
MoDisSENSE: A Distributed Platform for Social
Networking Services over Mobile Devices ∗

Ioannis Mytilinis, Ioannis Giannakopoulos, Ioannis Konstantinou, Katerina Doka and Nectarios Koziris
Computing Systems Laboratory, National Technical University of Athens

{gmytil, ggian, ikons, katerina, nkoziris}@cslab.ece.ntua.gr

Abstract—In this work we present MoDisSENSE, a distributed
analytics platform for social networking services over mobile de-
vices. MoDisSENSE collects and stores various types of data from
heterogeneous sources, such as GPS traces from cell phones, user
profile information and comments from social networks connected
to the platform. These are combined through spatio-temporal and
textual analysis, performed in a distributed fashion, in order to
extract knowledge, make smart suggestions and leverage user
experience. The datastore follows a hybrid approach to handle
both raw and processed data, simultaneously covering the need
for scalability and fast query processing. Thus, the platform is
able to resolve complex, multi-parameter, socially charged queries
over Points of Interest in the order of milliseconds even under
heavy load.

Keywords—Social Networks, Geo-location Services, Sentiment
Analysis, Points of Interest

I. INTRODUCTION

With the advent of powerful programmable mobile devices,
online social networking sites, such as Facebook, Twitter and
Foursquare, have become increasingly popular. In June 2014,
Facebook had on average 654 million mobile daily active users
[1]. The introduction of social network APIs has also caused
a viral growth to third-party social applications. Third-party
developers launch their own applications that utilize social
networks’ data and offer services that leverage user experience.

To this end, we present MoDisSENSE, a social network
based, geo-location service that exploits spatio-temporal and
social data. It enables personalized and semantically rich
search of Points of Interest (POIs) based on various criteria
such as user location, preferences, sentiment of social media
friends or a combination of the above. Sample, high level
queries that the platform is able to resolve could be “list all
meat restaurants offering lamb near Acropolis that my friends
have visited and commented positively about in the last month”
or “show all places near my current location where most of my
friends are gathered right now”. Different users are expected
to get different results for the same query, according to their
social profile.

Moreover, MoDisSENSE analyzes GPS traces from mobile
devices to automatically discover new POIs and trending
events. Their combination with background information such
as maps, check-ins, user comments, etc., results in the infer-
ence of a user’s semantic trajectory, representing her activities
within the day.

∗This work has been funded by EU and GR Resources under the
Hellenic (GSRT) “COOPERATION 2009” National Action “09SYN-72-881”
MoDisSENSE Project.

The aforementioned functionality is supported by a hybrid,
highly scalable platform architecture, that handles all these
different types of data in massive volumes, processes them
and allows for complex queries upon them, achieving response
times in the order of milliseconds even when multiple users
concurrently utilize the offered services.

MoDisSENSE is currently available as a web application
[2] supporting connections to Facebook, Foursquare and Twit-
ter. It is intended to be released as an open source project in
the near future.

II. ARCHITECTURE

Frontend

Backend

MoDisSENSE app

P
ro

ce
ss

in
g

D
at

as
to

re

PostgreSQL
 ServerHbase Cluster

Text GPS Social Info

Hadoop Cluster

Data
Collection

Text
Processing

GPS taces
processing

User
Management

Query
Answering

REST API
Server

data

queries

personalized non-personalized

Fig. 1: MoDisSENSE platform architecture.

Figure 1 depicts the overall architecture of the MoDis-
SENSE platform. MoDisSENSE follows a modular design,
consisting of separate, interconnected components. Thus, new
components can be added to drive additional functionality
without affecting the rest of the system. The two major
components that MoDisSENSE is divided into are the frontend
and the backend, which communicate through a REST API.

The frontend comprises of the web and mobile applications
that the user interacts with. More specifically, MoDisSENSE is
offered as a web application supported by the most prominent
web browsers and as a native application both for Android and
iOS mobile devices.

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 49

The backend constitutes the platform where data are being
stored and processed. The different data types handled by the
system are (i) the structured, user-related information provided
by the user through the application GUI and enriched through
her social media accounts (e.g., friends, POIs visited, etc.), (ii)
spatio-temporal data provided by the user’s mobile devices
(GPS traces) and (iii) textual information extracted by the
connected social networks (e.g., status updates, comments,
etc.).

On one hand, the structured user-related data require a
storage schema that facilitates their efficient retrieval through
advanced indexing techniques. On the other hand, the high
generation rate of GPS traces and the sheer volume of textual
data call for scalability and high read/write throughput. There-
fore the platform’s datastore follows a hybrid architecture,
comprising of both a central database and a distributed NoSQL
cluster.

For the former, a PostgreSQL Server [3] is selected, while
for the latter an HBase cluster, the open-source implementation
of Google’s BigTable [4], is deployed. This hybrid approach
allows for flexibility and performance: Queries based solely
on geo-location and keywords, which demand multiple indices
and a large number of joins, are executed in PotstgreSQL,
whereas complex queries that delve into the massive amounts
of social information are handled by efficient searching tech-
niques applied to the HBase cluster.

These techniques take advantage of the HBase coprocessors
feature [5] in order to increase scalability by equally splitting
and forwarding the amount of query processing to the servers
that contain the respective data. Furthermore, the distributed
nature of the NoSQL cluster enables the system to handle large
rates of data insertions, without compromising the platform’s
performance, while ensuring scalability and fault tolerance.
The availability of the data is guaranteed by the HBase inherent
replication mechanism.

The data processing is performed by a distributed compute
cluster, which runs the Data Collection, Text Processing, GPS
Traces Processing, Query Answering and User Management
modules. These modules represent the major functionalities of
the platform and are thoroughly described subsequently. An
important target of the platform is to provide a vivid user
experience regardless of the data volume. To this end we rely
on distributed techniques to provide high performance, fault
tolerance and scalability. As MapReduce [6] is the dominant
framework for large-scale distributed processing, we opt for a
Hadoop [7] cluster as a substrate for data processing.

A. Data Collection

The Data Collection module periodically receives GPS
traces and collects data from social networks. The GPS traces
are generated from the mobile clients of the platform and are
temporarily stored in the HBase cluster until they are processed
and indexed. These raw traces are indexed with respect to their
timestamp and coordinates to allow for fast retrieval based on
those fields during their processing.

Moreover, as MoDisSENSE provides social geo-location
services, it needs to keep track of information like user
check-ins and the accompanying comments, status updates and
reviews from social networks to gain the ability of answering

socially charged queries. Thus the platform monitors and
collects all such information from its users’ connected social
media accounts. Data collection from social networks is a
parallel process, since each HBase node collects data for the
users it is responsible for.

B. Text Processing

The textual data collected from social networks are pro-
cessed online in real time by the Text Processing module.
This type of data includes text that accompanies a check-in,
friends’ comments, reviews, etc., and is of great importance
for MoDisSENSE as it expresses the user’s sentiment for
a given place. The dominant sentiment of a user’s friends
about a place is taken into consideration when answering
socially charged queries. In order to extract this sentiment,
we employ Sentiment Analysis algorithms that make use of
Machine Learning classification techniques.

As a classification algorithm, we choose the Naive Bayes
classifier that the Apache Mahout [8] framework provides.
Naive Bayes is a supervised learning method that needs a
previously annotated dataset for its training. In our case,
a dataset crawled from Tripadvisor [9] containing reviews
for hotels, restaurants and attractions is used for training.
The chosen dataset offers two key advantages: First, it is
semantically close to our application data and thus results in a
high quality training and second, Tripadvisor comments are
annotated with a rank from 1 to 5, that can be used as a
classification score. After an extensive experimental study and
algorithm fine-tuning, we managed to achieve a classification
accuracy ratio of more than 90%.

Textual processing is carried out in real time during data
collection. This is feasible since the employed classification
model is small enough to fit in main memory. Contrarily, the
training of the algorithm is an offline process performed in the
distributed filesystem due to the massive volume of crawled
data.

C. GPS Traces Processing

The mobile devices that have the MoDisSENSE application
installed transmit their GPS traces to the platform. The GPS
Traces Processing module runs periodically and processes
the traces in order to discover trending events and produce
semantic trajectories.

Specifically, the platform utilizes clustering algorithms to
identify dense gatherings of GPS traces that could signify
events, spontaneous or not, such as concerts, traffic jams
etc. Those gatherings may happen to a POI already known
to the platform or to an unknown location. Trending events
in already known POIs are discovered by considering users’
concentration deltas. Large gathering of people in a POI, where
a few traces/check-ins had been previously reported, indicates
a trending event. For example, traces are not usually reported
from football stadiums. However, in the case of a football game
or a concert increased trace concentration may be noticed.
When an unknown location is the case, dense gatherings imply
the existence of a new POI. The identification of the POI may
be accomplished through cross-checking with social-network-
derived information. If the identification fails, the user is
suggested to manually create it through the application UI.

50

The actual clustering algorithm that the MoDisSENSE
platform currently uses is DBSCAN [10], a popular density-
based clustering algorithm. To be able to handle millions of
concurrent GPS traces, as expected to be the common case,
a distributed implementation of DBSCAN over Hadoop [7] is
adopted.

Knowing a user’s trajectory, MoDisSENSE attempts to
semantically annotate it, that is, infer the user’s activities
during the day in a semi-automatic way. The timestamps of
a user’s traces help distinguish the ones that may represent
an activity, i.e., places where the user spent a considerable
amount of time. By comparing the coordinates of such traces
and existing POIs, the platform identifies the important POIs
along a user’s trajectory. If a trace cannot be mapped to an
existing POI, the user is prompted for input.

D. Query Answering

The Query Answering module is responsible for executing
user queries, meaning search queries over the collected and
processed data. As query input, the user specifies a set of
parameters. These parameters can be:

• geographic POI location,
• keywords characterizing a POI (e.g., bar, burger),
• type of POI
• overall expressed sentiment on a given POI,
• only the sentiment expressed by friends on a given POI,
• time window

A search query may contain all of the above parameters
or a subset of them. The user can set the desirable geographic
location by zooming in and out and adjusting a bounding-
box map through the application UI. Only the POIs inside the
defined region are considered for the query. A list of keywords
characterizing the POI and a list of friends, whose opinion
should be taken into consideration, can also be provided. Time
constraints may optionally be applied. Typical examples of
such queries are the following:

• Which bars do my friends prefer in Athens?
• What is my friends’ opinion for this POI?
• How did my friends’ opinion for a POI change during last
week?

These multi-parameter queries need an adaptive indexing
scheme which allows for the efficient execution of such dif-
ferently configured, concurrent queries. When the query is not
socially charged (non-personalized), meaning that friendships
in social networks are not taken into account, it is executed
in the PostgreSQL database, where we can quickly search for
POIs in a specific location and/or apply filters based on their
global popularity. Otherwise, when friends’ sentiment matters,
the NoSQL datastore is employed.

The sentiment-related data kept in the NoSQL cluster are
indexed according to the id of each user’s friend. This choice
enables the parallel execution of the query: A number of
workers is launched, each of which searches for the friend ids
assigned to it in parallel. Each worker scans all the recorded
check-ins of each friend, eliminates the ones that do not fulfill
the posed criteria and returns them to a master worker which
aggregates the respective POIs. Sorting criteria such as the
overall expressed sentiment about a POI or the number of visits

can also be used. In such a case, a list of top-k POIs is finally
returned to the user. To speed up the process, each check-in (of
the same friend id) is stored in chronological order, enabling
the platform to quickly scan the data for the necessary interval.

E. User Management

The User Management module is responsible for authen-
ticating the users to the MoDisSENSE platform and granting
access to social networks’ APIs. The user is registered to the
platform either through a mobile client or the MoDisSENSE
website [2]. In order to register, only the social network
credentials are used. The registration workflow follows the
OAuth protocol [11]. The OAuth authorization framework
enables a third-party application to obtain access to an HTTP
service on behalf of a resource owner. When the authentication
is successful, an access token is returned to the MoDisSENSE
platform. From that time on, the MoDisSENSE application
can interact with the connected social network on behalf of
the end user. It can monitor user’s activity, user’s friends
activity, it can make posts etc. Being an authorized member
of the platform, the user can connect to the MoDisSENSE
account more social networks. In this case, MoDisSENSE joins
information from different social network accounts in order to
infer more knowledge and make smarter suggestions.

III. CONCLUSION

In this work we present the architecture of the MoDis-
SENSE platform, a social-network based geo-location service,
where users can efficiently execute personalized and seman-
tically rich queries over POIs. Real-time, distributed algo-
rithms are implemented to collect various types of information
from heterogeneous data sources and process them to derive
useful information. The processing, which includes textual
and spatio-temporal analysis, is performed in a distributed
environment, perfectly scaling to meet demand. A hybrid
datastore approach is followed to properly store and index the
diverse data in order to allow for scalability due to their vast
amount, provide high write throughput to cope with their rapid
generation rate and guarantee fast retrieval to resolve complex
queries.

REFERENCES

[1] “Facebook Stats,” http://newsroom.fb.com/company-info/.
[2] “MoDisSENSE Web App,” http://modissense.gr/.
[3] “Postgresql,” http://www.postgresql.org/.
[4] F. Chang et al., “Bigtable: A Distributed Storage System for Structured

Data,” ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2,
p. 4, 2008.

[5] “HBase Coprocessors,”
http://hbase.apache.org/book.html#coprocessors.

[6] J. Dean et al., “MapReduce: Simplified Data Processing on Large
Clusters,” in CACM, 2008.

[7] “Apache Hadoop,” http://hadoop.apache.org.
[8] “Apache Mahout,” https://mahout.apache.org/.
[9] “Tripadvisor,” http://www.tripadvisor.com/.

[10] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On Spectral Clustering: Anal-
ysis and an Algorithm,” Advances in Neural Information Processing
Systems, vol. 2, pp. 849–856, 2002.

[11] “OAuth,” http://oauth.net/2/.

51

