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Abstract— Modern large-scale computing deployments con-
sist of complex applications running over machine clusters.
An important issue in these is the offering of elasticity, i.e.,
the dynamic allocation of resources to applications to meet
fluctuating workload demands. Threshold based approaches
are typically employed, yet they are difficult to calibrate and
optimize. Approaches based on reinforcement learning (RL) have
been proposed, but they require a large number of states in
order to model complex application behavior. Methods that
adaptively partition the state space have been proposed, but
their partitioning criteria and strategies are sub-optimal. In this
work we present MDP DT, a novel full-model based reinforce-
ment learning algorithm for elastic resource management that
employs adaptive state space partitioning. We propose two novel
statistical criteria and three strategies and we experimentally
prove that they correctly decide both where and when to
partition, outperforming existing approaches. We experimentally
evaluate MDP DT in a real large scale cluster over variable
not-encountered workloads and we show that it takes more
informed decisions compared to static, model-free and threshold
approaches, while requiring a minimal amount of training data.
We experimentally show that this adaptation enabled MDP DT
to optimize the achieved profit while being 40% cheaper than
calibrated RL and threshold approaches.

I. INTRODUCTION
Modern large-scale computing environments, like large pri-

vate clusters, cloud providers and data centers may have
deployed tens of platforms, like NoSQL and traditional SQL
database servers, web servers, etc on thousands of machines,
and run on them hundreds of services and applications [25]. A
vital issue in such environments is the allocation of resources
to platforms and applications so that they are neither over-
provisioned, nor under-provisioned, aiming to avoid both
resource saturation and idling, and having as utmost goal fast
execution of user workload while keeping the cost of operating
the infrastructure as low as possible.

Managing the above trade-off and achieve a truly elastic
behavior is quite challenging for multiple reasons. First, the
number of system and application parameters that affect be-
havior (i.e., performance) is exceedingly large; therefore, the
number of possible states of the system, which correspond
to combinations of different values for all such parameters
is exponentially large. Facebook for instance deal with this
complexity with a proprietary highly sophisticated distributed
system designed only for configuration management [21],
whereas Google’s Borg [25] manages hundreds of thousands
of jobs deployed in tens of thousands of machines.

Second, the value range or the interesting values of such
parameters may not be known; moreover, many of these

parameters are continuous instead of discrete (e.g. cluster and
load characteristics, live performance metrics, etc.), making it
necessary to devise ahead techniques for their discretization
in a way that the number of discrete values is kept small,
but ranges of continuous values that lead to different system
behavior correspond to different discrete values. Third, most
often we do not know if and how a parameter, or a parameter
value set affects the system behavior. Therefore, we do not
know if changing the value of this parameter will make an
impact, and furthermore, a desirable impact to the system
behavior. Fourth, the time interval between two consecutive
resource management decisions is usually at least in the
order of minutes, reducing the collection rate of training data.
Nevertheless, the resource management technique should be
able to work with little such data. All four challenges are
hard to address even for static workloads and applications,
and become insurmountable for dynamic ones.

Since the issue of resource management in elastic environ-
ments is so vital and challenging, there are numerous efforts
to address it in both the industry and research. Public cloud
providers such as Amazon, Google, Microsoft and IBM offer
autoscaling services [1]. These employ threshold-based rules
to regulate infrastructural resources (e.g., if mean CPU usage
is above 40% then add a new VM). However, such solutions
do not address any of the four challenges discussed above.
Some research approaches to this issue also explore threshold-
based solutions [8], [10], [15], [20], [22]. More sophisticated
approaches employ Reinforcement Learning algorithms such
as Markov Decision Processes (MDP) and Q-Learning, al-
gorithms which are natural solutions for decision making
problems and offer optimality guarantees under conditions.
These approaches suffer from important limitations that derive
from the assumption of a priori knowledge of parameters and
their role to system behavior, as well as from the curse of
dimensionality as a result of their effort to create a full static
model of the computing environment [2], [4], [5], [9], [16],
[19], [23].

In this work we address all four challenges of elastic
resource management in a large-scale computing environment
by employing RL in a novel manner that starts from one global
state that represents the environment, and gradually partitions
this into finer-grained states adaptively to the workload and
the behavior of the system; this results in a state space that
has coarse states for combinations of parameter values (or
value ranges) for which the system has unchanged behavior
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and finer states for combinations for which the system has
different behavior. Therefore, the proposed technique is able
to zoom into regions of the state space in which the system
changes behavior, and use this information to take decisions
for elastic resource management. Specifically, the proposed
technique works as follows: Adoption of a full model. Since
decisions are taken in intervals in the order of minutes, it
is realistic to maintain a full MDP model of the system.
Information about the behavior of the system is acquired
at a slow rate, limiting the size of the model and making
possible expensive calculations for each decision. Adaptive
state space partitioning. We create a novel decision tree-
based algorithm, called MDP DT1 that dynamically partitions
the state space when needed, as instructed by the behavior
of the system. This allows the algorithm to work on a multi-
dimensional continuous state space, but also to adjust the size
of the state space based on the amount of information on the
system behavior. The algorithm starts with one or a few states,
and the MDP model is trained with a small amount of data.
As more data on the behavior of the system are acquired, the
number of states dynamically increases, and with it increases
the accuracy of the model. Splitting criteria and strategies.
The algorithm can take as input criteria for splitting the states,
which aim to partition the existing behavior information, with
respect to the measured parameter values, into subsets that
represent the same behavior. We propose two novel criteria,
the Parameter test and the Q-value. Also, the algorithm can
adopt strategies that perform splitting of one or multiple states,
employing small or big amounts of information on behavior.
Reuse of information on system behavior. It is essential
that we do not waste collected information. Therefore, if an
old state is replaced with two new ones, the information used
to train the old state is re-used to train the new ones. This
way, even though new states are introduced, these are already
trained and their values already represent all the experiences
acquired since the start of the model’s life. The contributions
of this work are:
• The MDP DT algorithm that performs adaptive state space

partitioning for elastic resource management.
• Two splitting criteria, the Parameter test and the Q-value

test that decide how the system behavior changes w.r.t. the
measured parameter values, and split states.
• Three splitting strategies, Chain Split, Reset Split and Two-
phase Split, which can be used in combination depending
on the modeled computing environment.
• A thorough experimental study on simulation that provides
insight on the behavior of the MDP DT algorithm, the
splitting criteria, employed statistical tests and splitting
strategies, and allow the calibration of the algorithm for
optimal performance.
• An extensive experimental study on a real large-scale
elastic cluster based on the calibration resulted from the sim-
ulation study, which proves the effectiveness of MDP DT
in taking optimal resource management decisions fast, while

1Available at https://github.com/klolos/reinforcement learning

TABLE I: Terminology
Term Type Semantics

collect measurements function collects real system measurements
state vector stores state values with respect to values in col-

lect measurements
select action function selects an action given the current state s
m, m’ vector an ordered set of real parameter measurements
r real stores the value of a reward
get reward function calculates the reward given a measurement m
a integer stores the value of an action
e vector stores the measurements m, m’ for states s, s’ respec-

tively, the action a and the reward r from s to s’
experiences 2D vector stores the experiences e for a pair of states s and s’
transitions 3D vector stores the number of transitions from state s to s’ taking

action a
rewards 3D vector stores the accumulated reward r for transitions from state

s to s’ taking action a
optimal action function returns the optimal action a for a state s

taking into account tens of parameters, and its superiority
in comparison with classical full model-based and model-
free-based algorithms.
In the rest of this paper: Section II describes the proposed

MDP DT algorithm as well as splitting criteria and strategies.
Section III presents the experimental study on simulation.
Section IV presents experiments on a real cloud environment
and Section V summarizes related work. Section VI concludes
the paper. A more detailed technical report of this paper can
be found in [11].

II. THE MDP DT ALGORITHM
In this section we present our novel algorithm for elastic

resource management based on adaptive state space partition-
ing and the use of decision trees. In [11] we outline the basic
notations regarding Markov Decision Processes (MDPs) and
we discuss preliminary knowledge. In a typical RL setting, the
world is assumed to be in one of a finite number of states,
and from each state a number of actions are available. Upon
the execution of an action, a scalar reinforcement is received
and the world transitions to a new state. An algorithm is
optimal in the sense that it chooses actions that maximize
some predefined long-term measure of the reinforcements.
We select a model-based approach, i.e. the agent attempts
to find the exact behavior of the world, in the form of the
transition and reward functions, and then calculate the optimal
policy using dynamic programming approaches [3], or using
alternative algorithms such as Prioritized Sweeping [14] to
decrease the required calculation in each step. A full-model
approach requires a small training set in order to converge to
an optimal policy, which makes it a preferable choice.
A. Overview

Goal. The computing environment consists of the system
and the workload, and the system resources, which are elastic
and are used to accommodate the workload execution. The
parameters of the system resources and the parameters of the
workload are used to model the environment. These can be
multiple, behave in an interrelated or independent manner,
play a significant or insignificant role in the performance of
workload execution, and may be related to:

Parameters of system resources: cluster size, the amount
of VMs, the amount of RAM per VM, the number of virtual
CPUs (VCPUs) per VM, the storage capacity per VM, network
characteristics, etc.

Parameters of the workload: CPU and network utilization,
I/O reqs/sec, average job latency, etc.
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Our goal is to accommodate the workload execution by
adapting in a dynamic and online manner the system resources,
so that it is executed efficiently and resources are not over-
provisioned. We need to do this without knowing in advance
the characteristics, role and interaction of the parameters of
system resources and workload.

Motivating Example: A start-up company hosts services
in a public IaaS cloud. The company employs a distributed
data-store (for instance, a NoSQL database) to handle user-
generated workload that consists, e.g., of a mix of read and
write requests. The administrator wants to optimize a given
business policy, typically of the form “maximize performance
while minimizing the cost of operating the infrastructure”
under variable and unpredictable loads. For example, if the
company offers user-facing low-latency services, the perfor-
mance can be measured based on throughput, and the cost can
be the cost of renting the underlying IaaS services. In order
to achieve this she wants to use an automated mechanism to
perform one or both of the following: (i) scale the system,
(e.g., change the cluster size, the RAM size, etc.) or (ii) re-
configure the system (e.g., increase cache size, change repli-
cation factor, etc). Such a mechanism may implement a rule-
based technique, like one of the aforementioned frameworks
[1], which monitors the value of representative performance
parameters, such as CPU, RAM usage, incoming workload,
etc. and perform specific scaling and reconfiguration actions.
This has the following shortcomings. First, it is difficult to
detect which, among the numerous, system parameters affect
performance, as they are application and workload dependent.
For example, in a specific write-heavy scenario the CPU usage
may not be affected, as the bottleneck is mainly due to I/O
operations and, thus, a CPU based rule will not work. Second,
even if we can detect the parameters, it is difficult to determine
which the respective actions should be. For example, even if
we can conclude that for a write-heavy scenario we need a I/O
rule, the appropriate action may not be obvious: for instance,
increasing the RAM and cache size of existing servers to avoid
I/O thrashing may be a better action than adding more servers.
Third, it is difficult to detect the threshold values based on
which actions need to be triggered. For example, a pair of
thresholds on “high”/“low” CPU usage, a threshold on the
number I/O ops or on memory usage are very application-
specific and need a lot of fine tuning. For all three reasons,
the translation of higher level business policies into a rule-
based approach that automatically scales and reconfigures the
system is difficult and error-prone.

Solution. We create a model of the computing environment
by representing each selected parameter of system resources
and workload with a distinct dimension. Therefore the envi-
ronment is modelled by a multi-dimensional space in which
all possible states of the environment can be represented, with
variable detail. We create a novel MDP algorithm that starts
with one or a few model states that cover the entire multi-
dimensional state space. The algorithm gradually partitions
the coarse state space into finer states depending on observed
measurements of the modelled environment parameters. The

Algorithm 1 MDP DT Algorithm
1: m = collect measurements()
2: while True do
3: s = state(m); a = select action(s); execute action(a); sleep()
4: m′ = collect measurements(); r = get reward(m′)
5: e = (m,m′, a, r); UpdateMDPModel(e); UpdateModelV alues(s)
6: ApplySplittingCriterion(s); m = m′

7:
8: procedure UPDATEMDPMODEL(e)
9: m,m′, a, r = e; s = state(m); s′ = state(m′)

10: experiences(s, s′).add(e); transitions(s, a, s′)++;
11: rewards(s, a, s′) += r
12:

algorithm employs a decision tree in order to perform this
dynamic and adaptive partitioning. At each state the algorithm
takes an action in order to make transition toward another state
by optimizing a user defined reward function. Such actions
may change the values of some of the parameters of the system
resources, e.g. change of (i) the size of the cluster in terms
of machines and (ii) the number of VMs. Nevertheless, even
though the actions change only some parameters of the system
resources, they may affect many more such parameters, as well
as parameters of the workload. The type of actions allowed is
given as an input to the algorithm.

Motivating Example - continued: Employing our MDP
approach the administrator of the startup company needs only
to provide the following: a) a list of parameters she considers
important to performance (even if some of them may turn out
to not affect performance, at least for the observed states), b)
a list of available scaling or reconfiguration actions, c) a high-
level user-defined policy in the form of a reward function that
encapsulates the maximization of performance and minimiza-
tion of cost, and, optionally d) some initial knowledge in the
form of a “training set” to speed up the learning process (in
Section III we give a concrete example of parameters, actions
and policies). Then, our algorithm adaptively detects both the
set of parameters that affect the reward and the appropriate
scaling and reconfiguration actions that maximize the reward.

Description of the algorithm. The MDP DT algorithm is
presented in Alg. 1 and Table I summarizes its terminology.
MDP DT starts with a single tree node (the root of the
decision tree), which corresponds to one state covering the
entire state space of the model of the environment. A vector
state is maintained for all possible states of the environment.
Each element s in state corresponds to a list of Q-states,
holding the number of transitions transitions and the sum of
rewards rewards towards each state s′ in the model, along
with the total number of times the action has been taken.
The current state s is represented by a set of measurements
m that contain the names and current values for all the
parameters of the environment. The state s′ to which action
a leads is represented by a respective set of measurements
m′. Given the current state s (and corresponding measure-
ments m), the algorithm selects an action a, the action is
performed, and the algorithm collects the measurements m′

for the new state s′ of the environment, for which it calculates
the reward r. This transition experience e = (m, a,m′, r) is
used to update the MDP model, the model values and split
the state s, using procedures UpdateMDPModel, UpdateMD-
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Algorithm 2 Parameter Test
1: procedure SPLITPARAMETERTEST(s)
2: a = optimal action(s)
3: es = {e | e ∈ experiences(s, ∗), e.a = a}
4: e+ = {e | e ∈ es, q value(e) ≥ value(a)}
5: e− = {e | e ∈ es, q value(e) < value(a)}
6: lowest error = 1
7: for p in parameters do
8: p− = {e.m[p] | e ∈ e−}, p+ = {e.m[p] | e ∈ e+}
9: error prob = stat test(p−, p+)

10: if error prob < lowest error then
11: lowest error = error prob
12: best p = p, best p− = p−, best p+ = p+

13: if lowest error ≤ max type I error then
14: mean− = mean(best p−), mean+ = mean(best p+)
15: split point = (mean− +mean+)/2
16: split(s, best p, split point)

Algorithm 3 Q Value Test
1: procedure SPLITQVALUETEST(s)
2: a = optimal action(s), es = {e | e ∈ experiences(s, ∗), e.a = a}
3: N = length(es), lowest error = 1
4: for p in parameters do
5: sort by param(es, p)
6: for i in 1..N − 1 do
7: if es[i].m[p] = es[i+ 1].m[p] then
8: continue
9: q− = {q value(e) | e ∈ es[1..i]}

10: q+ = {q value(e) | e ∈ es[i+ 1..N ]}
11: error prob = stat test(q−, q+)
12: if error prob < lowest error then
13: lowest error = error prob, best p = p
14: split point = (e.m[p] + e′.m[p])/2

15: if lowest error ≤ max type I error then
16: split(s, best p, split point)

17:
18: function QVALUE(e)
19: m,m′, a, r = e
20: s′ = state(m′), a′ = optimal action(s′)
21: return r + γ · value(a′)

PValues and ApplySplittingCriterion, respectively. Procedure
UpdateMDPModel saves the experience e = (m,m′, a, r) in
the experiences vector in the place corresponding to the pair
of s, s′, increases the number of transitions for the pair of
s, s′ and adds the new reward r to the accumulated reward
for the pair of s, s′. Procedure UpdateMDPValues updates the
Q-state values for state s by employing one of the classical
update algorithms: single update, value iteration, and prior-
itized sweeping. Procedure ApplySplittingCriterion considers
splitting state s in two new states, based on a criterion. We
propose two splitting criteria.
B. Splitting Criteria

The proposed criteria, parameter test and the Q-value test,
have two strengths. First, the Q-value derived from each
experience is calculated using the current, most accurate values
of the states instead of the values at the time the action was
performed. Second, the partitioning of experiences is done by
comparing them to the current value of state s instead of
partitioning them to experiences that increased or decreased
the Q-value at the time of their execution. These features allow
reliable re-use of experiences collected early in the training
processing, at which point the values of the states were not yet
known, throughout the lifetime and adaptation of the model.

Parameter test: Procedure SplitParameterTest presented in
Alg. 2 implements the splitting criterion parameter test which
works as follows. From the experiences e = (m, a,m′, r)

Algorithm 4 Splitting a State
1: procedure SPLIT(s, param, point)
2: transitions(∗, ∗, s) = 0, rewards(∗, ∗, s) = 0
3: es = {e | e ∈ experiences(s, ∗) ∪ experiences(∗, s)}
4: experiences(s, ∗) = experiences(∗, s) = []
5: replace with decision node(s, param, point)
6: for e in es do
7: UpdateMDPModel(e)

8: UpdateModelV alues(s)

stored in the experiences vector for every pair of s, s′, we
isolate the experiences where the action a was the optimal
action for state s (i.e., a led to the highest Q-value). For each of
these experiences, we find the state s′ in the current model that
corresponds to m′ using the decision tree, and calculate the
value q(m, a) = r + γV (s′). We then partition this subset of
experiences to two lists e− and e+ by comparing q(m, a) with
the current value of the optimal action for state s. For each
parameter p we divide the values of p for the measurements
in e− and e+ in two lists p− and p+, and run a statistical
test on p− and p+ to determine the probability that the two
samples come from the same population. We want to split the
parameter with the lowest such probability, as long as it is
lower than the error max type I error, else the procedure
aborts. If the split proceeds, the splitting point is the average
of the means of p− and p+.

Q-value test: Procedure SplitQValueTest presented in Alg.3
implements the splitting criterion Q-value test which works as
follows. Again, from the experiences e = (m, a,m′, r) related
to pairs of s, s′, we isolate the experiences where the action a
is the current optimal action for s. For each such experience,
we find the state s′ that corresponds to m′ using the current
decision tree and calculate q(m, a) = r + γV (s′). For each
parameter p of the system, we sort these experiences based on
the value of p, and consider splitting in the midpoint between
each two consecutive unequal values. For that purpose, we run
a statistical test on the Q-values in the two resulting sets of
experiences, and choose the splitting point that produces the
lowest probability that represents the fact the two sets of values
are statistically indifferent, as long as that probability is less
than the error max type I error. This criterion performs
a straightforward comparison of subsets of experiences with
respect to the optimality of the taken action. It is a criterion
that we adapted from the Continuous U Tree algorithm [24],
and resembles splitting criteria used in traditional algorithms
for decision tree induction such as C4.5 [18]. Additionally,
we experimented with splitting in the midpoint between the
two unequal consecutive measurements that are closest to the
median. This considers a single splitting point per parameter,
which splits the experiences approximately equally.

C. Performing Splits

Once a split has been decided by the parameter test or the
Q-value test for a state s, the splitting is performed by proce-
dure Split shown in Alg. 4. Figure 1 showcases this procedure.
For state s, all transition and reward information is removed
from the transitions and rewards vectors, respectively. Also,
the experiences e that involve s as the starting or the ending
state are accumulated and stored in temporary storage es.
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(a) The decision tree before
splitting a state

(b) Experiences concering the
state to be split are transferred
to temporary storage, respective
transition and reward informa-
tion is removed.

(c) The state is replaced by a
new decision node and two chil-
dren corresponding to the two
new states.

(d) Experiences in temporary
storage are used to train the
new states, and calculate the new
transitions and rewards.

Fig. 1: Splitting a state s into two states s1, s2: s1 replaces s in the state vector and the s2 is appended at the end.

These experiences are removed from the experiences vector,
because state s will be substituted by two new states s1, s2.
This is performed in two steps: First, the node in the decision
tree that corresponds to state s is replaced with a new decision
node, and two children nodes, (leafs), that correspond to the
two new states that result from splitting s. Second, one of
the new states takes the place of the split state s in the state
vector and the second new state takes a new position appended
at the end of the state vector. The leaf nodes are linked to the
positions in the state vector of the corresponding states. The
reward, transition and experiences vectors are updated and
extended accordingly, with new elements for combinations of
s1, s2 with all other states. The obsolete experiences es are
used to retrain the new states: For each e = (m, a,m′, r), the
new states s and s′ are found using the updated decision tree,
and the respective positions in the reward and transition
vectors are updated.

D. Statistical Tests

The splitting criteria include a statistical test to determine
whether the two groups of compared values are statistically
different from each other. For this, we employ four different
statistical tests. The statistic formulas can be found in [11].

Student’s t-test: The equal variance t-test, widely known
as Student’s t-test, estimates the probability that the two
compared samples have a different mean, under the assumption
that they share the same variance.

Welch’s test: The unequal variance t-test, also known as
Welch’s test, is an alternative to the Student’s t-test that also
tests whether the population means are different, but without
assuming that they share the same variance.

Mann Whitney U test: This test is also an alternative to
the t-test that does not require the assumption that the two
populations follow a normal distribution, and is used on both
discrete and continuous data. It calculates a U statistic, with
known distribution under the null hypothesis (for sizes above
20 we assume a normal distribution).

Kolmogorov-Smirnov test: The two sample Kolmogorov
Smirnov test can be used to test whether two underlying one-
dimensional probability distributions differ, without assuming
normality for the two distributions.

E. Splitting Strategy

By default, the MDP DT algorithm attempts to split the
starting state of each experience after this has been acquired,
and depending only on this. However, the effectiveness of the
algorithm may be better if the splitting is performed after the
acquisition of more than one experiences and/or independently
of these specific experiences. We investigate this with three
basic splitting strategies:
• Chain Split: The Chain Split strategy aims at accelerating
the division of the state space into finer states, by accelerat-
ing the growth of the decision tree. It attempts to split every
node of the tree, regardless of whether it was involved in
the current experience. The rationale is that the change in
the value of the current state may affect also the value of
other states, and, therefore, it should trigger the splitting not
only of the current state, but also of others.
• Reset Split: The Reset Split strategy aims at correcting
splitting mistakes, by resetting the decision tree periodically,
and by taking more accurate decisions after each reset,
considering all accumulated experiences.
• Two-phase Split: The Two-phase Split strategy splits
periodically based on accumulated experiences. Therefore,
in this case the MDP DT algorithm is versioned so that it
has two phases, a Data Gathering phase that collects data
but does not perform any splits, and a Processing Phase
that the tree nodes are tested one by one to check if a split
is needed, and if so, perform the splits.

III. SIMULATION RESULTS
In this section we show experimental results on a simula-

tion of the elastic computing environment. The agent makes
elasticity decisions that resize a cluster running a database
under a varying incoming load. The load consists of read and
write requests, and the cluster capacity (i.e., the maximum
achievable query throughput) depends on its size as well
as the percentage of the incoming requests that are reads.
Specifically:
• The cluster size can vary between 1 and 20 VMs.
• The available actions are: the increase cluster size by one,
decrease the cluster size by one, or do nothing.
• The incoming load is a sinusoidal function of time:
load(t) = 50 + 50sin

(
2πt
250

)
.
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Fig. 2: Performance comparison of all the splitting criteria
using their optimal settings (400 runs)
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Fig. 3: Strategies performance, size and accuracy, (200 runs)

• The percentage of incoming read requests is a sinusoidal
function of time with a different period: r(t) = 0.75 +
0.25sin

(
2πt
340

)
.

• If vms(t) is the number of VMs currently, the cluster
capacity is: capacity(t) = 10 · vms(t) · r(t).
• The reward for each action depends on the state of the

cluster after executing the action and is given by Rt =
min(capacity(t+ 1), load(t+ 1))− 3 · vms(t+ 1).
The reward function encourages the agent to increase the

size of the cluster to the point where it can fully serve the
incoming load, but punishes it for going further than that.
In order to test the algorithm’s ability to partition the state
space in a meaningful manner, apart from the three relevant
parameters (size of the cluster, incoming load and percentage
of reads) the dimensions of the model include seven additional
parameters, the values of which vary in a random manner. Four
of them follow a uniform distribution within [0, 1], while the
rest take integer values within [0, 9] with equal probability. To
be successful the algorithm needs to partition the state space
using the three relevant parameters and ignore the rest.

All experiments include a training phase and an evaluation
phase. During the training phase, the selected action at each
step is a random action with probability e, or the optimal
action with probability 1 − e (e-greedy strategy). During the
evaluation phase only optimal actions are selected, as proposed
by the algorithm. The metric according to which different
options are compared is the sum of rewards that the agent
managed to accumulate during the evaluation phase.

A. Splitting Criteria

In this experiment we compare the performance of the
splitting criteria using a max type I error value of 0.002
for which all the splitting criteria behaved optimally (more
details can be found in [11]).In Fig. 2 the two tests that do not
assume a normal distribution of the values, the Kolmogorov-
Smirnov test and the Mann Whitney U test, perform better in
the Parameter test criterion, while the two tests that assume
normal distributions perform better employed in the Q-value
test. The reason is that some of the parameters are discrete; this
means that their distribution differs significantly from a normal
distribution, resulting in lower performance of the tests if they

TABLE II: Splitting Strategies
Name Description

Default Attempt to split the starting state for each new experience.
Chain Perform a Chain Split with every experience.
Training Allow splitting to begin after a training of 2500 steps and then start splitting

with every new experience.
Training & Chain Allow splitting to begin after a training of 5000 steps, perform one chain

split at that time; then continue splitting with every experience.
Reset 500 & Chain At each step perform a Chain Split and every 500 steps reset the decision

tree.
Reset 500 & Chain
MP

As above, but using the multiple points Q-value test criterion, attempting to
split each state at multiple points per parameter.

Training & Chain &
Reset

After a training of 5000 steps, perform a Chain Split and then do the same
by resetting the tree every 500 steps.

Two-phase 10 After a Data Gathering phase of 10 steps, run a Processing phase.
Two-phase 100 After a Data Gathering phase of 100 steps, run a Processing phase.
Two-phase 500 After a Data Gathering phase of 500 steps, run a Processing phase.

are applied on the values of these parameters. Oppositely, these
two tests perform better employed in the Q-value test criterion,
since the Q-values are generally not discrete.

Among all options, the Mann Whitney U test achieved the
best performance, employed in the Parameter test. Finally,
between the two available options for the Q-value test, namely
considering a single or multiple splitting points, the considera-
tion of a single splitting point achieves generally better results,
while it produces smaller trees.

B. Splitting Strategy

We compare various different splitting strategies by mixing
the three basic strategies defined in Section II-E, and in Table
II we present the created variety of strategies.

In Figure 3 we present the performance in terms of total re-
wards, the size of the produced decision tree and the accuracy
for every different strategy. Even though Chain Split adopts a
much more aggressive (and computationally intensive) strategy
in attempting to grow the decision tree, it has a performance
similar to the Default strategy. Also, even though Chain Split
performs 30 additional splits on average, the split quality
decreases. The relatively low amount of additional splits
reveals that the default strategy already depletes most of the
opportunities to create new states. Waiting for more data to
be available in order to start splitting did not perform well.
Despite offering a slight increase in the accuracy of the splits,
it causes a 10% reduction in their number and in the case of
strategy (iv) a drop in performance. Periodically resetting the
tree to rebuild it provides the most accurate splits on the final
tree, since the splits are performed with the maximum amount
of data. However, the resulting tree size is significantly smaller.

The results for strategy (vii) show the impact of having
a long training before starting splitting, then doing a chain
split, and resetting the decision tree every 500 steps thereafter.
During the long training the optimal action in each region of
the state space is repeated only a few times due to the e-greedy
strategy. Less data is available in order to perform splits, which
results in a smaller tree, with consequences in performance.
Finally, using a Data Gathering and a Processing phase
periodically instead of regularly splitting performed better the
smaller that period was. If Processing is performed every 10
steps it nearly reached the performance of the default strategy
(though having a significantly larger running time), but for
periods larger than that it falls behind. Overall, the results
of this experiment show that the default splitting method is
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(a) Sinusoidal load (minimal dataset)
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(b) Sinusoidal load (small dataset)
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(c) Sinusoidal load (large dataset)

4

6

8

10

12

14

16

C
lu

st
er

 S
iz

eCluster Size

0 200 400 600 800 1000 1200 1400 1600
Time (min)

15K

20K

25K

30K

35K

40K

45K

L
o

ad
 (

re
q

/s
ec

)

Load

(d) Sinusoidal load with alt. amplitude
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(e) Slow sinusoidal load
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(f) Square pulse load.

Fig. 4: MDP DT under different training data (Figs 4a, 4b and 4c) and workload types (Figs 4d, 4e and 4f).

efficient and effective.

IV. EXPERIMENTAL RESULTS

In this section we evaluate our findings on a real experimen-
tal setup. In subsection IV-B we evaluate the performance of
MDP DT using different training data sizes and workloads,
in subsection IV-C we compare MDP DT with model free,
static partitioning and threshold algorithms and finally in IV-D
we showcase MDP DT’s adaptation ability to benefit from
multiple parameters and perform correct decisions.

A. System and Algorithm Setup

In order to test our proposal in a real cloud environment,
we use an HBase 1.1.2 NoSQL distributed database cluster
running on top of Hadoop 2.5.2. We generate a mix of different
read and write intensive workloads of varying amplitude by
utilizing the YCSB [7] benchmark, while Ganglia [12] is
used for the collection of the NoSQL cluster metrics. The
cluster runs on a private OpenStack IaaS cloud setup. The
coordination of the cluster is performed by a modified version
of [23]. In any case, we allow for 5 different actions, which
include adding or removing 1 or 2 VMs from the cluster, or
doing nothing. Decisions are taken every 15 minutes, as it
is found that this time is necessary for the system to reach a
steady state after every reconfiguration. This fact also confirms
our full-model choice, since this time is adequate to calculate
the updated model after every decision. Every workload runs
for approximately 10 hours during which around 20M queries
are being sent. The cluster size used in our experiments ranges
between 4 and 15 VMs. Each VM in the HBase cluster has
1GB of RAM, 10GB of storage space and 1 virtual CPU,
while the master node has 4GB of RAM, 10GB of storage
and 4 virtual CPU’s. For the training of the decision tree
based models we use a set of 12 parameters including: The
cluster size, the amount of RAM per VM, the percentage of
free RAM, the number of virtual CPU’s per VM, the CPU
utilization, the storage capacity per VM, the number of I/O
requests per second, the CPU time spent waiting for I/O
operations, a linear prediction of the next incoming load, the

percentage of read requests in the queries, the average latency
of the queries and the network utilization.

For the Decision Tree based algorithms we split the state
space using the Mann Whitney U test with the Parameter Test
splitting criterion over a default splitting strategy, following
our findings in sections III-A and III-B. The model-based al-
gorithms update their optimal policies utilizing the Prioritized
Sweeping Algorithm [14]. For the static partitioning algorithms
we select two dimensions that were found to be the most
relevant for the cluster performance (i.e., the cluster size and
the linear load prediction) divided in 12 and 8 equal partitions
respectively, resulting in 96 states. We note that this setup is
optimal for the static schemes, as they require a small number
of relevant states to behave correctly. The reward function is
Rt = served requests per sec(t + 1) − 800 · vms(t + 1)
and encourages the agent to increase the cluster size to serve
the load, but punishes it for going further.

B. MDP DT Behavior

In this section we test MDP DT using different workloads
and training set sizes. In Figure 4 we present our findings.
Every experiment runs for a total of 700-1200 minutes (X
axis). The solid line represents the workload in terms of
Reqs/sec (left Y axis) whereas the dotted line represents the
cluster size (right Y axis). Every step in the dotted line
represents an MDP DT action of adding or removing VMs.
We initialize the MDP DT decision tree with 6 states and let
it partition the state space on its own from that point on. The
training load is a sinusoidal load of varying amplitude. First,
we run MDP DT with a minimal dataset of 500 experiences
(Figure 4a). When trained with this dataset, only 17 splits
are performed during the training (4 using the size of the
cluster and 13 using the incoming load), increasing the total
number of states to 22. During this run 12 additional splits are
performed (4 using cluster size, 7 using incoming load and 1
using latency), allowing MDP DT to continuously adapt and
follow the incoming load (Fig. 4a). When provided with bigger
datasets of 1000 and 20000 experiences, the performance
improves and very closely converges to the incoming load,
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(a) MDP DT, small dataset
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(b) MDP, small dataset
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(c) QDT, small dataset
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(d) Q-learning, small dataset
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(e) MDP DT, large dataset
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(f) MDP, large dataset
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(g) QDT, large dataset
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(h) Q-learning, large dataset
Fig. 5: Comparison of the behavior of model-based vs model-free and decision-tree based vs static algorithms.
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(a) REMOVE at 30%, ADD at 60%
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(b) REMOVE at 70%, ADD at 90%
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(c) REMOVE at 50%, ADD at 70%

Fig. 6: Threshold-based approach behavior for different ADD and REMOVE thresholds on the aggregated %CPU metric

ending up with 54 and 576 states respectively (Fig. 4b and 4c).
Finally, in Fig. 4d, 4e and 4f we observe how MDP DT adapts
to arbitrary workloads that has not previously encountered.

C. Using Different Algorithms

In this section we test the system’s behavior compared
to other RL and threshold based schemes. RL and thresh-
old schemes are presented in Figures 5 and 6 respectively
whereas Table III summarizes results regarding every solu-
tion’s aggregated cost and profit. RL approaches consist of
model-free (i.e., Q-learning) and static partitioning schemes.
The combinations of these schemes lead to four different
algorithms, namely the model-based adaptively partitioned
MDP DT, the model-based statically partitioned MDP, and
the respective model-free versions (Q DT and Q-learning).
Regarding RL (Figure 5), we notice that MDP DT follows
the applied workload very closely (Figures 5a and 5e), with
a better result when a large training set is utilized (Figure
5e). Indeed the algorithm’s decisions over time depicted in
the red dotted line seem to perfectly adapt to the observed
workload, since both lines almost overlap. The full-model
based MDP algorithm also performs well in this setting (Figure
5f), managing to follow the incoming load reasonably well
even when trained with the small dataset (Figure 5b). At the
same time, it manages to perform accurately when trained with
more data. This is not a surprise since this problem has a
reasonably simple state space, and a partitioning using only
the size of the cluster and the incoming load is quite sufficient
to capture the behavior in this experiment: in this ideal setting
the state space is very accurately defined and also a lot of
training data is available. Yet, in sudden load spikes observed
in the max and min load values it takes more time to respond
compared to the MDP DT case.

The Q-learning based algorithms though both require a
large amount of data to follow the incoming load effectively
(Figures 5c, 5d, 5g and 5h). In this experiment the decision
tree based Q-learning algorithm (QDT) achieves the weakest
performance with the small dataset (Figure 5c). With this
few data this is not totally unexpected, since at the start
of the training that model uses the first data it acquires to
perform splits, but then discards it after the splits have been
performed, leaving it with very little available information to
make decisions. If more training data is provided though, it
catches up to the traditional Q-learning model (Figure 5g).
However, they both are noticeably less stable (they cannot
follow the observed load in an adequate manner) compared to
the full model approaches.

In the threshold-based scheme (Figure 6) we monitor the
aggregated cluster %CPU usage and we add two different
threshold rules, namely ADD and REMOVE, that trigger a
cluster expansion or contraction when the monitored metric
exceeds or drops the predefined threshold values respectively.
The %CPU metric was selected as it was found to be the
most representative of the cluster’s performance. We have
set an upper and lower limit on the total cluster size to
avoid mis-calibration issues. In Figure 6a we notice that the
cluster constantly increases its size to the maximum possible,
without being able to follow the applied load: this is due
to a combination of a low ADD threshold that is constantly
triggered even in an underloaded cluster and a low REMOVE
threshold that is never crossed since the cluster’s CPU usage
is constantly above this number. In Figure 6b the system
has the exact opposite behavior and the cluster size drops to
the minimum possible without adapting to the applied load:
in that case, the REMOVE threshold is constantly triggered
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(a) All parameters
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(b) Average latency
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(c) CPU utilization
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(d) One min load
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(e) Network Usage
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(f) Load prediction

Fig. 7: System behavior when allowing splits with only the cluster size plus one additional parameter

shrinking the cluster to its minimum size. On the other hand,
a very high ADD threshold is never met, as even in overloaded
cases the %CPU never crosses a maximum number of 80%-
85% since HBase does not consume the entire CPU, leaving
room for other OS-related tasks. Nevertheless, this boundary
is system and application specific. However, a small cluster
size cannot accommodate the applied load (Table III). After a
lot of fine-tuning, in Figure 6c we managed to find the most
appropriate ADD and REMOVE parameters that adequately
follow the applied load. In any case, we observe that even after
a very tedious and error-prone calibration task that requires
system specific knowledge, MDP DT (Figure 5e) managed
to outperform the threshold based approach by adaptively
identifying both the relevant parameters and the appropriate
scaling action timing.

In Table III we measure and compare the achieved profit
(second column) and cost in terms of cloud infrastructure rent-
ing (third column) of every algorithm. The profit is calculated
as a percentage of the total queries actually served to the
total of 20M received queries (assuming a small charging
fee for answering every query, a typical business model
followed in cloud hosting services, this is proportional to the
actual financial profit). The infrastructure cost is calculated
by summing the amount of acquired hardware resources (i.e.,
cluster size) in every time unit, which is proportional to the
areas under the dashed cluster-size lines in Figures 5 and 6. We
report the percentage of every algorithm’s cost compared to
the MDP DT’s cost. We notice that MDP DT (first two lines)
is constantly cheaper with values ranging from 10%-40% for
RL based schemes and 40%- 65% for threshold schemes while
being able to acquire almost all the available profit, losing only
2% of the applied queries. The most expensive RL scheme
is QDT small due to its constant resource over-provision
(Figure 5d) and the next cheaper to MDP DT scheme is Q-
learning small caused by a resource under-provisioning that
results in 7% profit loss (Figure 5d). Regarding the threshold-
based schemes, the 30-60 scheme is 60% more expensive,
as it constantly utilizes the maximum resources (Figure 6a),
whereas even in the calibrated 50-70 scheme the extra cost
is more than 40% (Figure 6c). Finally, the 70-90 scheme is
40% cheaper than MDP DT, nevertheless this comes at a price
of losing 26% of the available profit due to resource under-
provisioning. In any case, MDP DT is the only algorithm that
combines a low cost and a high profit.

TABLE III: Profit & Cost of RL & Threshold Algorithms
Algorithm % Achieved Profit % Cost vs MDP DT

MDP DT, small 98 100
MDP DT large 98 106
MDP small 97.5 112.2
MDP large 98 114.2
QDT small 97.5 138
QDT large 98 118
Q-learning small 93 108
Q-learning large 99 116
Threshold 30 60 99 163.7
Threshold 70 90 74 60.5
Threshold 50 70 99 140

D. Restricting the Splitting Parameters

In order to test the algorithm’s ability to partition the
state space using different parameters, as well as to test
the reliability of some of the parameters in predicting the
incoming load, we experiment with restricting the parameters
with which the algorithm is allowed to partition the state space.
For that purpose, we experiment with training the algorithm
from a small dataset of 1500 experiences, but restricting the
parameters with which the algorithm is allowed to partition the
state space to only the size of the cluster plus one additional
parameter each time. The parameters used are the CPU util.,
the one minute averaged system load, the incoming load
prediction, the network usage and the average latency.

In Figure 7 we present our findings. For all the parameters,
the system seems to be able to find a correlation between the
given parameter and the rewards obtained, and starts following
the incoming load. Of course, the performance is significantly
worse compared to the default case where all the available
information is provided (Figure 7a), and thus the training of
the model is noticeably slower: In Figures 7b, 7c, 7d, 7e and 7f
decisions (dotted lines) do not follow workload as smooth as
in Figure 7a. The fact that these correlations exist and can be
detected even from a small dataset of only 1500 points, reveals
the fact that it is possible, using techniques like the ones
described in this work, to exploit these correlations in order
to implement policies in systems with complicated behavior.

V. RELATED WORK
The proposed approach is related to RL and adaptive re-

source management. We compare with methods that adaptively
partition the state space and manage cloud system resources.

Adaptive State Space Partitioning: In [6], the authors
propose a modification of Q-learning that uses a decision tree
to generalize over the input. The agent goal is to control a
character in a 2D video game, where the state is a bit string
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representing the pixels of the on-screen game representation.
While this approach succeeded at reducing a large state space
to a manageable number of states, its applications are limited
since it requires that the system parameters can only take two
values, 0 and 1. In [17], a Q-learning algorithm that uses
a decision tree to dynamically partition the state space is
proposed. The algorithm discards training information each
time a state is split and it is not based on a full model, which
results in it requiring a larger set of experiences to train. In
[13], a full model based algorithm using a decision tree to
partition the state space is proposed. It is called U Tree, and it
is able to work strictly on discrete state spaces. An extension
is proposed in [24], called Continuous U Tree. The splitting
criterion was a combination of the Kolmogorov-Smirnov and
the Q-value tests on multiple points, which was outperformed
by the Mann Whitney U test with the Parameter test criteria.

Adaptive Resource Management: Elastic resource scal-
ing is typically employed in a cloud setting to regulate
resource size and type according to observed workload. Ama-
zon’s autoscaling service [1] employs simple threshold based
rules, whereas Google, RackSpace, etc., offer similar services.
CloudScale [20] employs thresholds to meet user defined
SLAs, while it focuses on accurate predictions. Lim et al
[10] set thresholds to aggregated CPU usage and response
time to regulate the HDFS cluster size. ElasTraS [8], SCADS
[22] and AGILE [15] employ rule based approaches for
scaling and reconfigurations. Although rule-based approaches
are easy to implement and model, they require specific lower
level knowledge of the correct parameters and the respective
threshold values, limiting their broader applicability.

On the contrary, systems that employ RL or similar ap-
proaches allow the user to set higher level policies, like, min-
imize cost and maximize query throughput [19], [23]. In [19]
a model-based RL algorithm to automatically select optimal
configuration settings for clusters of VMs is proposed. How-
ever, static partitioning limits its applicability to 10 dimen-
sions. In [5], RL finds optimal configuration settings for online
web systems. High dimensionality is handled with parameter
grouping according to their similarity, yet partitioning is static
and uniform. An RL approach that splits the system parameters
into two groups, namely application and cluster configuration
parameters, is adopted by the authors of [4]. Simplex-based
space reduction is implemented to further narrow down the
state space, but such techniques can easily be trapped in local
minima and offer no guarantees of convergence to an optimal
configuration. In TIRAMOLA [9], [23], the MDP model uses
a fixed state model both in terms of parameter size and grain.
In [2] Q-learning is employed, and its execution is parallelized
and used to regulate a VM cluster size. PerfEnforce [16] offers
three scaling strategies to guarantee SLAs for analytical cloud
workloads and one of them is based on RL [23]. They only
employ RL and do not perform any algorithmic improvements.

VI. CONCLUSIONS
In this paper we presented MDP DT, an RL algorithm that

adaptively partitions the state space utilizing novel statistical

criteria and strategies to perform accurate splits without losing
already collected experiences. We calibrated the algorithm’s
parameters utilizing a simulation environment and we exper-
imentally evaluated MDP DT’s performance in a real clus-
ter deployment where we elastically scaled a shared-nothing
NoSQL database cluster. MDP DT was able to identify and
create only the relevant partitions among tens of parameters,
enabling it to take accurate and fast decisions during the No-
SQL scaling process over complex not-encountered workloads
with minimal initial knowledge, compared to model-free, static
and threshold algorithms. This adaptation allowed MDP DT
to optimize the achieved profit while being 40% cheaper than
calibrated RL and threshold schemes.
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