
BBQ: Elastic MapReduce over Cloud Platforms

Nikolaos Chalvantzis, Ioannis Konstantinou and Nectarios Koziris

CSLAB, National Technical University of Athens

{nchalv,ikons,nkoziris}@cslab.ece.ntua.gr

Abstract—Cloud infrastructure services such as Amazon EMR
allow users to have access to tailor-made Big Data processing
clusters within a few clicks from their web browser, thanks to
the elastic property of the cloud. In virtual cloud environments,
resource management is desired to be performed in a way which
optimizes utilization, thus maximizing the value of the resources
acquired. As cloud infrastructures become increasingly popular
for Big Data analysis, the execution of programs with respect to
user selected performance goals, such as job completion dead-
lines, remains a challenge. In this work we present BARBECUE
(joB AwaRe Big-data Elasticity CloUd managEment System),
a system that allows a Hadoop MapReduce virtual cluster to
automatically adjust its size to the workload it is required to
execute in order to respect individual jobs’ completion deadlines
without acquiring more resources than the least necessary. To that
end, BBQ’s Decision Making module uses a Performance Model
for MapReduce jobs which can express cluster resources (i.e.,
YARN Container capacity) and execution time as a function of
the number of nodes in the cluster. BBQ leverages the abstraction
of YARN, making it feasible for integration with other execution
frameworks, such as Spark, with the necessary changes to its
pluggable Decision Making module. We also add a new feature
to Hadoop MapReduce which can now dynamically, on-the-fly
update the number of selected ReduceTasks in cases where
the cluster is expanded, so that our system makes full use of
the resources it has acquired during the reduce phase of the
execution. BBQ uses an adaptation of the hill climbing algorithm
to estimate the optimal combination of number of nodes and
reduce waves given a known job, its data input and an execution
deadline. The attendees will be able to watch the system perform
cluster resizes in real-time in order to execute its assigned jobs
in time.

I. INTRODUCTION

Cloud computing [14] becoming a mainstream trend about a

decade ago, changed the way big data is processed and stored.

Having access to unlimited computing power and storage

resources, users and organizations are now able to respond

to the ever growing need of processing huge amounts of

data. According to IBM, approximately 2.5 quintillion bytes

are created every day [2]. This increasing data production

enforces the use of cloud computing as a popular practice

but also brings new challenges, concerning the way cloud

cluster infrastructures are being managed and provisioned.

Virtual cloud environments are an agile solution for Big

Data analysis systems thanks to elasticity [5], [9]. The elastic

property of the cloud allows administrators to manage the

computing resources available to them according to their needs

with minimal effort. Resource management in virtual cloud

environments is an area with a lot of research potential, since

the line between good and bad practices is extremely thin.

Currently, many users handle their clusters’ provisioning needs

by using rules of thumb and personal experience with specific

frameworks. As big data analysis solidifies its status as an

indispensable tool for cross-field academic as well as innova-

tive entrepreneurial research and cloud services accessible to

a larger non-expert user base, there can be cases where users

lack the background to make cluster provisioning decisions.

Recent research projects have tried to explore the factors which

influence such complex problems and suggest solutions.

In this work we introduce BARBECUE (a joB AwaRe

Big-data Elasticity CloUd managEment system – BBQ), a

system that allows a Hadoop MapReduce [4] virtual cluster

to automatically adjust its size to submitted jobs under a

completion deadline. BBQ supports automated cluster de-

ployment, provisioning and on-the-fly, per-job elasticity for

the execution of MapReduce programs. BBQ’s backbone is

a modified version of the Apache Hadoop project [1], an

extremely popular platform which is especially designed for

Big Data processing. BBQ allows the automatic a) deployment
and b) expansion of a Hadoop cluster on the cloud to improve

performance while processing huge amounts of data in order

to meet execution time goals set by the user. Additionally,

BBQ introduces a reduce phase optimization to improve the

use of its elastic properties, by allowing the number of reduce

tasks to be dynamically set to achieve better performance.

II. SYSTEM ARCHITECTURE

BBQ features an architecture that is illustrated in Fig. 1.

It can be used to set up a new virtual Hadoop cluster from

scratch and manage its resources taking into account the

submitted jobs and their execution deadlines. When a new

job is submitted, BBQ’s Decision Making module decides

on cluster resize operations, if those are required for the

execution to successfully meet the deadline. The Decision

Making module then interacts with the Cloud Management

module which contacts the cloud vendor to adjust the cluster’s

physical resources by acquiring more virtual machines if

necessary. The Cluster Coordinator module executes higher

level add and remove node commands to modify cluster size.

A. Cloud Management

This module is responsible for the interaction with the cloud

vendor whenever cluster nodes are to be acquired or released

upon request from the Decision Making module. Our cloud

management platform is a private OpenStack installation. BBQ

can be deployed in Amazon’s EC2 or in any EC2-compliant

IaaS cloud. To set up new clusters, we have created an Amazon

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.140

766

Machine Image (AMI) that contains a pre-cooked version of

BBQ-flavored Hadoop.

B. Cluster Coordinator

VM coordination is performed with the remote execution of

shell scripts and the injection of on-the-fly created Hadoop-

specific configuration files to each VM upon creation. Every

time the Cloud Management module allocates new VMs, the

Cluster Coordinator module is responsible for their integration

with the existing nodes of the cluster. Similarly, when nodes

are decommissioned, they are first removed from the cluster

and then released.

C. Decision Making Module

This module is responsible for deciding the appropriate

cluster resize action and number of reduce waves. Its decision

depends on the submitted job, input data size and user defined

execution time goal. The decision making module is pluggable

and can be replaced by a different implementation of BBQ’s

functionality. The implemented Decision Making module for

the purposes of this demonstration uses hill climbing to

solve the optimization problem of estimating the least nodes

necessary to complete a submitted MapReduce job within a

given deadline as well as the number of reduce waves of the

job which will be executed. To model execution time, we have

used the approach thoroughly presented in Section III. Hill
climbing traverses a space of possible solutions, starting off of

the initial state of the cluster, in order to converge to the one

which gives us the best approximation of the optimal solution

that our model can achieve. Upon reaching a resize decision,

the module requests the addition or removal of a number of

VMs using the Cloud Management and Cluster Coordinator

modules. Once the MapReduce program has been executed

and no other job has been submitted for a certain period,

the Decision Making Module forces the cluster to gradually

shrink by releasing unnecessary idle nodes. Other possible

approaches to the problem in hand are presented in works

mentioned in Section VI.

D. Hadoop

BBQ uses a modified, cloud aware version of Hadoop.

Every time a new job is submitted for execution, Hadoop

notifies BBQ, giving it information on the map reduce program

to be executed, input data size and maximum desired execution

time. Subsequently, the submitted job is paused until the

Decision Making module has discovered the optimal cluster

configuration and the resizing – if necessary – has been com-

pleted. Additional code has been injected in specific classes of

the Hadoop framework to communicate with BBQ to notify it

of incoming jobs, then wait for the Decision Making module

to respond with the number of ReduceTasks to be scheduled

and launched and, finally, make the necessary changes before

the job is executed.

Add/delete
 VMs

Cloud
Provider

Decision Making

Adjust
resources

Manage
cluster nodes

Cluster
Coordinator

Cloud
Management

Cluster resize
YARN

ResourceManager

Submit
M/R jobs

MRAppMaster

Adjust number
of reducers

Enquire about
cluster size

TCP comm

Virtual Hadoop Cluster

Hardware
resize

BBQ

Fig. 1: BBQ architecture

III. MODEL AND ALGORITHM

A. Performance Model

In order to be able make the required provisioning decisions

which will allow Hadoop to complete MapReduce jobs in a

specified time window, BBQ’s decision making model needs

to be able to predict job execution time given a MapReduce

program and its input. To accomplish that, we use a Hadoop

MapReduce Performance Model, which can express the exe-

cution time of MapReduce jobs as a function of those features

[16]. To construct our model, we analyze Hadoop’s internal

functions. To fit the model to specific MapReduce programs,

on the other hand, we use performance metrics from past

executions – we record the execution time, number of nodes

and number of reduce waves the job launched.

There is a set number of YARN MapTask and

ReduceTask Containers which can co-exist in a Hadoop

cluster at any given point in time. This number depends on

cluster size, i.e., the number and size of the cluster’s nodes.

Let’s assume there can be at most m Map Containers and

r Reduce Containers distributed over all cluster nodes. By

default, in Hadoop each Map process handles a single block

of input data. Therefore, if we have M blocks, M MapTasks
in total will be scheduled and assigned to m Containers.

In the ideal case, exactly m MapTasks occupy the m
Containers and run in parallel, resulting in a single wave
of Map processes. If M > m, which is usually the case for

large datasets, �M/m� Map waves are needed. In contrast to

the total number of Map processes, the number of Reduce

processes, R, can be set by the user and is determined by

the application requirements. Similarly, if R > r, more than

one wave of ReduceTasks are scheduled. In addition to

the cost of the Map and Reduce phases, we should also take

into account the tasks of managing and scheduling the M
MapTasks and R ReduceTasks.

1) Map Phase: The Map phase is divided into four se-

quential operations: Read, Map, Sort/Partition, and optionally

Combine. Each task’s first operation is to Read a block of

data from the disk – either a local or a remote data block.

767

We assume the average cost is a function of the size of data

block, b : i(b). Map is the execution of user defined Map

function using the data block read in Read, the complexity of

which is determined by the input data size b, denoted as f(b).
The Map function output data om(b) is often a linear function

to the input size b. The output will be a list of 〈key, value〉
pairs which will be Sorted by the key and Partitioned into

R shares for the R Reduce processes. We denote the cost of

partitioning and sorting with s(om(b)). Since the partitioning

process uses a hash function to map the keys, the cost s(om(b))
is independent of R. The overall cost of a Map process is the

sum of the costs mentioned above – without the Combiner

component, which will be discussed later:

Φm = i(b) + f(b) + s(om(b)). (1)

This cost is only related to the size of the data block b and

the complexity of the Map function. It is independent of the

parameters M , R and r.

2) Reduce Phase: The Reduce phase is broken into the

following operations: Copy, Merge/Sort, Reduce and WriteRe-
sult. To simplify our model we will assume the k keys of the

Map result are equally distributed to the R Reduce processes.

During Copy, each ReduceTask pulls its shares, i.e., k/R
keys and the corresponding records, from the M Map phase

outputs. Thus, the total amount of data in each Reduce will

be:

bR = M · om(b) · k/R. (2)

The Copy cost is linear to bR, denoted as c(bR). A Merge/Sort
follows to merge the M shares from the Map results

while keeping the records sorted, which has the complexity

O(bRlogbR), denoted as ms(bR). The Reduce function pro-

cesses the data with some complexity g(bR) that depends on

the application. Assume the output data of the Reduce function

has an amount or(bR), which is often less than bR . Finally,

the result is duplicated and Written back to multiple nodes,

with the complexity linear to or(bR), denoted as wr(or(bR)).
In summary, the cost of the Reduce process is the sum of the

component costs,

Φr = c(bR) +ms(bR) + g(bR) + wr(or(bR)). (3)

Symbol Meaning

b single MapTask input size

bR single ReduceTask input size

M total MapTasks

R total ReduceTasks

m single wave cluster MapTask capacity

r single wave cluster ReduceTask capacity

wr number of ReduceTask waves

N number of cluster nodes

TABLE I: Symbols used in this section and their meanings.

Algorithm 1 BBQ’s Hill Climbing

procedure MAKE DECISION(prog,N,M, tlim, Nmax)

wr ← 1
t← T (prog,N,M,wr)
while t > tlim and N ≤ Nmax do

wr ← wr + stepw
t′ ← T (prog,N,M,wr)
if t′ < t then

t← t′

else
wr ← 1
N ← N + stepN
t← T (prog,N,M,wr)

return (N,wr)

3) Full Model: Replacing from the equations above, we can

see that the overall time complexity T depends on the number

of Map waves and Reduce waves. By including the cost

of managing and scheduling the Map and Reduce processes

Θ(M,R), which is assumed to be linear to M and R, we

represent the overall cost as:

T = �M
m
�Φm + �R

r
�Φr +Θ(M,R). (4)

We want to focus on the relationship that connects the

total time cost T , the input data size M × b, the number of

ReduceTasks R, and the number of YARN Containers,

m and r. Using a fixed block size b in the analysis, we observe

that the cost of each Map process, Φm, is fixed. The cost of

each Reduce process, Φr, is subject to the factor M and R.

After replacing and keeping only the variables M,R and m
in the model, get:

T1(M,m,R, r) = β0 + β1�M
m
�+ β2�R

r
�M
R

+β3�R
r
�M
R

log(
M

R
) + g

M

R
+β4M + β5R+ ε.

(5)

where βi are the parameters describing the constant factors.

T1(M,m,R) is not linear to its variables, but it is linear to the

transformed components: M/m, M/R, M
R log(MR), g(M/R),

M , and R. The parameter βi defines the contribution of each

fine grain operation of either phase in the model. Concretely,

β1 represents the fixed Map cost Φm ; β2 represents the

parameter associated with the cost of Copy and WriteBack

in the Reduce phase; β3 represents the parameter associ-

ated with the MergeSort component in the Reduce phase;

β4 and β5 represent the parameters for the cost associated

with the management cost Θ(), i.e., we assume the cost is

linearly associated with the number of Map and Reduce tasks:

Θ(M,R) = β4M + β5R; β0 represents some constant, and

ε represents the noise component that covers the unknown or

unmodeled factors in the system. We discuss the impact of

g(M/R) in the model later.
Combiner function. In the Map phase, the Combiner

function is used to aggregate the results by key. If there are

768

k keys in the Map output, the Combiner function reduces the

Map output to k records. The cost of the Combiner is only

subject to the output of the Map function. Thus, it can be

incorporated into the parameter β1. Additionally, the Combiner

function reduces the output data of the Map process and thus

affects the cost of the Reduce phase as well. When using a

Combiner function, the data that a Reduce process needs to

consume from the Map output shrinks to :

bR = M
k

R
, (6)

on average – assuming normal distribution. Since the factor

M/R is already present in (5), the cost model applies without

changes.

Function g(). The complexity of the Reduce function has

to be estimated each time for the given application. There are

some special cases where g() can be removed from (5). If

g() is linear to the size of the input data, then its contribution

can be merged to the factor β2, because g(M/R) ∼ M/R.

Similarly, if its complexity is O(MR log(MR)), its contribution

can be merged to β3. In those two special cases, the cost model

can be simplified to:

T2(M,m,R, r) = β0 + β1�M
m
�+ β2�R

r
�M
R

+β3�R
r
�M
R

log(
M

R
) + β4M

+β5R+ ε.

(7)

VM creation overhead. The time required for the new

VMs to be created, configured and integrated in the cluster

is calculated by adding the average time for new VM cre-

ation in our cloud infrastructure to the average configuration

and integration time for the working cluster. These metrics

have been collected through experimentation. Since all VM

instances are launched in parallel, we only need to take this

term into account once per cluster resize action. According to

Mao et al. [12], VM startup time can be considered of trivial

cost and should not cause substantial problems. They claim

that launching VMs in a cloud environment should not be

a bottleneck, as long as the precooked images of their hard

drives are not extremely large. In this case these images only

include an installation of the operating system and Hadoop.

Lagar-Cavilla et al. [10] also made a strong case of VM launch

time becoming more and more insignificant.

TVM = Tcloud + Tconfig. (8)

Data Locality. The time required for the new VMs’ file

system to be populated by the data which will be processed

by the Map function is modeled to be linear to the number

of new nodes BBQ has added to the cluster. This overhead

also depends on the speed of data transfer within the cloud

infrastructure and its architecture.

Tinit = β6(N −Ninit). (9)

Training. BBQ uses regression and performance metrics

from previous executions of instances of a MapReduce pro-

gram with various values for (M,R,m, r) to calculate βi.

These model coefficients are stored in a local database and

can be updated in regularly for improved fitting.

B. Algorithm

Having access to Performance Models for MapReduce

programs, our system uses an implementation of hill climbing
(algo. 1) to solve the optimization problem of minimizing the

cluster resources while ensuring job execution time will not

exceed its limit. In this case we search in a two dimensional

space for pairs of (N,wr). Starting from the current state, we

examine whether increasing the candidate number of reduce

waves without adding any nodes can have a positive effect to

the performance predicted by our model. As long as it does,

we keep increasing the number of reduce waves until the point

where that increase has a negative effect in execution time

(i.e., the sceduling and networking cost overhead dominates

any possible gain) or the model responds with an acceptable

execution time. In the case it does not, we increase the

candidate number fo cluster nodes and reset the reduce waves

to one. We repeat the process until either the model responds

with an acceptable execution time or the upper limit for cluster

nodes is reached. That limit guarantees that the algorithm will

eventually finish. If the algorithm finishes without finding a

solution within our cluster’s maximum nodes, BBQ deploys

the maximum number of nodes allowed. The cost of the

algorithm is linear to the number of N values it examined as

possible solutions despite the fact that we are in fact searching

in a bi-dimensional space, since the number of Reduce waves

wr usually takes a small value over a few iterations – which

is expected, since increasing the number of Reduce waves out

of proportions can cause a significant overhead in resource

managing and data transfer through the web. Hill climbing’s

overhead is insiginificant in comparison to the processing time

for meaningfully large datasets.

IV. EXPERIMENTS

In this section we will describe our experimental testing of

BBQ. In the first part of the our evaluation, we trained our

model and tested its accuracy. For that purpose we used two

popular Hadoop benchmarks, WordCount and TeraSort[15].

Both these programs’ Reduce method is linear to its input,

as MapTasks read and parse all inputs and send them to

reducers. Therefore, we can consider that our simplified model,

presented in (7) stands. For the second part of the evaluation,

we submitted WordCount and TeraSort MapReduce jobs to a

small cluster with a deadline each, observed BBQ in action

and recorded its performance.

Experimental Testbed. The experiments were conducted

on a private OpenStack cloud. Each worker node had four

processing cores and 4GB memory and uses the 2.6.0 version

of Apache Hadoop. One node served as the master node

and the others as slave nodes. The BBQ deamon ran on a

separate dedicated machine. HDFS blocks were set to 256MB.

769

�

�

�

�

�

��

��

��

� � � 	 �

��
�
��
��

��
	

�

��	��������	�

���������
�����������
����������������

(a) WordCount - small dataset

�
��
��
��
��
	�
��
��
��
��

���

� � � 	 �

��
�
��
��

��
	

�

��	��������	�

���������
�����������
����������������

(b) WordCount - medium dataset

�

	�

���

�	�

���

�	�

� � � 	 �

��
�
��
��

��
	

�

��	��������	�

���������
�����������
����������������

(c) WordCount - large dataset

�

	

��

�	

��

�	

��

�	

� � � 	 �

��
�
��
��

��
	

�

��	��������	�

���������
�����������
����������������

(d) TeraSort - small dataset

�

��

��

��

��

���

���

���

���

���

� � � 	 �

��
�
��
��

��
	

�

��	��������	�

���������
�����������
����������������

(e) TeraSort - medium dataset

�

	�

���

�	�

���

�	�

���

�	�

� � � 	 �

��
�
��
��

��
	

�

��	��������	�

���������
�����������

����������������

(f) TeraSort - large dataset

Fig. 2: Execution time Prediction for WordCount and TeraSort.

BBQ had been configured taking into consideration specific

details of the cluster properties and configuration such as node

capacity in terms of memory and cores and resources allo-

cated to YARN Containers. MapTask and ReduceTask
Containers have the same size and each node can host 3

in total at most. In these experiments for simplicity reasons

we used an homogenous cluster but BBQ can also work for

heterogenous clusters, since each node is treated as a container

for YARN Containers. We performed our experiments in

small clusters of 2-6 nodes.

A. Model Accuracy

The experimental evaluation of BBQ took place in two

distinct steps, the first of wich was the evaluation of the

model’s accuracy. After calculating the model coefficients for

the two benchmarks through a training procedure, we tested

the Performance Model by estimating execution times for the

following test sets: we used three sets of input data - a small

(<30 blocks), a medium size (<100 blocks) and a large one

(<200 blocks). We recorded the model’s performance and

present it in Figure 2. Using R2 as a measure of goodness

of fit [3], we get an acceptable measure of 0,98% for both

benchmarks.

B. Evaluating BBQ

We tested BBQ by submitting jobs to a small cluster of two

nodes. We measured the execution times of these jobs and

compared them to the desired execution times. BBQ’s provi-

sioning actions and the actual execution times are presented

in Table II.

We notice that in the cases where no cluster expansion is

required, most of the times programs complete their execution

significantly faster than required. We also observe that a few

Program BBQ
action

Input
Size

(blocks)

Time
goal

(mins)

Actual
Time
(mins)

WordCount - 27 30 19

WordCount +1 43 20 18

WordCount +1 52 20 22

WordCount +2 71 25 28

TeraSort - 40 30 22

TeraSort +1 57 35 32

TeraSort +3 72 40 41

TeraSort +4 90 40 44

TABLE II: BBQ resizing the cluster.

of the rest of the executions finish sooner than expected.

Since each node can host multiple YARN Containers, even

adding only one extra node can have a significant impact, even

more so in small clusters like the one we experimented with.

In most cases our system predicts the execution time quite

well, despite missing the requested goal on a few occasions

by a short margin. It is more likely for BBQ to miss a given

deadline when the cluster resize action it is required to perform

significantly changes the cluster size because of the overhead

of the initial network data traffic.

V. DEMONSTRATION DESCRIPTION

The demonstration will allow attendees to observe BBQ

while it is executing MapReduce programs. A simple compre-

hensive GUI enables users to enter the initialization parameters

regarding cluster and VM size. Because the training process

is a particularly long one, for the needs of this experiment we

will have already completed it, so the BBQ cluster will already

770

have access to the MapReduce Performance Models for the

programs used as benchmarks here, WordCount and TeraSort.

In order to launch an experiment on an existing cluster, users

will be able to select the program they want to execute, data

input size and execution time performance goal.

Attendees can observe how BBQ handles the job submission

and resizes the cluster through the GUI provided and also com-

pare the execution time goal with our system’s real execution

time. They will also be able to access the cluster’s Hadoop

web interface and monitor the cluster live using performance

stats collected and visualized by Ganglia [13].

Fig. 3: BBQ UI

VI. RELATED WORK

In recent years there has been a significant production

of literature on the topic of Performance Modeling in the

MapReduce framework. Most authors focus on modifying

existing cluster configurations to achieve optimal performance.

In [16] Tian and Chen aim to predict performance of a single

MapReduce program by using metrics of test runs on a cluster

with a smaller number of nodes. They consider MapReduce

processing at fine granularity, by partitioning map and reduce

tasks into 4 functions each. We have used the idea the authors

introduced in this work to form our Performance Model. ARIA

[17], introduces a method for Performance Modeling and

uses it to implement a deadline-based scheduler for Hadoop.

This system creates detailed job profiles from past executions

of MapReduce programs and predicts job completion time

as a function of allocated resources. The scheduler’s goal

is to allocate resources to running programs so that they

finish within given deadlines, very similarly our system’s goal.

Khan et al. [8] have recently presented a work where they

improve on ARIA and build a system simiar to the one

presented in this paper. However their approach is bound

to Hadoop-1.*. Our approach leverages the abstraction of

YARN, making it feasible for integration with other execution

frameworks, such as Spark [18]. The Starfish [6], [7] project

applies dynamic instrumentation to collect detailed run-time

monitoring data about job execution at a fine granularity,

separating jobs into the following eight steps: data reading,

map processing, spilling, merging, shuffling, sorting, reduce

processing and writing. This data enables the authors to make

a thourough analysis and predict job execution under different

configuration parameters. Starfish comes with an engine which

can suggest the optimal configuration. MRONLINE [11] uses

a hill climbing algorithm in order to optimize and on-line fine

tune a YARN cluster for the execution of a specific job and

is applicable for jobs that even only run once.

ACKNOWLEDGMENT

This paper is supported by European Union’s Horizon 2020

RIA programme under GA No 690588, project SELIS.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/.
[2] IBM-What is Big Data? http://www-

01.ibm.com/software/data/bigdata/what-is-big-data.html.
[3] A. C. Cameron and F. A. Windmeijer. An r-squared measure of

goodness of fit for some common nonlinear regression models. Journal
of Econometrics, 77(2):329–342, 1997.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing:
What it is, and what it is not. In Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 13), pages 23–27, 2013.

[6] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-
based optimization of mapreduce programs. Proceedings of the VLDB
Endowment, 4(11):1111–1122, 2011.

[7] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A self-tuning system for big data analytics. In CIDR,
volume 11, pages 261–272, 2011.

[8] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. Hadoop performance
modeling for job estimation and resource provisioning. IEEE Transac-
tions on Parallel and Distributed Systems, 27(2):441–454, 2016.

[9] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris,
and S. Sioutas. Tiramola: elastic nosql provisioning through a cloud
management platform. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 725–728.
ACM, 2012.

[10] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan. Snowflock:
rapid virtual machine cloning for cloud computing. In Proceedings of
the 4th ACM European conference on Computer systems, pages 1–12.
ACM, 2009.

[11] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and N. Fuller.
Mronline: Mapreduce online performance tuning. In Proceedings of
the 23rd international symposium on High-performance parallel and
distributed computing, pages 165–176. ACM, 2014.

[12] M. Mao and M. Humphrey. A performance study on the vm startup
time in the cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 423–430. IEEE, 2012.

[13] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel
Computing, 30(7):817–840, 2004.

[14] P. Mell and T. Grance. The nist definition of cloud computing. 2011.
[15] O. OMalley. Terabyte sort on apache hadoop. Yahoo, available online at:

http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May), pages 1–3, 2008.
[16] F. Tian and K. Chen. Towards optimal resource provisioning for running

mapreduce programs in public clouds. 2011 IEEE 4th International
Conference on Cloud Computing (CLOUD), pages 155–162, 2011.

[17] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: automatic resource
inference and allocation for mapreduce environments. In Proceedings of
the 8th ACM international conference on Autonomic computing, pages
235–244. ACM, 2011.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,
2010.

771

