
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 2332

RASP: Real-time Network Analytics with
Distributed NoSQL Stream Processing

Georgios Touloupas, Ioannis Konstantinou and Nectarios Koziris
School of Electrical and Computer Engineering, National Technical University of Athens

Email: g.touloupas@gmail.com, {ikons, nkoziris}@cslab.ece.ntua.gr

Abstract—In this paper we present RASP, a system that combines
latest distributed stream processing and NoSQL engines to enable
the real-time low latency storage and joining of incoming data
streams with external datasets of arbitrary sizes through an
extensible, SQL compliant manner. We achieve low latency, real
time execution by employing the Kafka and Storm frameworks to
join incoming tuples as they arrive, while the denormalized result
is being stored in HBase, a distributed NoSQL engine with the use
of Phoenix, a framework that fully supports SQL. We fine-tune
the topology execution to achieve maximum performance and we
also apply a set of optimizations both in the HBase storage and
the Phoenix SQL execution framework. We use RASP to solve
a network analytics problem using real data. RASP performs
its computations utilizing an extensible pipeline of Storm bolts
that incrementally augment incoming tuples with the execution
of different algorithms. We deploy our system over an IaaS cloud
and we evaluate its performance for various workloads, cluster
sizes and configurations, where we show that in some cases RASP
achieves a throughput increase of more than 140% and a latency
drop of more than 65% compared to a vanilla setting.

I. INTRODUCTION

Over the past decades, the Internet is continuously growing,
driven by ever greater amounts of online information and
knowledge, commerce, entertainment and social networking.
Recent studies forecast that global Internet traffic will grow
with a compound annual growth rate of 26% over the next
years, reaching 136.1 Exabytes per month in 2019, up from 42.4
Exabytes per month in 2014 [6]. Large portions of the Internet
traffic are routed through Internet Exchange Points (IXPs).
An IXP consists of one or more network switches, to which
Internet Service Providers (ISPs) connect and exchange Internet
traffic between their networks. The IXP allows these networks
to interconnect directly, rather than through their upstream
transit providers, thereby reducing costs and bandwidth.
Recent studies have shown that large IXPs have visibility
to a large fraction of the Internet and fit the role of being
global Internet vantage points [16]. Therefore, one can extract
information about the global state of the Internet by analyzing
the traffic of a large IXP over a sufficient period of time.
The typical approach to perform network traffic analysis on
a large IXP is by sampling the traffic over a period of time
and saving the capture in a file. Then the capture is processed
in a centralized manner by a script, where the network traffic
analysis is performed. This approach has two main drawbacks.
From one hand it does not scale for a larger amount of network
data. From the other hand processing offline network traffic
captures limits the “freshness” of the data in cases where real-

time network information is required [18], e.g., for anomaly
detection, DDoS attack detection and SDN reconfiguration.
A variety of distributed technologies and frameworks have
been developed to process and store Big Data [1], [21], [2].
Systems such as Kafka, Storm, HDFS, HBase and Phoenix
can be used to implement scalable systems that process and
analyze data streams in real time. By using such technologies
for processing and analyzing the IXP network traffic, the
issues mentioned in the previous paragraph can be alleviated.
Although previous approaches [20], [17], [22] have employed
such tools for network monitoring, they do not offer a real-time
environment and focus only on batch/offline workloads.
The objective of work is the design, performance optimization
and evaluation of a distributed stream processing system that
allows the execution of analytical (i.e., SQL) queries that join
a real-time data stream and an external dataset.
The contributions of this paper are the following:
• We combine state-of-the-art distributed stream processing
(i.e., Kafka [19] and Storm [21]) and NoSQL Big Data
technologies and techniques (i.e., HBase [2] and Phoenix
[5]) to minimize the execution latency of SQL queries that
join a real-time data stream with external datasets.

• We present RASP1, a system that performs and materializes
the join once at data arrival time and allows the fast execution
of subsequent queries. Moreover, we provide a way of
extending the system by adding external datasets of any
size that are joined with the data stream.

• We present a combination of optimizations and fine tuning
methodologies that are applied in different stages of the data
flow, from data collection to insertion and querying that
increase the system’s performance.

• We configured RASP to join a real-time network data stream,
generated by sampling IXP traffic, and external datasets
containing Autonomous System and DNS information.

• We deploy our system on top of a cloud platform and we
utilize real networking data in order to measure the system’s
scalability and performance. We show that in some cases
our optimizations achieve a throughput increase of more
than 140% and a latency drop of more than 65%. Finally,
we showcase RASP’s scalability.

II. SYSTEM DESCRIPTION

System Overview: From a high level, the system implemented
for our IXP network data use case consists of 4 major parts

1available for download at https://github.com/gttm/RASP

2333

Fig. 1: RASP architecture overview

that can be seen in Figure 1. In the first part, the network
data is generated by the switches of an IXP and collected
by a host running a Kafka producer. There, the useful fields
are extracted from the headers of the captured packets and
published to the Kafka topic. The second component of the
system is the Kafka topic that temporarily stores the data
stream at the Kafka cluster. In the next part, the data stream is
processed by a Storm topology. The topology contains the IP
to AS Bolt, that performs the join of the data stream and the
AS dataset in-memory, since the size of the dataset is small
enough. It also contains the IP to DNS Bolt, that performs the
join of the data stream and the Reverse DNS dataset using
Get operations on the HBase table where the dataset is stored,
since it does not fit in the bolt’s memory. Finally, in the last
part the denormalized network data is stored at a Phoenix table
in HBase, allowing Phoenix clients to perform low latency
SQL queries to it. We employ data Denormalization because
it allows fast query execution by avoiding expensive joins
during execution while inserting a storage overhead that is
easily addressed by the NoSQL database.
The system’s scalability is achieved by using distributed
frameworks and technologies for its implementation. Kafka
topics consist of partitions that are distributed over a cluster
of Kafka brokers. Storm topologies run over a cluster of
Supervisors and multiple instances of any component of the
topology (spout or bolt) can run at the same time. The
output Phoenix table is stored in HBase, and subsequently
in the HDFS, which are both distributed technologies that
run on clusters of DataNodes and RegionServers respectively.
Moreover, Phoenix can parallelize queries to take full advantage
of the HBase cluster. Using the Storm framework provides
extensibility to our system. Extending the functionality of the
Storm topology for a new dataset is as simple as adding an
extra bolt to the topology. The data stream that is processed
by our system is generated by an sFlow agent [13] running
on a switch that processes traffic in an IXP.
Kafka Producer: The sFlow datagrams are sent by the sFlow
agents of the IXP switches to an sFlow collector running at a
specified host. This sFlow collector collects the flow samples
from all of the switches and makes them available for further
processing. Fields like sourceIP, destinationIP, dateTime, etc.,
are extracted and sent to Kafka for each sampled packet.
Kafka Topic: The preprocessed messages containing the useful
fields in CSV format are stored at the netdata Kafka topic
in the Kafka cluster. To ensure scalability and load balancing,
we set the number of the topic’s partitions equal to the number

of the brokers of the Kafka cluster. The write and read requests
of the producer and the consumers respectively are distributed
over the cluster.
The Storm topology is the heart of our system. This is where
the processing of the data stream is performed. The topology
consists of one spout and four bolts in a pipeline setup: Kafka
Spout, Split Fields Bolt, IP to AS Bolt, IP to DNS Bolt and
Phoenix Bolt. The topology reads messages from a Kafka topic,
extracts the useful fields from the messages, performs the join
of the data stream and the external datasets and stores the
denormalized data stream in Phoenix.
The source of data stream in our topology is the Kafka Spout.
The spout is a Kafka consumer that reads messages from the
netdata Kafka topic and emits them to the Split Fields Bolt.
The maximum parallelism of the Kafka spout is the number
of the topic’s partitions, because any instances of the spout
further than that would not read any data. The Kafka Spout
stores the offset of the consumer for each partition of the topic
in Zookeeper. In this way, if a failure happens the topology
can be restarted and resume reading messages from the last
one that was executed successfully by the topology.
The tuple emitted by the Kafka Spout has a single field: a
message from the topic containing the useful fields of the
packet in CSV format. The Split Fields Bolt extracts these
fields from the message. In addition to that the bolt computes
the integer representations of the source and destination IP
addresses, which are usually more useful than the IP addresses
in dot-decimal notation. After processing the Kafka message,
the Split Fields Bolt emits a tuple containing the fields
sourceIP, sourceIPInt, destinationIP, destinationIPInt, protocol,
sourcePort, destinationPort, ipSize, dateTime.
The join of the data stream and the Autonomous System dataset
is performed by the IP to AS Bolt. The Autonomous System
dataset maps IP address ranges to AS number and name. The
data has 3 fields: the first IP address contained in the AS, the
last IP address contained in the AS and the AS number and
name. The defining characteristic of the Autonomous System
dataset is that its size (13 MB) is small enough to fit in the
memory, which is the optimal way to perform the join of the
stream and the dataset. During the initialization of the topology
the prepare method of the IP to AS Bolt is called and loads
the dataset in a TreeMap structure. For each record of the
dataset we insert two records in the TreeMap, containing the
start and the stop IP address for each AS along with the AS
number and name. We use the in-memory TreeMap to locate
the IP to AS mapping and we emit this information along with
the input tuples to the next bolt of the topology.
The join of the data stream and the Reverse DNS dataset is
performed by the IP to DNS Bolt. The Reverse DNS dataset
maps IP addresses to domain names. The data contained in the
dataset have 2 fields: the IP address in dot-decimal notation and
the corresponding domain name. The defining characteristic of
the Reverse DNS dataset is that its size (55 GB uncompressed)
is larger than the memory size, therefore loading it in every
bolt’s memory is not an option. We store it in the rdns HBase
table, where the IP addresses are used as the row key and the

2334

domain names are stored in the column d:dns. This allows
the bolt to perform Get operations on the table for an IP
address row key to receive the corresponding domain name.
HBase can perform low latency Get operations by using Bloom
filters [15]. The bolt executes two Get operations per to locate
sourceDNS & destinationDNS and emits them to the next bolt.
The last component of the topology is the Phoenix Bolt, which
inserts using SQL statements the denormalized data stream into
a Phoenix table named netdata. The schema of this table is
important because it affects the way queries are executed. In
our use case, the queries performed will be topN AS or topN
DNS queries over a time window for the data. The queries
performed on the table have a time window constraint. To
benefit from HBase Scan operations that perform sequential
reads, we use the packet’s capture timestamp as the row key
(i.e, index) in the underlying HBase table.
The use case queries concern either AS or DNS information.
In HBase only the column families needed for the query are
cached. Having separate column families containing AS, DNS
and other information reduces query latency by reducing the
data that have to be cached during each query. Therefore we
separate the table’s columns in 3 column families: one for the
AS fields, another for DNS fields and a default column family
that contains the rest of the packet’s fields.

III. HBASE AND PHOENIX OPTIMIZATIONS

In this section we present the optimizations we performed to
HBase and Phoenix storage/querying frameworks to maximize
throughput. Every optimization is evaluated in Subsection IV-B.
HDFS Short-Circuit Local Reads: In HDFS, all reads
normally go through the DataNode. When a RegionServer
asks the DataNode to read a file, the DataNode reads that file
from the disk and sends the data to the RegionServer over a
TCP socket. The downside of this approach for local reads is
the overhead of the TCP protocol in the kernel, as well as the
overhead of DataTransferProtocol used for the communication
with the DataNode. When the RegionServer is co-located with
the data and short-circuit local reads are enabled, local reads
bypass the DataNode [10]. This allows the RegionServer to
read the data directly from the local disk. Short-circuit local
reads provide a substantial performance boost in data transfer
from the disk to the BlockCache when the data is local.
Compression and Data Block Encoding: Physical data size
on disk can be decreased by using compression and data block
encoding [3]. Compression reduces the size of large opaque
byte arrays in cells and can significantly reduce the storage
space needed to store uncompressed data. Data block encoding
attempts to limit duplication of information in keys, taking
advantage of some of the fundamental designs and patterns of
HBase, such as sorted row keys and the schema of a given table.
Compression and data block encoding can be used together
on the same column family. Aside from on-disk data size,
compression and data block encoding can reduce the data
size in the BlockCache. Data is cached by default on their
encoded format. In addition to that, compressed BlockCache
can be enabled, allowing compressed data to be cached in their

compressed and encoded on-disk format. Between all of our
compression options, Snappy [14] is the most fitting to our use
case, since minimizing query latency is our priority. It does
not aim for maximum compression, but instead aims for very
high speeds and reasonable compression. Compared to gzip,
Snappy is an order of magnitude faster for most inputs, but
the compression ratio is 20% to 100% lower. Regarding data
block encoding, Fast Diff is enabled by default in HBase.
Both compression (with compressed BlockCache enabled) and
data block encoding reduce the in-cache data size. This means
that more rows can be cached at the same time, while data
transfer time from the disk to the BlockCache for the same
data is reduced. However, every time the cached data is used in
a query they must be decompressed or decoded or both. These
performance hits increase query latency, while is our priority is
to minimize it. To achieve the best in-cache query latency we
decide to use Snappy compression for our final Phoenix table,
in conjunction with enabled compressed BlockCache and no
data block encoding.
Salting: Rows in HBase are sorted lexicographically by row
key. The row key for the underlying HBase table where our
Phoenix table is stored must be the timestamp associated
with the packet, in order to optimize scans for queries over
a specified time window. Since the timestamp is always
increasing for live data, the row key is also monotonically
increasing. However, monotonically increasing row keys are a
common source of hotspotting [9]. Salting the row key provides
a way to mitigate the problem [12] by adding a randomly-
assigned prefix to the row key, to cause it to sort differently
than it otherwise would.
Since data is placed in multiple buckets during writes, we have
to read from all of those buckets when doing scans based on
original start and stop keys and merge-sort the data. These
scans can be run in parallel on the different RegionServers
serving the salt buckets, which may lead to an increase in
read performance. Phoenix provides a way to transparently salt
the row key with a salting byte for a particular table. Load
is evenly distributed among HBase nodes by setting the salt
bucket number equal to the cluster size.

IV. EVALUATION AND PERFORMANCE TUNING

In this section, we make a performance tuning and evaluation of
the subsystems that RASP consists of. We describe the utilized
datasets and the underlying cloud infrastructure, we evaluate the
scalability of Kafka, Storm and HBase/Phoenix and we measure
the performance gain achieved in the Storm and HBase/Phoenix
case through performance tuning or optimization.

A. Experiment Setup

Datasets: The main streaming data used for the evaluation
of the system is network traffic collected by GR-IX [8], the
Greek IXP, through which ISPs exchange traffic between their
networks without using their upstream transit providers. GR-IX
is handling aggregate traffic peaking at multiple Gigabytes per
second. Using sFlow, IP packets were captured with a random
sampling rate of 1 out of 2000 over a period of six months

2335

(July 2013 to February 2014) resulting in 1.9 billion captured
packets (110 packets per second).
One of the external datasets used by the topology is the GeoLite
ASN IPv4 database [7] (Autonomous System Dataset). This
dataset maps IPv4 address ranges to Autonomous System
Numbers (ASN) and is updated by MaxMind every month.
The dataset comes in a CSV file, having a size of 13 MB. This
file is stored at HDFS in order to be available to the Storm
Supervisors. The data contained in it has the fields ipIntStart,
ipIntEnd (int representation of the first and last IP address
contained in the AS) and the AS number and name.
The other external dataset used by the topology is the Rapid7
Reverse DNS dataset [11]. This dataset maps IPv4 addresses
to domain names. Rapid7 Labs creates this data by performing
a DNS PTR lookup for all IPv4 addresses. It is updated every
2 weeks and is made available at The Internet-Wide Scan Data
Repository (scans.io). The data format is a gzip-compressed
CSV file, having a size of 5.7 GB compressed and 55 GB
uncompressed, while containing 1.2 billion records. The fields
of the dataset are the IP address in dot-decimal notation and
the domain name. The Reverse DNS dataset is stored in the
rdns HBase table. The field ip is used as the row key and
dns is stored at a column.
Cluster Description: We use virtual machines (VMs) operat-
ing on a private OpenStack cluster. Each VM has 4 vCPUs
@2.4 GHz (no CPU over-provisioning, i.e., 1-1 vCPU to
physical CPU mapping), 8 GB of RAM and 80 GB HDD.
For the performance tuning experiments we create 10 virtual
machines, where one node runs the Zookeeper service, another
node runs the HDFS/HBase master process, 4 nodes run the
storm cluster and 4 nodes run the HBase and Kafka clusters
(Kafka has a low CPU utilization and can be co-located with
HBase). To conduct the scalability experiments, we increase
the number of nodes in the Storm and Kafka/ HBase clusters
up to 16 for each, with the same deployment configuration.

B. Performance Tuning and Scalability Evaluation

Kafka Scalability and fine tuning: The producer can be
configured to accumulate data in memory and to send out larger
batches in a single request for each partition [4]. Batching leads
to larger network packets and larger sequential broker disk
operations, which allows Kafka to turn a stream of random
message writes into linear writes. This increases performance
on both the producer and the broker. We experiment with
different batch sizes and measure the message input throughput
for our topic. The effects of batching on throughput can be
observed in Table I. Even though a bigger batch size can
increase throughput by orders of magnitude, it also increases
the time a message is waits in the producer to be sent in the
next batch. Since even a low batch size 100 can achieve greater
throughput (12658 messages/sec) than the storm topology in
the maximum configuration of our scalability experiment (3988
messages/sec as we present in Table V), we choose a small
batch size in order to reduce message latency. The producer
handles bursts of more packets with a batch size of 200.

Batch size Throughput (messages/sec)
100 12658
200 25516
400 49397
800 104597

1600 188730
3200 293877
6400 381859

TABLE I: Producer batch size effect on topic throughput

4 8 12 16
Brokers/partitions

10K

20K

30K

40K

T
h

ro
u

g
h

p
u

t
 (

m
sg

s/
se

c)

Fig. 2: Topic throughput scalability with Kafka cluster size

Partitions allow the topic to scale in size by being distributed
over the brokers of the cluster and act as the unit of parallelism,
providing load balancing over the write and read requests of
the producers and the consumers respectively.To evaluate the
scalability of the Kafka topic with the Kafka cluster size, we
measure the message input throughput for clusters with different
numbers of brokers. The number of the topic’s partitions is
adjusted according to the number of the brokers. In Fig. 2
topic throughput scales almost linearly with Kafka cluster size.
Storm Parallelism Tuning: To achieve maximum topol-
ogy throughput, we experiment with the parallelism of its
components (spout and bolts). Parallelism tuning in Storm
is performed with the help of the capacity metric. The
capacity metric tells us what percentage of the time in
the last 10 minutes the bolt spent executing tuples. If this
value is close to 1, then the bolt is ’at capacity’ and is
a bottleneck in our topology. The solution to at-capacity
bolts is to increase the parallelism of that bolt. Capacity
is defined as : capacity = (executedTuplesNumber ∗
averageExecuteLatency)/measurementT ime
During the parallelism tuning experiments, when we see that
a bolt’s capacity is close to 1, we increase its parallelism
in the next experiment. We continue tuning until we achieve
maximum topology throughput. The parallelism and capacity
for each bolt during the parallelism tuning experiments are
presented on the first eight columns of Table II. The name of
each experiment denotes the parallelism of each component
of the topology: Kafka Spout - Split Fields Bolt - IP to AS
Bolt - IP to DNS Bolt - Phoenix Bolt. Note that capacity is
computed based on topology statistics, therefore its value may
sometimes appear to be larger than 1. The parallelism of the
Kafka Spout is always 4 to match the number of the topic’s
partitions. As we can see in the last column of Table II we can
achieve maximum topology throughput with the parallelism
combination 4-4-4-16-28. We use these parallelism settings
for the rest of the benchmarks. We also record the average
CPU utilization for the Storm and HBase clusters during the
tuning experiments and present them in the % cluster CPU util
columns of Table II. We notice that the processors of the Storm
and HBase clusters are not saturated at maximum topology
throughput, which indicates that the topology workload is I/O

2336

intensive. This was expected since the IP to DNS Bolt and the
Phoenix Blot perform reads and writes respectively to HBase.
Bolt Execute Latencies: A useful metric that allows us to
identify the bottlenecks in our topology is the execute latency
of each bolt. Execute latency is the average time a tuple spends
in the execute method of a bolt. We record the execute latencies
for each bolt of the topology at maximum throughput and
present them in Table III. We also compare the % each bolt
attributes to the entire latency. It is clear that the tuples spend
practically all of their execute time in the IP to DNS Bolt and
the Phoenix Bolt. This was expected since these bolts perform
reads and writes to HBase tables, while the other bolts execute
simple commands in memory.

Bolt Execute latency (msec) % time
Split Fields Bolt 0.047 0.3

IP to AS Bolt 0.052 0.4
IP to DNS Bolt 4.779 38

Phoenix Bolt 7.784 61

TABLE III: Average bolt execute latency and total time %

Phoenix Bolt Write Performance with Salting: In this
experiment we use a salted and a non-salted table, and compare
the throughput of the topology, the write request and CPU
utilization on the RegionServers, as well as the execute latency
of the Phoenix Bolt. The salted table has 4 salt buckets that
are split among the 4 RegionServers of the HBase cluster. The
first two columns of Table IV demonstrate that salting serves
its purpose by eliminating write hostspotting. S1-S4 denote
the different 4 HBase RegionServers that consume incoming
workload. Whereas all the write requests were directed to a
single RegionServer (S1) for the non-salted table, the load
is evenly distributed for the salted table. Note that higher
aggregate CPU utilization while using the salted table is linked
to better utilization of the cluster’s resources, leading to higher
topology throughput. Salting also decreases the Phoenix Bolt’s
execute latency by 74%, as we can see in the third column
of Table IV. The execute latency of the Bolt when writing to
the non-salted table was increased due to the strain put on the
RegionServer that handled all the write requests. Finally, the
last column of Table IV demonstrates that salting increases the
topology throughput by 140%.
Total System Latency: An important performance indicator
for our system is total system latency, the time it takes for
a message to be sent by the Kafka producer to the topic,
consumed by the Kafka Spout, processed by the bolts of the
topology and eventually be stored in the Phoenix table and
made available for queries. We feed the topology with real-
time messages and query the table for the row with the latest
timestamp. By comparing this timestamp to the current time we
can measure the total latency. Total system latency is measured
at 1.161 sec on average at maximum topology throughput.
Storm Scalability: In Table V we evaluate the Storm/HBase
topology scalability speedup in terms of throughput (msgs/sec)
for different cluster sizes. We increase Storm and HBase cluster
sizes simultaneously, meaning that on each test there are as
many Supervisors as RegionServers. We also adjust accord-

Cluster Throughput Speedup Storm HBase
Size (msgs/sec) CPU util. CPU util

2 2163 1X 61% 65%
4 2805 1.3X 49% 53%
8 3453 1.6X 37% 37%

16 3988 1.8X 23% 18%

TABLE V: Storm/HBase cluster throughput scalability and %
CPU utilization
ingly the number of partitions for the topic, the component
parallelism in the topology and the number of salt buckets
for the table. After any change to the size HBase cluster we
distribute the rdns table evenly among the RegionServers
and compact it for data locality. Throughput is documented
in the second column whereas speedup in the third. Average
CPU utilization for the Storm and HBase clusters during the
scalability experiments is presented in the fourth and fifth
columns respectively.
We notice that the topology throughput scales by adding more
servers. Nevertheless it does not scale linearly (speedup column)
and the processors are underused for larger cluster sizes (cpu
usage columns). This is due to the limitations posed by the
underlying cloud infrastructure: although there is a direct
mapping of vCPUs to physical CPUs, this is not the case
for the physical hard disks. The VM disks of the HBase/Storm
clusters are physically co-located, and therefore the aggregate
disk I/O throughput is not proportionally increased in contrast
to computational power by adding more VMs.
HBase and Phoenix Performance Tuning: The comparison
basis of the following benchmarks is our final Phoenix table,
after all optimizations are applied. The table uses Snappy
compression and no data block encoding, it is split in 3
column families and it is salted in 4 buckets. All the tables
are compacted and their regions are distributed evenly among
the RegionServers. Queries are performed over 10M rows that
are already cached in the BlockCache, unless stated otherwise.
We perform two queries, the count and topN AS query:

SELECT COUNT(*) FROM TABLE netdata;
SELECT as.asS, as.asD, COUNT(*) AS pairCount

FROM netdata
GROUP BY as.asS, as.asD ORDER BY pairCount

DESC LIMIT 10;

The count query iterates over the rows of the default column
family. This query is useful to measure read performance
without any additional calculations. The topN AS query
returns the top 10 AS pairs in this table ordered by the
number of exchanged packets. We also perform the topN
DNS alternative on some benchmarks, however this query is
more computationally intensive, since the GROUP BY clause
creates many more distinct pairs for domain names than for
autonomous systems. Therefore significantly bigger sets that
have to be sorted during the calculations and thus subsequently
larger query latency.
HDFS Short-Circuit Local Reads: In this experiment we
perform a count query over 1 million rows, at first with HDFS
short-circuit local reads disabled and afterwards enabled (see
Section III). We measure the total query latency, which includes
data transfer time to the BlockCache as well as query processing

2337

Experiment Split Fields Bolt IP to AS Bolt IP to DNS Bolt Phoenix Bolt % cluster CPU util. ThroughputParallelism Capacity Parallelism Capacity Parallelism Capacity Parallelism Capacity Storm HBase
4-4-4-4-4 4 0.013 4 0.011 4 0.600 4 0.987 22 16 831

4-4-4-12-12 4 0.021 4 0.042 12 0.491 12 1.068 41 38 1509
4-4-4-12-20 4 0.040 4 0.043 12 1.043 20 0.911 40 48 2385
4-4-4-16-28 4 0.043 4 0.062 16 0.879 28 1.049 49 53 2782
4-4-4-16-36 4 0.067 4 0.077 16 0.816 36 1.086 49 54 2805

TABLE II: Bolt capacity, Storm and HBase cluster CPU utilization and topology throughput during parallelism tuning experiments
HBase throughput (reqs/sec) HBase % CPU util. Phoenix bolt latency (msec) Topol. throughput (msec)
No Salt Salt No Salt Salt No Salt Salt No Salt Salt

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 30 7.8 1143 27821024 0 0 0 865 868 863 865 48.6 14.5 19.1 14.8 46.1 54 56.7 56.8

TABLE IV: HBase throughput, CPU % utilization, Phoenix Bolt latency ant topology throughput using salting vs vanilla settings

Compression Disk Size Count query TopN query
Type (GB) Latency (sec) Latency (sec)

Fast Diff 3.0 5.1 8.5
Snappy 1.6 3.8 7.2

Both 1.0 6.0 10.1

TABLE VI: Query latency and data size vs compression

time. When HDFS short-circuit local reads are enabled total
query time is reduced by 62% from 4.4 sec to 1.7 sec.
Compression and Data Block Encoding can be used to
reduce on-disk data size as well as in-cache data size. However
this comes with a performance hit for decompression, decoding
or both when reading the cached data as we can see in
Table VI. In our experiment we compare on-disk size and
in-cache query latency for three compression schemes, namely
Fast Diff encoding, Snappy compression with the enabling of
Compressed BlockCache and for both Snappy and Fast Diff
encoding. As we can see in the second column of Table VI,
using both compression and data block encoding reduces the
data size further than the other options. Reduced data size
allows more rows to be cached at the same time and reduces
data transfer time from the disk to the BlockCache. However,
the best in-cache query latency is achieved by compression
alone (third and fourth columns of Table VI). The data size
difference between second and third tables is not big enough to
outweigh the query latency advantage of the compressed table,
so we chose snappy compression and no data block encoding.
Salting Read Performance also improves read throughput.
Phoenix scans the salted data, sorted within each bucket, in
parallel and merge-sorts them at the Phoenix client. We perform
a count and a topN AS query on a non-salted and a salted
table and compare query latency. Salting speeds up queries by
68%, dropping latencies from 11.7 sec to 3.8 sec and from
23.1 sec to 7.2 sec for the count and topN AS queries.
HBase/Phoenix scalability: We measure the query latency for
clusters with different numbers of RegionServers. The number
of the table’s salt buckets is adjusted according to the number
of the RegionServers. Results are presented in Table VII.

V. CONCLUSION
In this paper we presented the design, implementation, perfor-
mance optimization and experimental evaluation of RASP, a
system that employs distributed stream processing and NoSQL
technologies to allow the execution of low latency SQL queries
that join a real-time data stream with networking information

Cluster Count query TopN query
Size Latency (sec) Latency (sec)

2 6.55 11.2
4 3.78 7.2
8 3.2 6.3

16 2.7 5.1

TABLE VII: Count/TopN latency, various HBase cluster sizes

and an external dataset. Finally, we evaluated the performance
of the system using a cluster of VMs. We recorded and analyzed
the performance for system component while tuning the system
and applying the aforementioned optimizations. The results
demonstrated that our system can process packets with a
satisfactory throughput, with a low total system latency and
allows low latency queries. We experimentally show that in
some cases RASP achieves a throughput increase of more than
140% and a latency drop of more than 65%.

ACKNOWLEDGMENT
This paper is supported by European Union’s Horizon 2020
RIA programme under GA No 690588, project SELIS.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org.
[2] Apache HBase. http://hbase.apache.org.
[3] Apache HBase Reference Guide. http://hbase.apache.org/book.html.
[4] Apache Kafka. http://kafka.apache.org/documentation.html.
[5] Apache Phoenix. http://phoenix.apache.org.
[6] Cisco Visual Networking Index: Forecast and Methodology, 2014-2019

White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-network/white paper c11-
481360.html.

[7] GeoLite Database. http://dev.maxmind.com/geoip/legacy/geolite.
[8] GR-IX. http://www.gr-ix.gr.
[9] HBaseWD: Avoid RegionServer Hotspotting Despite Sequential

Keys. http://blog.sematext.com/2012/04/09/hbasewd-avoid-regionserver-
hotspotting-despite-writing-records-with-sequential-keys.

[10] HDFS Short-Circuit Local Reads. http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html.

[11] Rapid7 Reverse DNS. http://scans.io/study/sonar.rdns.
[12] Salted Tables. http://phoenix.apache.org/salted.html.
[13] sFlow. http://www.sflow.org.
[14] Snappy, a fast compressor/decompressor. http://google.github.io/snappy.
[15] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.
[16] N. Chatzis, G. Smaragdakis, J. Böttger, T. Krenc, and A. Feldmann. On

the benefits of using a large IXP as an Internet vantage point. In IMC,
pages 333–346, 2013.

[17] A. M. Hendawi et al. Hobbits: Hadoop and Hive based Internet traffic
analysis. In Bigdata. IEEE, 2016.

[18] A. Khurshid et al. Veriflow: Verifying Network-wide Invariants in Real
Time. In NSDI, pages 15–27, 2013.

[19] J. Kreps et al. Kafka: A distributed messaging system for log processing.
In Proceedings of the NetDB, pages 1–7, 2011.

[20] D. Sarlis, N. Papailiou, I. Konstantinou, G. Smaragdakis, and N. Koziris.
Datix: A System for Scalable Network Analytics. ACM SIGCOMM
Computer Communication Review, 45(5):21–28, 2015.

[21] A. Toshniwal et al. Storm@ twitter. In SIGMOD, pages 147–156, 2014.
[22] X. Zhou et al. Exploring Netfow data using Hadoop. In Proceedings

of the Second ASE International Conference on Big Data Science and
Computing, 2014.

