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Abstract— Modern large-scale computing deployments consist
of complex applications running over machine clusters. An im-
portant issue there is the offering of elasticity, i.e., the dynamic al-
location of resources to applications to meet fluctuating workload
demands. Threshold based approaches are typically employed, yet
they are difficult to configure and optimize. Approaches based on
reinforcement learning have been proposed, but they require a
large number of states in order to model complex application
behavior. Methods that adaptively partition the state space have
been proposed, but their partitioning criteria and strategies are
sub-optimal. In this work we present MDP_DT, a novel full-
model based reinforcement learning algorithm for elastic resource
management that employs adaptive state space partitioning. We
propose two novel statistical criteria and three strategies and
we experimentally prove that they correctly decide both where
and when to partition, outperforming existing approaches. We
experimentally evaluate MDP_DT in a real large scale cluster
over variable not-encountered workloads and we show that it
takes more informed decisions compared to static and model-free
approaches, while requiring a minimal amount of training data.

I. INTRODUCTION

Modern large-scale computing environments, like large
private clusters, cloud providers and data centers may have
deployed tenths of platforms, like NoSQL and database servers,
web servers, etc. on thousands of machines, and run on them
hundreds of services [1]. A vital issue in such environments
is the allocation of resources to platforms and applications so
that they are neither over-provisioned, nor under-provisioned,
aiming to avoid both resource saturation and idling, and having
as utmost goal fast execution of user workload while keeping
the cost of operating the infrastructure as low as possible.

Managing the above trade-off is challenging. First, the num-
ber of system and application parameters that affect behavior
(i.e., performance) is exceedingly large; therefore, the number
of possible states of the system, which correspond to combina-
tions of different values for all such parameters is exponentially
large. Facebook for instance deal with this complexity with a
configuration management system [2], whereas Google’s Borg
[1] manages tens of thousands of machines.

Second, the value range or the interesting values of such
parameters may not be known; moreover, many of these
parameters are continuous instead of discrete (e.g. cluster and
load characteristics, live performance metrics, etc.), making it
necessary to devise ahead techniques for their discretization
in a way that the number of discrete values is kept small,
but ranges of continuous values that lead to different system
behavior correspond to different discrete values. Third, most
often we do not know if and how a parameter, or a parameter
value set affects the system behavior. Therefore, we do not
know if changing the value of this parameter will make an
impact, and furthermore, a desirable impact to the system
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behavior. Fourth, the time interval between two consecutive
resource management decisions is usually at least in the
order of minutes, reducing the collection rate of training data.
Nevertheless, the resource management technique should be
able to work with little such data. All four challenges are
hard to address even for static workloads and applications, and
become insurmountable for dynamic ones.

Public cloud providers such as Amazon, Google, Mi-
crosoft and IBM offer autoscaling services [3]. These employ
threshold-based rules to regulate infrastructural resources (e.g.,
if mean CPU usage is above 40% then add a new VM).
However, such solutions do not address any of the four
challenges discussed above. Some research approaches also
explore threshold-based solutions [4], [5]. More sophisticated
approaches employ Reinforcement Learning (RL) algorithms
such as Markov Decision Processes (MDP) and Q-Learning
which are natural solutions for decision making problems and
offer optimality guarantees under conditions, yet they suffer
from limitations that derive from the assumption of a priori
parameter knowledge and their role to system behavior, as well
as from the curse of dimensionality as a result of their effort to
create a full static model of the computing environment [6]—[9].

In this work we employ RL in a novel manner that starts
from one global state that represents the environment, and
gradually partitions this into finer-grained states adaptively
to the workload and the behavior of the system; this results
in a state space that has coarse states for combinations of
parameter values (or value ranges) for which the system
has unchanged behavior and finer states for combinations
for which the system has different behavior. Therefore, the
proposed technique is able to zoom into regions of the state
space in which the system changes behavior, and use this
information to take decisions for elastic resource management.
Our technique works as follows: Adoption of a full model:
Since decisions are taken in intervals in the order of minutes,
it is realistic to maintain a full MDP model of the system.
Information about the behavior of the system is acquired at a
slow rate, limiting the size of the model and making possible
expensive calculations for each decision. Adaptive state space
partitioning: We create a novel decision tree-based algorithm,
called MDP_DT' that dynamically partitions the state space
when needed, as instructed by the behavior of the system.
This allows the algorithm to work on a multi-dimensional
continuous state space, but also to adjust the state space size
based on the amount of information on the system behavior. It
starts with one or a few states and as more data are acquired,
the number of states and the model accuracy dynamically
increases. Splitting criteria and strategies: The algorithm
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can take as input criteria for splitting the states, which aim
to partition the existing behavior information, with respect to
the measured parameter values, into subsets that represent the
same behavior. We propose two novel criteria, the Parameter
test and the Q-value. The algorithm can adopt strategies that
perform splitting of one or multiple states, employing small or
big amounts of information on behavior. Reuse of information
on system behavior. If an old state is replaced with two new
ones, the old information is re-used to train the new ones.
The contributions of this work are:

e The MDP_DT algorithm that performs adaptive state space
partitioning for elastic resource management.

e Two splitting criteria, the Parameter test and the Q-value
test that decide how the system behavior changes w.r.t. the
measured parameter values, and split states accordingly.

e Three split strategies, Chain, Reset and Two-phase Split.

e An experimental study on a large-scale cluster which
proves the effectiveness of MDP_DT in taking optimal re-
source management decisions fast, while taking into account
tenths of parameters, and the superiority of the algorithm
versus full model-based and model-free-based algorithms.

A detailed technical report can be found here [10].

II. THE MDP_DT ALGORITHM

We outline the basic notations regarding Markov Decision
Processes (MDPs) and we discuss preliminary knowledge in
[10]. In a typical RL setting, the world is assumed to be in
one of a finite number of states, and from each state a number
of actions are available. Upon the execution of an action, a
scalar reinforcement is received and the world transitions to a
new state. An algorithm is optimal in the sense that it chooses
actions that maximize some predefined long-term measure of
the reinforcements. We select a model-based approach, i.e. the
agent attempts to find the exact behavior of the world, in the
form of the transition and reward functions, and then calculate
the optimal policy using dynamic programming approaches, or
using alternative algorithms such as Prioritized Sweeping [11]
to decrease the required calculation in each step. A full-model
approach requires a smal training set in order to converge to
an optimal policy, which makes it a preferable choice.

Goal. The computing environment consists of the system
and the workload, and the system resources, which are elastic
and are used to accommodate the workload execution. The
parameters of the system resources and the parameters of the
workload are used to model the environment. These can be
multiple, behave in an interrelated or independent manner,
play a significant or insignificant role in the performance of
workload execution, and may be related to: Parameters of
system resources: cluster size, the amount of RAM or vCPUs
or storage per VM, network characteristics, etc. Workload pa-
rameters: CPU and network utilization, I/O reqs/sec, average
job latency, etc. Our goal is to accommodate the workload
execution by adapting in a dynamic and online manner the
system resources, so that the workload is executed efficiently
and resources are not over-provisioned, without having prior
knowledge of the characteristics, role and interaction of the
parameters of both system resources and workload.

Motivating Example: A start-up company hosts services
in a public IaaS cloud and employs a distributed data-store
(for instance, a NoSQL database) to handle user-generated
workload that consists, e.g., of a mix of read and write requests.
The administrator wants to optimize a given business policy,
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typically of the form “maximize performance/profit while min-
imizing the cost of operating the infrastructure” under variable
and unpredictable loads. E.g., if the company offers user-facing
low-latency services, the performance/profit can be measured
based on throughput, and the cost can be the cost of renting
the underlying IaaS services. She wants to use an automated
mechanism to perform one or both of the following: (i) scale
the system, (e.g., change the cluster size or the RAM size) or
(ii) re-configure the system (e.g., increase cache size or change
replication factor). A rule-based technique [3] that performs
specific scaling and reconfiguration actions has the following
shortcomings. First, it is difficult to detect which, among the
numerous, parameters affect performance, as they are applica-
tion and workload dependent. E.g., in a write-heavy scenario
CPU usage may not be affected and a CPU based rule will not
work. Second, even if we know the parameters, it is difficult
to detect the respective actions. Even if we conclude that for
a write-heavy scenario we need an I/O rule, the appropriate
action may not be obvious: for instance, increasing the RAM
and cache size of existing servers to avoid I/O thrashing may
be a better action than adding more servers. Third, it is difficult
to detect the threshold values that will trigger actions. E.g, a
pair of thresholds on “high”/“low” CPU usage, a threshold on
the number I/O ops or on memory usage are very application-
specific. Therefore, the translation of higher level business
policies for the maximization of performance and minimization
of cost into a rule-based approach that automatically scales and
reconfigures the system is very difficult and error-prone.
Solution. We create a model of the computing environment
by representing each selected parameter of system resources
and workload with a distinct dimension. Therefore the envi-
ronment is modeled by a multi-dimensional space in which
all possible states of the environment can be represented, with
variable detail. We create a novel MDP algorithm that starts
with one or a few model states that cover the entire multi-
dimensional state space and gradually partitions the coarse state
space into finer states depending on observed measurements by
employing a decision tree to perform this dynamic and adaptive
partitioning. At each state the algorithm takes an action in order
to make transition toward another state by optimizing a user
defined reward function. Such actions may change the values
of some of the parameters of the system resources, e.g. change
cluster size. Even though the actions change only some system
parameters, the entire system behavior may be affected. The
type of actions allowed is given as an input to the algorithm.
Motivating Example - continued: With our MDP approach
the administrator of the startup company needs only to provide
the following: a) a list of parameters she considers important
to performance (even if some of them may turn out irrelevant),
b) a list of scaling or reconfiguration actions, c¢) a high-level
user-defined policy in the form of a reward function that
encapsulates for instance the maximization of performance and
minimization of cost, and, optionally d) some initial knowledge
in the form of a “training set” to speed up the learning process.
Then, MDP_DT algorithm adaptively detects both the set of
parameters that affect the reward and the appropriate scaling
and reconfiguration actions that maximize the reward.
Algorithm Description. The MDP_DT algorithm is pre-
sented in Alg. 1 and Table I summarizes its terminology.
MDP_DT starts with a single tree node (the root of the decision
tree), which corresponds to one state covering the entire state
space of the model of the environment. A vector state is



Algorithm 1 MDP_DT Algorithm

1: m = collect_measurements()

2: while True do

s = state(m); a = select_action(s); execute_action(a); sleep()
m/ = collect_measurements(); r = get_reward(m’)

e = (m,m’,a,r); UpdateM DP Model(e); UpdateModelV alues(s)
ApplySplittingCriterion(s); m = m’
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TABLE I: Terminology
Type
function
vector
select_action function
m, m" vector

T real
gel_reward Tunction
a integer
e vector

Semantics

Collects real system

stores state values with respect to values in collect_r
selects an action given the current state s
an ordered sel of real parameter

stores the value of a reward

Calculates the reward given a

stores the value of an action

stores the measurements m, m’ for states s, s respectively, the
action a and the reward r from s to s’

stores the experiences ¢ for a pair of states s and s

stores the number of from state s to s’ taking action a

Term

collect_t
state

m

2D vector

experiences
i 3D vector

maintained for all possible environment states. Each element s
in state corresponds to a list of Q-states, holding the number
of transitions transitions and the sum of rewards rewards
towards each state s’ in the model. The current state s is
represented by a set of measurements m that contain the names
and current values for all the parameters of the environment.
The state s’ to which action a leads is represented by a
respective set of measurements m’. Given the current state s
(and corresponding measurements m), the algorithm selects an
action a, the action is performed, and the algorithm collects the
measurements m’ for the new state s’, for which it calculates
the reward r. This transition experience e = (m,a,m’,r) is
used to update the MDP model, the model values and split the
state s, using procedures UpdateMDPModel, UpdateMDPVal-
ues and ApplySplittingCriterion, respectively [10]. Procedure
UpdateMDPModel saves the experience e = (m,m/,a,r) in
the experiences vector in the place corresponding to the pair
of s, s’, increases the number of transitions for the pair of s, s’
and adds the new reward r to the accumulated reward for the
pair of s, s’. Procedure UpdateMDPValues updates the Q-state
values for state s by employing single update, value iteration
or prioritized sweeping [11]. ApplySplittingCriterion considers
splitting state s in two new states, based on a criterion. We
propose two splitting criteria, the parameter test and the Q-
value test (their pseudo-code is given in [10]). The proposed
criteria have two strengths. First, the Q-value derived from
each experience is calculated using the current, most accurate
values of the states instead of the values at the time the action
was performed. Second, the partitioning of experiences is done
by comparing them to the current value of state s instead of
partitioning them to experiences that increased or decreased the
Q-value at the time of their execution. These features allow
reliable re-use of experiences collected early in the training
processing, at which point the values of the states were not yet
known, throughout the lifetime and adaptation of the model.
The splitting criterion parameter test works as follows:
From the experiences e = (m,a,m’,r) stored in the experi-
ences vector for every pair of s, s’, we isolate the experiences
where the action a was the optimal action for state s (i.e., a led
to the highest Q-value). For each of these experiences, we find
the state s’ in the current model that corresponds to m’ using
the decision tree, and calculate the value g(m, a) = r+~V (s').
We then partition this subset of experiences to two lists e_
and ey by comparing g(m,a) with the current value of the
optimal action for state s. For each parameter p we divide
the values of p for the measurements in e_ and ey in two
lists p_ and p,, and run a statistical test on p_ and p to
determine the probability that the two samples come from the
same population. We choose to split the parameter with the
lowest such probability, as long as it is lower than the error
max_type_I_error, else we abort. If the split proceeds, the
splitting point is the average of the means of p_ and p,.
The splitting criterion Q-value test works as follows: Again,
from the experiences e = (m,a,m’,r) related to pairs of
s,s’, we isolate the experiences where the action a is the
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stores the accumulated reward r for transitions from state s to s’
taking action a
returns the optimal action a for a state s

rewards 3D vector

optimal_action function

current optimal action for s. For each such experience, we
find the state s’ that corresponds to m’ using the current
decision tree and calculate ¢(m,a) = r + vV (s’). For each
parameter p of the system, we sort these experiences based on
the value of p, and consider splitting in the midpoint between
each two consecutive unequal values. For that purpose, we
run a statistical test on the Q-values in the two resulting sets
of experiences, and choose the splitting point that produces
the lowest probability that represents the fact the two sets of
values are statistically indifferent, as long as that probability
is less than a max_type_I_error. It performs a comparison
of subsets of experiences w.r.t. the optimality of the taken
action. It is a criterion that we adapted from the Continuous
U Tree algorithm [12], and resembles splitting criteria used in
algorithms for decision tree induction such as C4.5.

Once a split has been decided for a state s, procedure
Split [10] creates two new states. It uses the obsolete state
information to retrain the new states. The splitting criteria
include a statistical test to determine whether the two groups of
compared values are statistically different. For this, we employ
four different statistical tests, namely Student’s t-test, Welch’s
test, Mann Whitney U test and Kolmogorov-Smirnov test [10].

By default, the MDP_DT algorithm attempts to split the
starting state of each experience after this has been acquired,
and depending only on this. However, its effectiveness may be
better if the splitting is performed after the acquisition of more
than one experiences and/or independently of these specific
experiences. We investigate this with three splitting strategies:
Chain Split aims at accelerating the division of the state space
into finer states. It tries to split every tree node, regardless of
whether it was involved in the current experience. Reset Split
aims at correcting splitting mistakes, by resetting the decision
tree periodically, and by taking more accurate decisions after
each reset, by taking into account all accumulated experiences.
Two-phase Split splits the existing decision tree periodically.
In this case the MDP_DT has two phases, a Data Gathering
phase that collects data but does not perform any splits, and a
Processing Phase that the tree nodes are tested one by one to
check if a split is needed, and if so, perform the splits.

In [10] we found that the optimal results are achieved with
the Parameter Test splitting criterion using the Man Whitney
U statistical test and employing the default splitting strategy.

III. EXPERIMENTAL RESULTS

We employ our RL techniques in order to dynamically scale
a real distributed database cluster deployed in a cloud environ-
ment under varying workloads. We evaluate the performance
of MDP_DT compared with model free and static partitioning
algorithms and we showcase MDP_DT'’s ability to benefit from
multiple parameters and perform correct decisions.

System and Algorithm Setup: We use an HBase 1.1.2
NoSQL distributed database cluster over a private Openstack
cloud setup. We generate a mix of different read and write
intensive workloads of varying amplitude by utilizing the
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Fig. 1: Comparison of the behavior of model-based vs model-free and decision-tree based vs static algorithms.
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YCSB benchmark. Cluster coordination is performed by a
modified version of [7]. We allow for 5 different actions,
which include adding or removing 1 or 2 VMs, or doing
nothing. Decisions are taken every 15 minutes, as it is found
that this time is necessary for the system to reach a steady
state after every reconfiguration. This also confirms our full-
model choice, since this time is adequate to calculate the
updated model after every decision. Each VM has 1GB of
RAM, 10GB of storage space and 1 vCPU. Decision tree
based models are trained with a set of 12 parameters including:
Cluster size, VM metrics (free RAM, number of vCPU’s,
CPU utilization and storage capacity), I/O reqs per second,
I/0 wait CPU, a linear prediction of the next incoming load,
percentage of read queries, average query latency and network
utilization. The model-based algorithms update their optimal
policies utilizing Prioritized Sweeping [11]. For the static
partitioning algorithms we select two dimensions that were
found to be the most relevant for the cluster performance
(the cluster size and the linear load prediction) divided in
12 and 8 equal partitions respectively, resulting in 96 states.
This setup is optimal for the static schemes, as they require
a small number of relevant states. The reward function is
Ry = min(capacity(t + 1),load(t + 1)) — 3 - vms(t + 1)
and encourages the agent to increase the cluster size so that it
can fully serve the load, but punishes it for going further.
Using Different Algorithms: We compare model-free (i.e.,
Q-learning) and static partitioning schemes. These combina-
tions lead to four different algorithms, namely the model-
based adaptively and statically partitioned MDP_DT and MDP
respectively, and the respective model-free versions (Q_DT and
Q-learning). In Fig. 1 the solid line represents the workload
in terms of Reqgs/sec (left Y axis) whereas the dotted line
represents the cluster size (right Y axis). Every step in the
dotted line represents an action of adding or removing VMs.
A small training set challenges the algorithm’s adaptation.
MDP_DT follows the applied workload very closely (Fig.
la). The full-model based MDP algorithm also follows the
incoming load reasonably well even when trained with the
small dataset (Fig. 1b). Since this problem has a reasonably
simple state space a partitioning using only the size of the
cluster and the incoming load is quite sufficient to capture its
behavior. Yet, in sudden load spikes in the max and min load
values it takes more time to respond compared to MDP_DT.
The Q-learning based algorithms though both fail to follow
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the incoming load effectively (Figs lc, 1d). The decision
tree based Q-learning algorithm (QDT) achieves the weakest
performance (Fig. 1c). At the start of the training that model
uses the first data it acquires to perform splits, but then discards
it after the splits have been performed, leaving it with very little
available information to make decisions. However, they both
are noticeably less stable (they cannot follow the observed load
in an adequate manner) compared to the full model approaches.

Restricting the Splitting Parameters: In order to test the
algorithm’s ability to partition the state space using different
parameters we experiment with restricting the parameters with
which the algorithm is allowed to partition the state space.
For that purpose, we experiment with training the algorithm
from a small dataset of 1500 experiences, but restricting the
parameters with which the algorithm is allowed to partition the
state space to only the size of the cluster plus one additional
parameter each time. We use CPU utilization, the one minute
averaged reported system load, the prediction of the incoming
load, the network usage and the average latency.

Fig 2 present our findings when using all parameters
compared to using only the one minute load. For all the
parameters, the system seems to be able to find a correlation
between the given parameter and the rewards obtained, and
starts following the incoming load. In Fig. 2b decisions do not
follow workload as smooth as in Fig. 2a. In Fig. 3 the decision
tree size for each case reflects this fact, where the model has 20
to 30 states compared to the 66 of the default case. However,
proving that these correlations exist and can be detected even
from a small dataset of only 1500 points, reveals the fact that
it is possible, using techniques like the ones described in this
work, to use these correlations to implement policies in systems
with complicated and not very well understood behavior.
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