount of the id space). Similarly, MIG will transfer less

items than OðMNÞ, since a fraction (P ½Lj ¼ 1� ¼ 1
e ¼ 37%) of

the nodes will not participate in the balancing procedure,

as their load is equal to their thres value.
Although MIG performs better in terms of completion

time and exchanged messages for a large number of N, it
needs extra messages for overlay reorganization and
probing. This can be avoided with the selective use of
NIX operations.

In Fig. 5, a situation where a wave of NIX operations is
more favorable compared to MIG is presented: Node A can
shed its load toward its underloaded neighbors without the
need for extra remote nodes, leading the neighborhood in a
balanced state (right side of Fig. 5). In Fig. 6, we describe a
situation where a MIG operation is more cost-effective than
a number of NIX operations. Node A is located between
nodes that their load is near their thres value (left side of
Fig. 6). In this situation, a chain of NIX operations would
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Fig. 4. Worst case of initial setup and converged balanced network for the NIX and MIG cases.



simply forward the load from one node to another, as there
is no nearby underloaded neighbor that could absorb it. On
the other hand, the migration of a remote node B next to A
(right side of Fig. 6) solves the problem in one step,
justifying the extra number of required probing and
maintenance messages needed to locate the underloaded
peer and fix the topology, respectively. In any case, in order
for A to decide the appropriate balancing action, a clear
view of the neighborhood’s load is required.

From this, it is obvious that fewer MIG operations can
produce the same result to considerably more NIX ones, as
helping nodes can be placed anywhere. Nevertheless, it is
also evident that each node migration is costly, while the
location of possible helpers and their exact new location has
to be optimized. On the other hand, NIX avoids probing
and routing maintenance messages, but it requires a large
number of item exchanges between successive nodes,
especially when it is applied in the “middle” of an
overloaded neighborhood.

Procedure 3. REMOTEWAVE ðNpþlcþ1; exNodeslcþ1 hopsÞ
1: FindNm such that

Lm < thresm and Nm is idle

2: if such Nm exists then

3: tmpLm ¼ Lm; j ¼ 0

4: while tmpLm <¼ tmpLpþlcþ1

and j <¼ exNodeslcþ1 do

5: if Nmþjþ1 is idle then

6: tmpLmþ ¼ Lmþjþ1

7: Node Nmþjþ1 sends a LockRequest to Nmþjþ2

8: else {Nmþjþ1 is locked}

9: Nmþj aborts lock
10: end if

11: j ¼ jþ 1

12: end while

13: rNodes ¼ j
14: end if

15: return rNodes

4 NIXMIG

In this section, we describe NIXMIG, our proposed hybrid
approach. The goal of NIXMIG is to balance load by

adaptively choosing to utilize either NIX or MIG. The
rationale behind our method is that MIG is fast but costly,
whereas NIX is slow but cost-effective. Hence, we devise a
scheme that, using only local knowledge, identifies condi-
tions where MIG is necessary to speed up the balancing
process but is not excessively utilized. In short, when NIX
operations cannot alleviate an overloaded neighborhood,
our method employs node migrations for faster load relief
in that area.

4.1 Algorithm

NIXMIG (Algorithm 4) is initiated when the load of a node
Np passes its self-imposed thresp value and it is performed in
three phases: In the first phase (Exam phase), the overloaded
node examines the load status of a number of neighboring
nodes (Procedure 5) and, if necessary, an additional number
of distant nodes is contacted (Procedure 3). In Table 1, we
explain the variables used by the aforementioned methods.
The node examination is performed in a wave-like manner
toward one direction of the structure, where each node
contacts its successor. When the first phase is successful,
then the algorithm proceeds to the NIX phase (lines 5-12 of
Algorithm 4) and portions of keys are iteratively transferred
from one neighbor to another. Finally, the algorithm
proceeds to the MIG phase (lines 14-17 of Algorithm 4),
where the reserved underloaded nodes of the remote wave
offload their keys to their neighbor and take a portion of the
range of the final node of the NIX wave. We note here that
the MIG phase is optional: it is triggered only if extra remote
nodes are needed to absorb a neighborhood’s load. More-
over, reserved (i.e., locked) nodes continue to answer user
queries but they do not participate in or initiate other
balancing actions until they are unlocked (lines 11 and 16 of
Algorithm 4) or a time-out has occurred.

Algorithm 4. NIXMIG ðNode Np; ttl hopsÞ
1: LOCALWAVEðNode Np; ttl hopsÞ
2: if exNodeslcþ1 > 0 then

3: REMOTEWAVEðNode Npþlcþ1; exNodeslcþ1 hopsÞ
4: end if

5: for i ¼ 0 to lc do

6: if Lpþi > overThrespþi then

7: load ¼ aðLpþi � threspþiÞ
8: else if Lpþi > threspþi then

9: load ¼ Lpþi � threspþi
10: end if

11: NIX(Npþi ! Npþiþ1; load), unlock Npþi
12: end for
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Fig. 5. Balancing effect of a chain of NIX operations.

Fig. 6. Balancing effect of a single MIG operation.

TABLE 1
NIXMIG Variables



13: if rNodes > 0 then

14: for i ¼ 0 to rNodes do

15: MIG(Nmþiþ1 ! Npþlc;
tmpLpþlc
rNodes )

16: unlock Nmþiþ1

17: end for

18: end if

In Fig. 7, we depict the phases of a successful NIXMIG
operation initiated by node N1. For clearer presentation, we
assume that all nodes have equally set their thres value
(dotted horizontal line). In the Exam phase, N1 issues a Lock
Request that eventually reaches N4 through N2 and N3. N4

calculates the number of extra nodes that are needed to
migrate to the neighborhood to absorb its load, and issues a
new request for remote node reservation to node N10. When
N10 reserves nodesN11,N12, andN13, the NIX Phase begins. In
the NIX phase of Fig. 7, nodesN1 toN3 iteratively shrink their
responsible range by adjusting their boundaries and drop
their load under their required thresvalue.At the endofPhase
2, most of the neighborhood’s load ends up toN4, but this will
happen for a very small period of time, as N4 has already
reserved the requested number of remote nodes to share this
load. Finally, in the MIG Phase, the remote underloaded
reserved nodes N11, N12, and N13 sequentially offload their
keys toN10, place themselves next toN4 and take a portion of
its range. We notice that at the end of Phase 3, all participating
nodes’ loads are below their thres value. We now give a more
detailed presentation of the algorithm phases.

4.1.1 Exam Phase

The Exam phase of NIXMIG serves a dual purpose: it
examines the load status of the contacting nodes to decide
the appropriate balancing actions, while reserving them to
participate in the balancing procedure. The load examination
begins with the node’s neighborhood (Procedure 5): after
each node is successfully reserved (line 3 of Procedure 5), a
NIX operation between Node Npþlcþ1 (that acts as a helper)
and its predecessor Npþlc (that acts as a splitter) is simulated
by Npþlcþ1. The splitter’s load in this calculation is assumed
to be tmpLpþlc and is equal to the load that would end up to it
if a chain of lc NIX operations was initiated by Np toward
Npþlc. Using this variable, node Npþlcþ1 calculates the load
that will be transferred toward it (movedLoadlc variable).
This recursive calculation can be seen in Phase 1 of Fig. 7: The
movedLoad variable in steps 1, 2, and 3 is depicted with the
dotted rectangle above nodesN2,N3, andN4, respectively. In

each step, the tmpL variable is calculated by adding
movedLoad to the nodes’ current load. tmpLpþncþ1 is used
by Npþlcþ1 to estimate the number of extra remote nodes that
are required to migrate next to it to absorb the neighbor-
hood’s load (exNodeslcþ1 variable in line 11). The examina-
tion of a node’s neighborhood finishes when a number of ttl
nodes have been successfully reserved, or when it is
estimated that more than ttl remote nodes are needed to
absorb the calculated extra load (line 2).

Procedure 5. LOCALWAVE ðNode Np; ttl hopsÞ
1: lc ¼ 0, tmpLp ¼ Lp, Np sends a LockRequest to Npþ1

2: while lc <¼ ttl and exNodespþlcþ1 <¼ ttl do

3: if Npþlcþ1 is idle then

4: if tmpLpþlc > overThres then

5: movedLoadlc ¼ aðtmpLpþlc � threspþlcÞ
6: else f0 < tmpLpþlc < thresg
7: movedLoadlc ¼ tmpLpþlc � threspþlc
8: end if

9: tmpLpþlc ¼ Lpþlc �movedLoadlc
10: tmpLpþlcþ1 ¼ Lpþlcþ1 þmovedLoadlc
11: exNodeslcþ1 ¼ btmpLpþlcþ1

threspþlcþ1
� 1c

12: Npþlc locks Npþlcþ1

Node Npþlcþ1 sends a LockRequest to Npþlcþ2

13: else {Npþlcþ1 is locked}

14: Npþlc aborts lock

15: end if

16: lc ¼ lcþ 1

17: end while

18: return <lc; exNodeslcþ1; tmpLpþlcþ1>

When the previous phase finishes, Npþlcþ1 uses the
exNodeslcþ1 variable to decide whether extra nodes are
needed (line 2 of Algorithm 4). If this is the case, it uses the
previously described underloaded node location mechan-
ism to locate a remote peer Nm (line 1 of Procedure 3). Nm

then tries to reserve exNodeslcþ1 adjacent nodes that are
able to leave their place and help Np’s overloaded
neighborhood. These nodes will offload their keys to Nm

before they migrate. The reservation is performed in a
similar wave-like manner for at most exNodeslcþ1 hops.
During reservations, each contacted node estimates tmpLm,
and if this exceeds tmpLpþlcþ1, the algorithm moves on to
the next phase (line 6 of Procedure 3), with only the so far
reserved nodes participating in the migration procedure.
Therefore, the goal of the remote locking procedure is to
reserve the required exNodeslcþ1 without overloading Nm

that will accept their load when they migrate. When this
phase completes, the locked nodes are ready to begin
balancing actions. Moreover, during the exam phase no
item exchanges are performed. If the exam phase is not
successful (e.g., not enough underloaded nodes are found,
or a contacted node participates in another balancing
procedure), nodes are unlocked and an exponential back-
off mechanism is applied to the time Np will wait before it
initiates another NIXMIG operation.

4.1.2 NIX Phase

When the locking phase succeeds, the algorithm proceeds to
the second phase and the initiator starts an iterative
procedure where portions of ranges are transferred from
one locked node to its neighbor for all the lc reserved nodes
(lines 5-12 of Algorithm 4). In order to calculate the portion
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of load that a splitter will shed, we introduce the overThres
threshold, where overThres > thres. If the splitter’s load is
above the overThres, then only a fraction a of the extra load
is accepted. Otherwise, the splitter’s excessive load is fully
accepted. The purpose of overThres is to smooth out the
key/load exchanges between sequential NIX executions.
When NIX is performed consequently in a number of
overloaded nodes, some nodes may end up with a large
portion of the load that was shifted to them during
recursive NIX procedures from all the nodes in the
forwarding path. For this exact case, the helper peer does
not alleviate the splitter from all of its excessive load,
instead, it only accepts a portion of it.

4.1.3 MIG Phase

The final step of the algorithm is the MIG wave, where a
number of rNodes remote locked nodes offload their keys to
node Nm, leave their place and join next to Npþlcþ1 (lines 13-
18). Placing remote nodes next to Npþlcþ1 and not between
nodes Np and Npþlcþ1 minimizes intranode communication,
as nodesNp toNpþlc are unlocked after the NIX wave (line 11),
and their routing tables are not significantly altered.

To sum up, NIXMIG first examines the neighborhood of
an overloaded node: if its extra load can be absorbed by its
neighbors it performs a cost-effective “wave-like” set of
successive item exchanges. If this is not the case because, for
instance, the entire neighborhood is overloaded, it selec-
tively initiates a more expensive migration request to speed
up the process.

4.2 Enhancements

In this section, we present enhancements to the original
NIXMIG algorithm that further decrease the bandwidth
utilization of the balancing procedure. Specifically, we
present remote underloaded node location and placement
mechanisms which minimize traffic during balancing
operations.

Remote underloaded node location. NIXMIG’s perfor-
mance depends on its ability to easily locate an under-
loaded node. To avoid random probing or the maintenance
of a centralized registry, we utilize the query-induced traffic
to piggyback information about underloaded nodes. As
packets are routed, underloaded nodes add their ids and all
participating nodes extract from the incoming packets this
information to a local cache. Overloaded nodes use this
cache to contact underloaded ones and if they fail to do so,
then they resort to random probing.

Remote underloaded node placement. When a remote
underloaded node has been successfully located and
reserved, the splitter must decide which range to offload
to it. In situations where the load is uniformly distributed in
the key space, the same load movement results in the same
(in terms of transferred items) key movement. Nevertheless,
in skewed distributions, this property does not hold (e.g., a
small range of items may experience the same load with a
larger one), and the smallest possible range must be
detected and transferred during load movement. In Fig. 8,
we present this detection mechanism: Overloaded node A is
responsible for the key range ½r1; r2� in which the load is not
uniformly placed. On the left side of Fig. 8 at t ¼ ta, node A
simulates two NIX operations by scanning its range in the
forward direction starting from r1 (arrows marked with an
X) and in the backward direction starting from r2. Finally,

on the right side of Fig. 8 at t ¼ tb, node B is placed in the
forward direction of A, as this minimizes the number of

transferred keys (jr2 � rbj < jr1 � rbj).

4.3 Theoretical Analysis

Load-balancing between neighboring nodes can be classified

in two general categories [24]: diffusion and dimension exchange

methods. In the case of diffusion [25], every node balances its

load concurrently with every other partner, whereas in the

dimension exchange approach [26], every node is allowed to

balance load only with one of its neighbors at a time (NIXMIG

falls into this category). Diffusion methods are analyzed using

linear algebra, whereas the analysis of dimension exchange

methods is performed using a potential function argument.

Potential functions map the load distribution vector at time t

~wðtÞ ¼ ðL1ðtÞ; . . . ; LNðtÞÞT into a single value that shows how

“far” the system is from the balanced state. In the case of

homogeneous peers, the balanced state is represented by the

vector ~wbl ¼ ð �w; . . . ; �wÞT where �w ¼
PN

i¼1
LiðtÞ

N (every node gets

an equal portion of the total load).
The goal of a balancing algorithm is to ensure that every

load exchange between nodes will eventually decrease an

initially large potential value and will lead the system to a

more balanced (ideal) state. If this drop is ensured, the
algorithm converges to an equilibrium. In the case of

NIXMIG, we define the potential function of an arbitrary

load distribution as �ðtÞ ¼
PN

i¼1ðLiðtÞ � thresiÞ
2, where �ðtÞ

is the square of the euclidean distance between ~w and the

vector ~wthres ¼ ðthres1; . . . ; thresNÞT in which every node’s

load is equal to its self-imposed thres value (ideal balanced
state). Note that NIXMIG takes into account node hetero-

geneity and its balanced state is different from ~wbl. What is

more, recall from Section 2 that NIXMIG terminates when
LiðtÞ < thresi8i 2 ½0; N �, which means that a balanced state

is every load distribution vector that satisfies this constraint.

In Theorem 3, we prove the convergence of NIXMIG

algorithm, along with the preconditions that need to hold

for the system to reach an equilibrium.

Theorem 3. Any load-balancing action using NIXMIG between

a splitter node Ni and a helper node Nj leads the system to a

balanced state, as long as the difference of the splitter’s load

from its thres value is by a constant of 1� a bigger than the

difference of the helper’s load from its thres value, that is,

ðLi � thresiÞð1� aÞ > Lj � thresj.
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decides to place B on its forward direction, minimizing the number of

transferred items jr2 � rbj.



Proof. In an atomic item exchange between two neighbor-

ing nodes, the load that will be moved from the splitter

to the helper is l ¼ aðLi � thresiÞ; 0 < a � 1 (the case

where thresi < Li < overThresi is covered by the general

case for a ¼ 1). The new loads are L0i ¼ Li � l,
L0j ¼ Lj þ l.

Now, we have to show that the drop in the potential
�� ¼ �� �0 caused by this load exchange is positive:

�� ¼ ðLi � thresiÞ2 þ ðLj � thresjÞ2

� ½ðLi � lÞ � thresi�2 � ½ðLj þ lÞ � thresj�2

¼ 2aðLi � thresiÞ½ðLi � thresiÞð1� aÞ þ ðthresj � LjÞ�:

�� is the product of three terms. The first two are
positive because a 2 ð0; 1� ð1Þ and Li is overloaded
(Li > thresi ð2Þ). So, the potential drop is positive if
the third term is positive which happens if
ðLi � thresiÞð1� aÞ > Lj � thresj. tu

Corollary 1. Any load-balancing action using NIXMIG between

a splitter node Ni and a helper node Nj leads the system faster

to an equilibrium as long as the helper is underloaded, that is,

Lj < thresj.

Proof. The algorithm’s convergence rate is faster as long as

the selection of balancing partners ensures a larger drop

in the �� value. If Lj is underloaded, then the third term

of �� is larger (as a sum of two positive terms) compared

to the case when Lj is overloaded. tu

Corollary 1 is a special case of Theorem 3 that shows the

importance for the algorithm’s convergence of easily

locating underloaded peers. In Corollary 2, we identify

the moved load value lopt that maximizes the algorithm’s

convergence rate leading the system quicker to an equili-

brium. We define as thdifi ¼ Li � thresi the difference of

Ni’s load from its thresi value.

Corollary 2. NIXMIG’s optimum convergence rate is obtained

when half of the difference of thdifi from thdifj is transferred

from splitter Node Ni to helper Node Nj, that is,

lopt ¼ 1
2 ðthdifi � thdifjÞ.

Proof. �� as a function of the moved load l is

��ðlÞ ¼ ðLi � thresiÞ2 þ ðLj � thresjÞ2

� ½ðLi � lÞ � thresi�2 � ½ðLj þ lÞ � thresj�2

¼ �2l2 þ 2ðLi � Lj þ thresj � thresiÞl:

We notice that ��ðlÞ is a quadratic function of l with

coefficients a ¼ �2, b ¼ 2ðLi � Lj þ thresj � thresiÞ, and

c ¼ 0. Because a ¼ �2 < 0, ��ðlÞhas a maximum point for

lopt ¼ �
b

2a
¼ ��2ðLi � thresi þ thresj � LjÞ

�4

¼ 1

2
½ðLi � thresiÞ � ðLj � thresjÞ�

¼ 1

2
ðthdifi � thdifjÞ:

tu

In the case of a homogeneous splitter-helper pair
(thresi ¼ thresj) from Corollary 2, we notice that
lopt ¼ 1

2 ðLi � LjÞ, and thus aopt ¼ 1
2 .

5 EXPERIMENTAL RESULTS

We now present a comprehensive simulation-based evalua-
tion of our method on our own discrete event simulator
written in Java. The time unit in our simulation is assumed
to be equal to the time needed by a node to perform an
operation with another node. Such operations include
atomic item exchanges, lock requests, one-hop query
routing messages, etc. For instance, a LOCALWAVE

wave of ttl ¼ 5 takes five time units to complete. For the
remaining of the experimental section, we consider the time
unit to be equal to one second. Starting off from a pure Skip
Graph implementation, we incorporate our online balan-
cing algorithms on top. By default, we assume a network
size of 500 nodes, all of which are randomly chosen to
initiate queries at any given time.

During the start-up phase, each node stores and indexes
an equal portion of the data, MN keys. By default, we assume
50K keys exist in the system, thus each node is initially
responsible for 100 keys.

Queries occur at rate �r ¼ 250 queries=sec with exponen-
tially distributed interarrival times in a 4,000 sec total
simulation time. Each requester creates a range by choosing
a starting value according to some distribution. The range
of each created query is constant, and for the 50K setting it
is equal to 100 keys (i.e., every range query requests 100
consecutive keys). The total network workload is a product
of the query range with the query arrival rate, i.e., wtot ¼
250 queries=sec � 100 keys=query ¼ 25:000 keys=sec (in every
second, around 25K keys are requested in total). Recall from
Section 4.3 that in the ideal balanced state of an homo-
geneous network, each node should get an equal load
portion of �w ¼ wtot

N ¼ 25:000
500 ¼ 50 keys=sec.

In our experiments, we utilize several different distribu-
tions to simulate skew: A zipfian distribution, where the
probability of a key i being asked is analogous to i�� and a
pulse distribution, where a range of keys has a constant load
and the rest of the keys are not requested. By altering the
parameters of each distribution (e.g., the � parameter, the
width of the pulse, etc), we manage to create more or less
skewed workloads to test our algorithms.

A node calculates its load using a simple moving average
variable that stores the number of the keys it has served
over a predefined time window. To minimize fluctuation
caused by inadequate sampling, this time window is set to
around 700 seconds. Since nodes in the beginning of the
simulation do not have enough samples to estimate their
load, we let the system stabilize on the input workload for
700 seconds without performing any balancing operation.

In the following, we plan to demonstrate the effective-
ness of our protocol to minimize overloaded peers and
create a load-balanced image of the system. As we
mentioned before, we are interested in the resulting load
distribution (in terms of overloaded servers and ), the rate
at which this is achieved (measured in seconds), as well as
the cost measured in the number of exchanged messages
and items.
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During the experiments, NIXMIG’s parameters were set
to the following values: thres ¼ 60 keys=sec, � ¼ 1

2 ,
ttl ¼ 5 nodes, and overThres ¼ 400 keys=sec. The idea be-
hind these parameters is the following: the thres value is
near the minimum theoretical value of �w ¼ 50 keys=sec for
which most of nodes eventually participate in the balancing
procedure: the larger the thres value, the easier (i.e., using
less operations and bandwidth consumption) it is for
NIXMIG to bring the system to its equilibrium making its
comparison to other algorithms not fair. Furthermore, for
homogeneous splitter-helper pairs, we have shown in
Corollary 2 that �opt ¼ 1

2 . With respect to ttl and
overThres, in Table 2, we experimentally study NIXMIG’s
behavior where in each column, we vary the ttl from 1 to
10 nodes and in each line, we vary the overThres from 160
to 500 keys/sec. Table cells show the aggregated perfor-
mance results for each ttl and overThres combination. We
notice that a combination of a ttl value of 5 nodes (third
column) and an overThres value of 400 keys/sec (third line)
balances load quicker and cheaper compared to other ttl�
overThres combinations: smaller ttl values prohibit NIX-

MIG to examine a sufficient number of nodes, whereas a
larger ttl value slows down the process due to more
internode communication during locking procedures. The
selected overThres value enables NIXMIG to move the
optimal amount of load during neighbor item exchanges:
larger values lead to unnecessary load movement, whereas
smaller values require more balancing operations.

5.1 Measuring the Effectiveness of NIXMIG

In the first set of experiments, we compare NIXMIG’s
performance in a number of different input workloads
against simple MIG, simple NIX, and the Item Balancing

protocol (hence IB) proposed by Karger and Ruhl in [1]. IB

was chosen as, in contrast with other systems, it applies the
same minimal set of operations compared to NIXMIG: they
both avoid the use of centralized load directories, item

replication, and node virtualization (for a brief description
of IB and a survey of similar systems refer to Section 6).

As input workload, we utilize pulses of variable width
from 3 to 50 percent while keeping a constant surface (the
pulse height is inversely proportional to its width) and
constant surface zipfian workloads of variable � from 1 to 4.5.
In every case, nodes set their thres value to 60 reqs/sec. This
thres value can also be seen as corresponding to 60 kb/sec
bandwidth allocation, assuming that, for each request, 1 kb of
data are transmitted. The simulation terminates when every
node has dropped its load under its thres value.

We have implemented the IB protocol setting " ¼ 1
4

which provides the best balancing result. Moreover,
probing messages occur with a rate of 0:1 msg=sec to keep
the probing traffic low. In any case, we terminate the
execution of IB when 50 seconds of simulation time have
passed and no balancing action has occurred.

To apply NIX, we use Algorithm 4 and omit the
REMOTEWAVE procedure: each overloaded node performs
only a LOCALWAVE followed by a chain of NIX operations.
For the wave direction selection, nodes use the following
simple heuristic: new lock requests are sent toward the
direction from which less lock requests were encountered.
For MIG, nodes omit the LOCALWAVE of Algorithm 4 and
directly proceed to the REMOTEWAVE procedure followed
by a chain of MIG operations. In every situation, the load is
balanced by moving most of the nodes inside the “hot”
pulse area that is initially handled by a small number of
overloaded nodes. In the NIX case, overloaded nodes
iteratively shrink their range by offloading keys to their
immediate neighbors, in the MIG case, remote nodes leave
their place and rejoin inside the overloaded area and in the
NIXMIG case, a combination of both these methods is
adaptively utilized.

In Fig. 9, we compare NIXMIG against simple NIX
simple MIG and the IB protocol. In the first graph, we
present the completion time of each algorithm for the
applied workloads. We notice that both MIG and NIXMIG
balance load 4-8 times faster than NIX: for NIX, every node
must accept and offload a large number of items for the
balancing to succeed, whereas in the other two algorithms
this is done in a more efficient way. Moreover, we notice
that NIXMIG converges in almost half the time than IB.

Nevertheless, in the second graph, we notice that MIG is
costly in terms of message exchanges, as it carelessly
employs a large number of unnecessary node migrations.
On the other hand, NIXMIG utilizes node migrations only
when the load cannot be absorbed locally, thus keeping the
number of required messages low compared to both NIX
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Exchanged Items and Messages and Completion Time for
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pulse widths.



and MIG. In addition, NIXMIG requires less than half the
messages compared to IB: IB requires a large number of
probing messages, whereas NIXMIG uses the underloaded
node location mechanism described in Section 4. Further-
more, the number of required messages in the IB algorithm
increases more due to the fact that mostly node migrations
are performed, as its MIG to NIX ratio is near 0.5 (see the
fourth graph).

In the third graph, we notice that NIX requires two
orders of magnitude more item exchanges than MIG and
NIXMIG due to the iterative key transfer procedure. What is
more, NIXMIG requires roughly the same number of item
exchanges compared to MIG. NIXMIG outperforms IB
whereas in skewed workloads NIXMIG exchanges one
third of the items compared to IB: the cooperative nature of
NIXMIG minimizes unnecessary load movement (thus item
exchanges) back and forth, unlike IB where each node acts
on its own. We observe that the IB’s number of exchanged
messages and items drops when the workload is less
skewed: IB performs less balancing actions, as it cannot
easily locate nodes that their load differs by a fraction of ".

Finally, in the fourth graph, we present NIXMIG’s and
IB’s ratio of migrations to simple neighboring item
exchange operations for various pulse widths. Here, we
notice NIXMIG’s workload adaptivity: in extremely skewed
workloads of 3-5 percent pulse widths mostly node
migrations are used (recall from Algorithm 2 that each
migration requires two neighboring item exchanges, thus
the ratio in plain migrations is 0.5). When the pulse’s width
is increased, the ratio drops as load is absorbed using more
neighboring item exchanges and costly remote migrations
are avoided. On the contrary, IB most of the times carelessly
employs node migrations.

These experiments confirm NIXMIG’s adaptivity to an
arbitrary workload, as it identifies the most effective
balancing action, combining the advantages and avoiding

the disadvantages of both plain remote migrations and
plain neighboring item exchanges. We continue our experi-
mental analysis with a more thorough comparison of
NIXMIG against IB.

In Fig. 11, we present a system’s load snapshot after
100 seconds for the two algorithms for a 3 percent pulse. We
notice that, unlike IB (dotted line), NIXMIG (solid line) has
successfully dropped almost every node’s load under its
thres value (horizontal red line). Moreover, in Fig. 12, we
present the variation of exchanged messages during time
for the NIXMIG and the IB algorithm. We notice that
NIXMIG constantly performs less message exchanges than
IB. What is more, in the IB algorithm, we notice the constant
traffic posed by the random probing messages.

In Fig. 10, we present the performance results of NIXMIG
against IB for the zipfian setting. In this situation, the
workload’s skew increases as the � parameter increases
unlike the pulse setting where the skew decreases as the
pulse width increases. In the first graph, we notice that
NIXMIG’s completion time is similar to the one in the pulse
setting. On the other hand, IB’s completion time increases
compared to the respective completion time for the pulse
setting: in the zipfian case, the load is spread more
uniformly compared to the pulse setting, making it harder
for IB to identify load imbalances. In any case, NIXMIG is
three times faster than IB. In the second graph, we notice
that NIXMIG requires a constant number of messages with
a slight drop in the less skewed workload area, as more
neighboring item exchanges are performed. On the other
hand, IB requires constantly more messages due to the
reasons mentioned in the previous paragraph. In the
workloads with � > 3, NIXMIG requires one sixth of
the messages that IB requires. In the third graph, we
observe that NIXMIG’s and IB’s behavior in item exchanges
is similar as in the pulse setting. NIXMIG performs more
item exchanges than IB in the less skewed workloads of
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Fig. 11. Load snapshot at t ¼ 800 sec for a 3 percent pulse.

Fig. 12. Number of exchanged messages during time for a 3 percent

pulse.



� < 1:6, as it performs more neighboring item exchanges. In
more skewed situations, NIXMIG performs one third less
item exchanges compared to IB. The last graph shows the
adaptivity of NIXMIG where more migrations are em-
ployed in more skewed workloads, whereas IB performs
mostly migrations in any case. Finally, in Figs. 13 and 14, we
present a load snapshot after 100 seconds and the variation
of the message exchanges during time, respectively, for a
zipfian workload of � ¼ 4:5. The same behavior as in the
pulse setting is observed: NIXMIG balances load faster and
uses constantly less messages than IB.

5.2 NIXMIG Scalability

In the following experiment, we study NIXMIG’s behavior
when the number of participating peers increases. Nodes
share a total of 5 million keys and the applied workload is a
10 percent pulse. We vary the network size from 500 to
50,000 nodes. Table 3 presents our findings compared to the
500-node setting (i.e., we register the increase in measure-
ments compared to the 500-node setting result). We notice
that the number of messages increases linearly compared to
the number of nodes. Moreover, we also notice a slow linear
increase of the completion time: even for a 100 times larger
network the algorithm terminates only three times slower.
This happens because multiple NIXMIG executions are
performed in parallel. Finally, the number of exchanged
items remains constant: this shows that NIXMIG does not
perform unnecessary item transfers when the network size
increases.

5.3 NIXMIG Performance under Dynamic Workload

We now present results showing the performance of our
NIXMIG method when the workload suddenly changes its
skew. We assume an initial pulse load of width 12 percent

and height 430 req/sec where items [10,000, 16,000] are
requested. This pulse suddenly moves at time t ¼ 850 sec to
items [34,000, 40,000]. Note that this is an extreme scenario,
since the skew changes completely and abruptly at this time.

Fig. 15 shows the variation of the Gini [27] coefficient over
time, respectively. Gini values range between 0 and 1, where
0 corresponds to perfect equality and 1 corresponds to the
theoretic case of an infinite population with only one
individual having a nonzero value. Recent work [28]
proposed its use as a load-balancing metric. Assuming our
population comprises of the number of received requests by
each node, we calculate the value of G as an index of load
distribution among servers. Note here that a low value of G is
a strong indication that load is equally distributed among
them, but does not necessarily imply that this load is low.
Fig. 16 shows the number of overloaded peers during time.
We notice that both metrics are affected immediately after
the change in load occurs, nevertheless, NIXMIG works over
this new situation and manages to reduce both quantities:
The Gini coefficient increases when the pulse changes, but
NIXMIG manages to keep it well under 0.9 (which is its initial
value) until it is dropped near 0.2 in the balanced state.
Moreover, the number of overloaded nodes slightly passes
the initial value of 60 until it is minimized by NIXMIG. In
Figs. 17 and 18, we present the number of exchanged
messages and items during the simulation time, respectively,
where we notice NIXMIG’s cost-effective balancing: the
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Fig. 13. Load snapshot at t ¼ 800 sec for a zipfian of � ¼ 4:5.

Fig. 14. Number of exchanged messages during time for a zipfian of

� ¼ 4:5.

TABLE 3
Ratio of Exchanged Messages, Completion Time, and

Transferred Items for Various Network Sizes Compared to a
500-Node Setting

Fig. 15. The Gini variation for the dynamic setting.

Fig. 16. Number of overloaded peers over time, dynamic setting



number messages does not exceed 700 msg/sec (in a 500-
node setting) whereas the number of exchanged keys stays
under 1,200 keys/sec (in a 50K setting). Finally, the reason
that the convergence time is documented to be larger than
that of handling a single pulse is obvious: The very sudden
change in skew forces the invalidation of many already
performed balance operations and nodes with no load
problem suddenly become very overloaded.

Fig. 19 shows the progress of the balancing process in
time: First, at time t ¼ 800 sec, after 100 sec of balancing
time (recall that NIXMIG started at t ¼ 700 sec), just before
the query load changes, we show that NIXMIG is very close
to balancing the load. This is obvious from the improve-
ment shown at t ¼ 850 sec, where the old pulse diminishes
and the new one appears. After this point, the newly
overloaded nodes start shedding load to their neighbors
(hence the snapshot picture for time t ¼ 1;000 sec). Finally,
NIXMIG totally balances load (last image).

In the following experiment, we utilize the previously
described 12 percent pulses and we modify the position in
the ID-space of the second pulse along with the time we
trigger the sudden pulse move. At every execution, the initial
pulse is applied over items [10K,16K]. We present our results
in Table 4. Each column represents an increase in the second
pulse’s distance from the initial one using a 10 percent step of
5K keys and each line an increase in the time we trigger the
sudden change using a step of 20 seconds. We measure the
total number of exchanged items along with the time it took
for NIXMIG to balance both workloads. We notice that as the
new pulse’s distance increases in each column, NIXMIG
performs more key exchanges and takes more time to
complete. The same increase in both metrics is noticeable
when, in each row we increase the time we trigger the second
pulse. Nevertheless, even in the worst case where the second
pulse is triggered at t ¼ 820 sec (60 sec later compared to the
760 sec case) and in the [30K-36K] position (40 percent
further than in the [15-21K] case), NIXMIG’s performance is
not significantly degraded: only 30 percent more items are

transferred and balancing is 2.2 times slower compared to
the 760 sec and [15-21K] combination.

5.4 Smart Remote Node Placement Mechanism

Next, we study the effect of minimizing the number of
exchanged items during load transfers caused by migrations
by taking into account load skew, as presented in Section 4.2.

More specific, we compare our smart, skew-aware,
remote node placement mechanism (hence SmartRNP) to
the random case (hence RandomRNP) where nodes are
randomly placed and to the situation where an “adversary”
places remote nodes so as to maximize the number of
transferred items (hence AdversarialRNP). As our input
workload, we consider a number of (around 20) popular
ranges in the ID space for which all keys are requested,
whereas all other keys are not queried at all. We vary the
width of each popular range so that all “hot” ranges occupy
from 10 to 50 percent of the ID space. In Table 5, we present
the effect of SmartRNP for various workloads (first column):
in the second column, we depict the number of exchanged
keys due to a MIG operation effectively minimized by
SmartRNP, in the third column, we present the ratio of
SmartRNP to RandomRNP key movement and in the fourth
column the ratio of SmartRNP to AdversarialRNP key
movement. We notice that for highly skewed distributions
of 10 percent, SmartRNP exchanges only 47 percent items
compared to RandomRNP and 16 percent compared to the
adversarial case, while this ratio increases (i.e., SmartRNP
number of transferred items gets closer to the number of
RandomRNP and AdversarialRNP) for less skewed distribu-
tions. This is explained by Fig. 8: the larger the skew, the
larger the difference of jr2 � rbj from jr1 � rbj making node
A’s decision more critical for the algorithm’s performance.
What is more, we notice that RandomRNP performs
constantly better than AdversarialRNP (worst-case scenario)
in terms of transferred items, as with high probability half of
its decisions are “correct” (i.e., they minimize key transfer).

5.5 NIXMIG in Realistic Workloads

In the following experiment, we utilize a publicly available
data set from AOL that contains 20 million queries from
over 650,000 users over a three-month period.2 The data set
comprises around 3.7 million distinct keywords of varying
popularity which are initially equally divided among 500
nodes. By measuring the number of occurrences of each
keyword in the searches, we calculated the query frequency
distribution: Clients are generating prefix queries of
variable length (e.g., “goo�”, “googl�”, etc.) based on the
calculated frequencies. Prefix queries, typically used by
search engines to provide the autocomplete feature among
others, are translated to range queries in our setup.
Compared to our previous reported experiments, nodes
now store almost 100 times more objects ,while the query
workload follows a realistic distribution, with the selectivity
of the range queries taking many possible values.

Table 6 presents the results for variable prefix lengths. In
all cases, NIXMIG balances load fast and under 150 sec, a
result that is well inline with our previous findings (see
Section 5.1—first graphs of Figs. 9 and 10). NIXMIG adapts its
operations to the applied workload: When the prefix length
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2. http://techcrunch.com/2006/08/06/aol-proudly-releases-massive-
amounts-of-user-search-data/.

Fig. 17. Number of exchanged messages over time, dynamic setting.

Fig. 18. Number of exchanged keys over time, dynamic setting.



increases, NIXMIG applies more migrations, increasing the
number of exchanged messages, and the MIG to NIX ratio.
This happens because the prefix length affects the number of
matched objects and thus the range query size (“goog�”
returns more results than “googl�”). Queries of larger prefix
lengths are served by a smaller number of nodes. Conse-
quently, these nodes are excessively overloaded and request
more migrations for a faster load alleviation.

6 RELATED WORK

DHTs such as Chord [29] tackle load-balancing issues by
applying hash functions to the data, thus destroying their
locality and allowing only exact match queries. The need to
preserve the order of the indexed keys to achieve efficient
lookups in range-queriable structures prevents us from using
simple hash functions to uniformly balance load among
nodes. Therefore, we can categorize the available approaches
into two broad orthogonal groups: data replication and data
migration. Data replication alleviates the overloaded nodes
by providing extra targets for the incoming requests. Data
migration requires actual data transfers between nodes in
order to balance load. NIXMIG falls into the data migration
category. Data replication, with its relative advantages and
disadvantages, is applied in conjunction with data migration
to further improve performance and fault tolerance. For
instance, one sole replica of an overloaded node’s items can
effectively drop by half its load (provided that the routing
protocol redirects half of the requests to the replica node) but
on the other hand, both updates and query routing are more
difficult to handle.

In the case of peer-to-peer systems, data migration can be
further classified in the node virtualization [9], [10], [11],
[12], [13], [14] and one ID per server [1], [14], [15], [16], [17],
[18], [19], [20], [21] strategies. In the former, every actual
server can host a number of virtual servers which are
responsible for small disjoint ranges of its items, and
balancing is performed by moving virtual servers between
actual ones. It has been widely used because of its ease of
use (virtual servers can be concurrent threads of a DHT

implementation running on the same machine), but its main
drawback is the increased bandwidth and memory con-
sumption caused by the maintenance of numerous routing
tables (the number of open network connections gets
multiplied by a factor of �ðlognÞ [30]). Godfrey and Stoica
[31] tackled this by placing virtual servers owned by an
actual one “near” themselves in the ID space but they make
the assumption that the load is uniformly distributed in the
identifier space, something that does not always hold in
order-preserving structures. What is more, it has been
shown that with only one ID per actual server balancing
results are the same as in the case of node virtualization (see
related work of [30]). NIXMIG uses one ID per server.

One ID per server approaches. In the work of Karger
and Ruhl [1], a work-stealing technique is applied: peers
randomly probe distant nodes and compare their loads. If
the load of the less loaded node is smaller than a fraction of
0 < " < 1

4 of the more loaded node’s load then a migration
or an neighboring item exchange is performed. The draw-
backs of this method were shown in Section 5.1. Moreover,
they do not present analytical results of their algorithm
applied to a distributed system. Ganesan et al. [15] propose
a balancing mechanism that works on top of a Skip Graph
system [23]. Each node is aware of an ordered set of load
thresholds and is responsible for periodically updating a
shared directory with its current load. When its load crosses
a boundary of this ordered set, it contacts the directory to
locate the next more loaded node and performs load
exchange with it. Its main drawback is the costly main-
tenance of this load directory. Aspnes et al. [16] propose a
second layer on top of a simple Skip Graph, the buckets
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Fig. 19. Load distribution as it progresses in time: Snapshot taken at times t ¼ 800; 850; 1;000; 1;181 sec.

TABLE 4
Exchanged Items and Completion Time for the Dynamic Setting

for Various Trigger Times and New Pulse Positions
TABLE 6

Completion Time, Number of Exchanged Messages, and MIG to
NIX Ratio of NIXMIG for Various Prefix Lengths

TABLE 5
Ratio of Transferred Items Using SmartRNP versus

RandomRNP and AdversarialRNP for Various
“hot” Range Percentages



layer. Each bucket contains a number of ordered items and
each server may have several buckets. During balancing
procedures, overloaded nodes move buckets to their
immediate neighbors (similar to a NIX operation). They
address skewed data distributions with a list of free nodes
which can migrate in an area to absorb excess load. The
main drawback of this scheme is the requirement of a list of
free nodes: This luxury cannot be considered trivial in
actual deployments. In Mercury [17], probing and node
migration is used to solve load-balancing problems. Nodes
use a random sampling procedure with probe messages to
calculate the average network load. When their load is
above or below the average network load, they initiate
balancing actions. The authors state that their load-
balancing scheme is similar to IB [1]: their only difference
is that they minimize flooding during probing as they
perform a clever and selective way of disseminating load
information. Similar to Mercury is the HiGLOB framework
[18]: each node maintains a list of load information about
nonoverlapping regions of the key space, and if it detects
imbalances, it performs load exchanges following the IB
paradigm. In Armada [14], load-balancing is performed
with a hash function responsible for placing items into
nodes that knows in advance the distribution of items in the
ID space. Armada can handle only static workloads, unlike
NIXMIG’s ability to deal with dynamic workloads. Shen
and Xu [19], [20] maintain matchings of overloaded to
underloaded peers: balancing is performed by moving
“hot” items and placing doubly linked pointers both to the
source (overloaded peer) and the destination (underloaded
peer) of the moved item. The drawback of this method is
that during lookups, the overloaded peer will still be
contacted, as it is still responsible for this “hot” item. In
chordal graphs [21], balancing is performed by a process
called “free drifting” which is actually a NIX operation that
has the disadvantages described in Section 5.1.

Node virtualization approaches. The idea of virtual
servers for load-balancing in peer-to-peer systems was
initially proposed in CFS [9]. Based on this idea, Rao et al.
[10] proposed three load-balancing algorithms (One to One,
One to Many, and Many to Many) which were extended by
Surana et al. [11] for heterogeneous peer-to-peer systems
with churn. In the first case, an overloaded node contacts
one node at random (as in the work of Karger and Ruhl [1])
while in the second case it contacts numerous nodes before
it takes a balancing decision. The third case is similar to the
approach used by Ganesan et al. [15]: a distributed
directory with load information is maintained and con-
tacted by overloaded peers before any balancing decision is
taken. Zhu and Hu [12] also build and maintain a
distributed load directory in the form of a k-ary tree
structure that is stored in the overlay. This directory is used
by nodes to detect load imbalances and to find suitable
overloaded-underloaded node pairs. Chen and Tsai [13] use
the general assignment problem (a particular case of a linear
programming problem) to assign virtual to actual nodes:
they make an initial estimation using the ant system
heuristic which afterwards is refined using the descent
local search algorithm. This procedure is iteratively applied
until a solution is reached. In Armada [14], the authors use
virtual servers for balancing purposes but they do not
provide details about their specific implementation.

7 CONCLUSIONS

In this paper, we evaluate the performance in terms of
bandwidth cost and convergence speed of balancing range-
queriable data structures using successive item exchanges
and node migrations. Our theoretical analysis and extensive
experimental results show that none of these methods by
itself is capable of efficiently balancing arbitrary workloads:
Neighbor item exchanges are expensive in terms of item
transfers and slow in terms of convergence speed, whereas
node migrations are fast but costly in terms of message
exchange. Our method, NIXMIG, is a hybrid approach that
adaptively decides the appropriate balancing action and
provably converges to a balanced state. Load moves in a
“wave-like” fashion until it is absorbed by underloaded
nodes, while node migration is triggered only when
necessary. Our results show that NIXMIG can be three
times faster, while requiring only one sixth and one third of
message and item exchanges, respectively, compared to an
existing load-balancing algorithm proposed by Karger and
Ruhl [1] to bring the system in a balanced state under a
variety of skewed, dynamic, and realistic workloads.
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