
Automated Workload-aware Elasticity of NoSQL Clusters in the Cloud

Evie Kassela, Christina Boumpouka, Ioannis Konstantinou and Nectarios Koziris

CSLAB, National Technical University of Athens
{evie,christina,ikons,nkoziris}@cslab.ece.ntua.gr

Abstract—The use of cloud computing has gained extreme
popularity. Through cloud platforms that provide infrastruc-
ture as a service (IaaS), users can elastically provision resources
enabling automated application throttling. Usually, scaling is
either manually performed or through a service that dynami-
cally consolidates cloud resources based on a predefined policy.
However, these policies are simplistic, threshold based and may
not be able to capture specific application behaviors according
to configuration parameters and applied workload type. In
this work, we extend TIRAMOLA, a cloud-enabled framework
that allows automated resizing of NoSQL clusters, in order to
identify different workload types and apply the most beneficial
scaling action according to user defined policies. We perform
a thorough analysis of how different query types are handled
by modern NoSQL systems and evaluate the performance of
a NoSQL cluster of varying size, over mixed workload types
and magnitudes. We utilize this knowledge to fine tune the ex-
tended TIRAMOLA’s policies in order to take accurate scaling
decisions. We perform an extensive experimental evaluation of
workload aware and unaware versions on an HBase cluster and
our analysis confirms that the former can operate successfully
in any environment, behaving accordingly to any input load.

Keywords-NoSQL; elasticity; benchmarking; policy tuning;

I. INTRODUCTION

The need for efficient storage, processing, and serving

TBs or even PBs of data is now crucial not only for

traditional data-oriented companies like Google, Facebook,

etc but also for smaller ones [3]. SMEs or start-ups that

come across Big data needs is a common phenomenon.

Moreover, companies that offer Internet services to end-users

(e.g., social networking or gaming sites) typically experience

varying and unpredictable resource demands according to

user traffic [16]. Whether this demand variation is attributed

to scheduled batch processing, anticipated seasonal patterns

or unanticipated load spikes due to trending services, com-

panies require both scalable and flexible infrastructures that

can easily cope with these irregular load patterns. Therefore,

legacy approaches that consist of static application deploy-

ments over private data-centers are not an option anymore.

Cloud computing can tackle large up-front infrastructure

costs, varying resource needs and static resource allocation

problems. Whether inside a private data-center, or entirely

in the cloud, elastic platforms offer the dual advantage of

better resource utilization and cost minimization, a win-win

situation for both SMEs and larger companies.

Application elasticity, i.e., the ability to take advantage

of extra added resources or to continue to function when

idle resources are removed in a seamless manner so that

exact demand or respective SLAs are met [8] is a required

characteristic in order to setup an end-to-end elastic offering.

Nevertheless, cloud technology is not the silver bullet that

“automagically” provides these characteristics out of the box

for any possible Big data application. Elaborate mechanisms

for the accurate and timely detection of both the violation

of user defined policies during the system’s operation and

the appropriate healing action (i.e., scaling up or down

resources) are needed. Numerous research approaches have

been proposed. MET [13] and the work in [10] resize a

cluster using performance metrics taking into account the

data locality. Starfish [15] and Autoscale [14] use predictors

and take decisions to achieve the minimal costs. ShuttleDB

[9] uses a two-level elasticity mechanism with a specific

scaling policy and TIRAMOLA [18] offers elasticity based

on any user defined policy. Finally, elastic frameworks by

companies like [1], [5] have been implemented.

In this work, we build upon TIRAMOLA [18], an existing

framework that offers automated elasticity using a machine

learning approach that enables the system to adapt to work-

load variations. Although TIRAMOLA monitors applied

workload and performs the appropriate elasticity actions, it

is not configured neither to understand the applied workload

type nor what is the best action according to any encountered

mix of queries. We make the following contributions:

• We extend TIRAMOLA to take into account different

workload types such as read and write queries and fine

tune TIRAMOLA’s decision making mechanism to adjust

its behavior according to the type of the applied workload.

• We study how and why these workloads interfere consid-

ering the internal mechanisms used by any NoSQL cluster

to handle read and write queries, such as caching, etc.

• We perform a thorough evaluation of the behavior of

different cluster sizes of HBase, a commonly used NoSQL

database, over mixed workloads that vary both their

intensity and their type over time.

• Finally, we compare our findings with the original, work-

load un-aware TIRAMOLA, and present its improved

behavior as it can better keep up with workload changes.

II. TIRAMOLA OVERVIEW

TIRAMOLA is an elasticity framework for NoSQL sys-

tems featuring a modular architecture in agreement with

most frameworks in the category [10], [13]. TIRAMOLA

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 195

1.Lookup key

2a.Cache hit

Cache
miss

Fetch
block

Value

LRU Blocks
Read Cache

~μsec

~msec

3a.Buffer hit
return latest version

3b.Buffer miss
return retrieved value

Read request

RAM
DISK

STORAGE

Write Buffer
New Blocks

2c.

2b.

Hard Drive

Shards

Figure 1: Read operation data flow, costly operations shown in red.

consists of different components for monitoring, making

decisions about cluster resizes and interfacing with the

cloud. As described in [18], decision making is modeled as

a Markov Decision Process. The states S = {S1, ..., SM},

represent a cluster of i ∈ [1,M] NoSQL nodes and the

available actions in each state are to add/remove node, or

do nothing. The reward function r(s) serves as an indicator

of the profit the system would currently have, had it been

in state s. Since the user is able to define the reward

function at will, the system can implement different policies

depending on the metrics included in the reward function.In

our experiments, we select a reward function of the form:

r(s) = f(throughput, latency, V Ms).

Therefore, TIRAMOLA takes into account the performance

of the cluster in terms of total throughput and total latency

to decide the most beneficial state, but has no information

about the type of queries executed in the cluster. The

metrics that participate in the reward function form a d-

dimensional dataset. For each different cluster size a 2-

dimensional dataset is formed with throughput and latency

measurements. TIRAMOLA assumes that the system should

behave similarly in similar conditions and therefore includes

only measurements relative to the current cluster load when

calculating rewards. A k-means clustering of the points

within a certain “slice” of throughput values around the

current measurement is done and the centroid’s coordinates

are used as throughput and latency to compute the reward.

A. Workload Awareness

Several steps were taken to make TIRAMOLA aware of

the type of load applied to the NoSQL cluster and integrate

this piece of information into the decision making process.

The YCSB clients [12] producing the workload were

configured to report separate metrics, i.e. throughput and

latency, for each type of query. In correspondence, TIRA-

MOLA’s Monitoring module was adjusted to collect and

report the new metrics. We incorporate the separate metrics

in the reward function and propose using:

r(s) = f(read thr, write thr, read lat, write lat, V Ms).

In addition, TIRAMOLA’s Decision Making module was

modified to perform 4-dimensional clustering, when the

dataset includes read/write throughput and read/write latency

for each state and the centroid’s coordinates are used to

compute the reward. The data points fed to the clustering

engine include measurements for which both read and write

throughput are within the respective throughput “slices”.

This way the system is able to notice the different types

of load and their corresponding metrics and perform actions

that address the specific workload mix.

III. BASIC NOSQL OPERATIONS

In this section, we outline important NoSQL mechanisms

that allow explaining the system’s behavior in sec. IV.

A. NoSQL data storage and caching

Commonly, data is partitioned into shards, assigned to

different nodes, that may be replicated to ensure availability

and safety in case of failure. Shards are further divided into

data blocks and data is indexed by row/column so that each

block contains a number of rows. In every transaction a

whole block is transferred to/from the disk. Most systems

support auto-sharding meaning that the shard partitioning

and reassignment during NoSQL cluster resizing are seam-

lessly performed. Splitting data into shards allows to equally

distribute load among nodes automatically. Moreover, in-

memory caching is used to improve the overall system

performance. Caching blocks that were recently read may

speed up read operations, whereas using an in-memory

buffer for writes saves time since it allows bypassing the

disk. The memory used for caching reads follows an eviction

policy when it is full (e.g., LRU), and cache misses cause

a latency penalty as data needs to be fetched from the

disk. The memory used for buffering writes gets periodically

flushed to the disk when it reaches a user imposed limit.

Atomic operations are guaranteed since a row lock must

be acquired before each write transaction. After a certain

number of buffer flushes, stored data is reorganized and

sorted automatically by a maintenance mechanism that runs

periodically in the background and consolidates small files

into larger ones to avoid fragmentation. During this, serving

performance may be affected due to heavy I/O ops.

B. Handling Reads & Writes

Based on the modules described above the workflow of a

read and a write query is depicted in Figures 1 and 2 and

can be outlined as follows:

• Upon a write request, a row lock is acquired and the

new data is first written to the WAL and then to the in-

memory buffer, while the contents of the disk and the

cache remain unchanged and valid. Then the row lock is

released. At a buffer flush, its contents are written to disk

blocks inserting or updating block data. If any of these

blocks are loaded in the cache they now become outdated

and invalid for use.

• Upon a read request, a search on the cache is performed

and if no valid data is found, the requested data is fetched

from the disk. In addition, the buffer is always checked

for any new versions of the data not yet flushed to the

196

2.Update buffer
1.Update WAL

file ~μsec

Success

3.Return
acknowledgement

Write request

RAM
DISK

STORAGE

Write Buffer
New Blocks

~μsec

4.Flush

Periodic data
reorganization

Hard Drive

ShardsWAL

Figure 2: Write operation data flow, costly operations in red.

disk. We note that the system first searches the memory

(read cache and write buffer) before it resorts to expensive

disk seeks.

In other words, a write transaction doesn’t include mem-

ory searching or writing to the disk and it is completed

once the data is written in the WAL and in the buffer.

WAL writing is usually as fast as in-memory writing as

the file is kept open for sequentially appending new data

avoiding expensive random disk seeks and it’s replication

is asynchronous. Yet, a row lock must be acquired first,

so writing latency mostly increases if there is waiting time

to acquire the lock. On the other hand, a read transaction

requires in the best case a cache search and in the worst

case fetching data from the disk and searching the buffer

for updates, but no locks are required. This means that read

latency is higher than write latency since searching is an

expensive operation.

Read and write performance can therefore be affected

under certain circumstances. Read latency can be extremely

increased in heavy-write environments or when the cache

size cannot fit all the concurrently read blocks. This is

because in these cases cache contents become more often

invalid or evicted and data must be re-fetched from the

disk. Regarding write performance, the periodic flush of the

buffer is not a blocking operation as a new empty buffer is

instantly created, it is however resource consuming. Also,

data maintenance is performed periodically after multiple

buffer flushes which blocks writes on the processed data

until it is completed. This negatively affects write perfor-

mance, not in terms of increased latency but in terms of

requests being totally blocked for a considerable amount

of time. Data maintenance is performed more frequently in

heavy-write environments or if the buffer size is too small

for the applied write load and causes recurring disk flushes.

In this case, write requests are blocked more often and write

throughput drops. If multiple write requests address the same

record or block, they are queued, trying to acquire the same

row lock leading to an increased latency. All these factors

are considered in the configuration of our system and the

interpretation of its performance.

C. Comparing NoSQL implementations

NoSQL stores adopt similar methods for solving consis-

tency and scalability issues. In HBase [4], data shards are

called HRegions and their rows contain a number of column

families. Each column family has a container (Store), and

each Store has a write buffer (MemStore). Every HBase node

keeps a WAL (HLog) and uses a cache (BlockCache) for

the Regions it is responsible for. Likewise, Cassandra [2]

shards are called partitions and SSTables are the column

containers. A “row cache” is stored in memory while writes

are buffered in memtable and accumulated sequentially in

the CommitLog per node. MongoDB [6], stores document

collections, split into shards and distributed to the nodes.

In an attempt to make good use of the OS cache, Extends,

the data files stored in disk, are mapped to a structure in

memory named “shared view”. WALs are named journals

and the memory buffer is the “private view”. In essence, the

shared and private views play the role of the read cache and

write buffer respectively.

Since most systems have similar data flows for reads

and writes, we expect them to experience the same impli-

cations when coping with different load types. Relying on

TIRAMOLA’s ability to supervise any NoSQL system, our

extension is also independent of the specific NoSQL store

used; it can manage any system given the appropriate reward

function.

IV. EXPERIMENTS

The experimental section intends to demonstrate the auto-

matic management of VM resources by TIRAMOLA under

varying incoming loads. Applied workloads follow a typical

seasonal pattern found in web serving applications (Fig. 14

in [16]) and Microsoft Messengers weekly load (Fig. 5 in

[11]). In particular, we evaluate loads with different percent-

ages of read and write queries, from read-only workloads

(100% read queries) to heavy-write workloads (33% write

queries). In the 33% write queries case, one third of the

applied workload is constantly updating the entire dataset,

while the other two thirds continue to perform read queries.

In section IV-A we refer briefly to the selected configura-

tion for the NoSQL cluster and the clients. In section IV-B

we describe in detail the training process of TIRAMOLA,

for which we use loads with different proportions of read

and write queries and different amplitude. We analyze the

cluster’s performance with each load. Finally, in section

IV-C based on our knowledge of the cluster’s operation we

select two different reward functions for TIRAMOLA, one

workload-aware and one workload-unaware, and evaluate its

efficiency with loads of varying amplitude and type.

A. Experimental setup

Our experimental setup consists of an OpenStack [7] cac-

tus private cluster of 10 client VMs (load generators) and 10

server VMs. Each server/client VM has 2 vcores with 4GB

of RAM and 200GB of storage space. We utilize an HBase

[4] (v.0.92.0) NoSQL cluster with initial size of 4 VMs that

can be increased up to 10 VMs. HBase is configured with

a replication factor of 3 and is optimized for heavy-write

197

0 3 6 9 12 15
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

4 servers
5 servers
6 servers
7 servers
10 servers

0 3 6 9 12 15
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

4 servers
5 servers
7 servers
10 servers

Figure 3: Training load with 100%, 17% read queries respectively

loads using the following settings: blockingStoreFiles=100

and blockingWaitTime=0. This allows more buffer flushes

before the data maintenance mechanism is triggered and

write requests get blocked (last paragraph of sec. III-B), and

is also an attempt to minimize requests’ blocking time. In

this way a rare but time-consuming maintenance will be

performed. Finally, we use Hadoop 1.0.1 and Ganglia 3.1.2,

both in their default configuration.

The cluster is loaded with 20M records using the YCSB

benchmark [12] (v.0.1.4) resulting in 90GB of data (with

replication). Our workload is also generated with YCSB

and comprises of simple read and write queries (UNIFORM

READ and UPDATE query types). In order to maximize

independently read and write performance, read queries

were applied to 20K records that are loaded in the nodes’

cache initially while write queries were applied to the whole

dataset to avoid locks’ impact. Using a bigger range of

records for read queries that doesn’t fit in memory, would

lead to reduced performance due to constant evictions from

the cache. A smaller range of write queries would also cause

reduced performance in the case of an increased load of

write requests, as multiple requests would queue on the same

locks and very high latency would emerge. This particular

client-side configuration maximizes HBase performance in

both heavy-reads and heavy-writes.

B. Training process

To assist TIRAMOLA in estimating each state’s reward

during the initial phase of the system’s operation, we apply

a training phase. Our training set is a simple sinusoid-like

load with an average value of 30K req/sec, a peak of over

60K req/sec and a period of 15 minutes. We train the system

in all sizes (4-10 servers) with 7 different load types starting

from a load of 100% read queries and gradually increasing

write queries’ percentage to 100% write queries. A period

of the training load for several cluster sizes is recorded

for 2 different load types in Fig. 3, where a clear relation

between the cluster’s size and the achieved throughput is

shown. Each worker can serve about 10K req/sec, either

read or write requests, so the cluster is able to fully serve

our peak load when it has at least 7 servers (6 workers, 1

master). We notice an important difference in the line shapes

between graphs that correspond to different load types.

Throughput develops an increasing fluctuation as writes

increase especially in cluster sizes below 7 (Fig. 3), because

memstores fill and flush more often and instant flushes

affect negatively the already overloaded system, causing this

seemingly unstable performance.

A better understanding of the system’s operation and

performance comes from Figures 4 and 5. In Fig. 4 we

register throughput vs load type with a stable input load

of 60K req/sec in all cluster sizes for read and write

operations respectively. First of all, a clear difference in

the lines’ shape is observed in the performance of small

cluster sizes, although we would expect for them to be

similar (symmetrical in relation to y-axis). Noticing in Fig.

4 the left side of the left graph (heavy-read) and the right

side of the right graph (heavy-write), we see that read

throughput is better than write throughput. This is expected

since the system is more loaded in heavy-write operation by

the frequent buffer flushes, while in heavy-read operation

mainly the cache is accessed. Secondly, we observe how read

and write operations affect one another. In Fig. 4 the right

side of the left graph (heavy-write) and the left side of the

right graph (heavy-read), show that read throughput is much

worse than write throughput: In a heavy-write operation,

except that the system is more loaded, there is a greater

chance that cache contents are invalidated. Since disk data

changes, blocks have to be reloaded from the disk (section

III-B), causing read performance to decrease further.

Similar conclusions emerge from Fig. 5 where we register

queries’ latency vs load type (read latency is in logarithmic

scale). At first, it is important to notice the difference in

the size of read and write latencies. Read latency is at

least 10 times higher than write latency, confirming our

analysis in the last two paragraphs of section III-B. Thus,

total measured latency is mainly formed by read latency. As

expected, latency decreases as the cluster size increases in

both cases. Also, as write queries increase we can see that

write latency increases only in small cluster sizes (dotted

lines in right graph of Fig. 5) where the system can’t handle

the increasingly heavy load. On the other hand, read latency

increases significantly for every cluster size, as write queries

increase. This indicates that write operations not only stress

the system and can indirectly affect total performance but

they also directly affect read performance as data must be

re-fetched from the disk. The fact that HBase exhibits a

low write latency at the cost of a high read latency is also

confirmed in [17] where the results match ours.

Finally, an interesting comparison is presented in Fig.

6 where we register in x axis the percentage of read

queries in the incoming load and in y axis the percentage

of read queries in the actually served load. We would

expect that in every cluster size the percentage of served

read queries would be the same as the incoming load’s

percentage, therefore all lines should be straight lines on the

diagonal. Instead, in small cluster sizes there is a divergence

from the actual expected percentage (on the diagonal). In

particular, when we have 30-99% read queries in the

198

100 80 60 40 20 0
Read queries percentage(%)

0

10K

20K

30K

40K

50K

60K

R
ea

d
th

ro
ug

hp
ut

 (
re

q/
se

c)

4 servers
5 servers
6 servers
7 servers
8 servers
9 servers
10 servers

100 80 60 40 20 0
Read queries percentage(%)

0

10K

20K

30K

40K

50K

60K

W
ri

te
 th

ro
ug

hp
ut

 (
re

q/
se

c)

4 servers
5 servers
6 servers
7 servers
8 servers
9 servers
10 servers

Figure 4: Read/Write Throughput vs load type for every cluster size

100 80 60 40 20 0
Read queries percentage(%)

0.1K

1K

10K

100K

1000K

R
ea

d
la

te
nc

y
(m

se
c)

4 servers
5 servers
6 servers
7 servers
8 servers
9 servers
10 servers

100 80 60 40 20 0
Read queries percentage(%)

0

300

600

900

1200

1500

1800

W
ri

te
 la

te
nc

y
(m

se
c)

4 servers
5 servers
6 servers
7 servers
8 servers
9 servers
10 servers

Figure 5: Read/Write Latency vs load type for every cluster size

100806040200
Input load read percentage (%)

0

20

40

60

80

100

Se
rv

ed
 q

ue
ri

es
 r

ea
d

pe
rc

an
ta

ge
 (

%
)

4 servers
5 servers
6 servers
7 servers
8 servers
9 servers
10 servers

Figure 6: Output vs input load type

incoming load the system

serves less read than write

requests while in 0-30%

read percentages the sys-

tem serves more read than

write requests. These two

opposite behaviors confirm

that read requests are neg-

atively affected by write

ones except in heavy-write

operation where the system

struggles with writes but serves a few reads.

C. Load-unaware vs load-aware

To evaluate the load-unaware and load-aware operation of

TIRAMOLA we devise two different reward functions:

r1(s)=A · thr −B · lat− C · |VMs|
r2(s)=Ar ·thrr+Aw ·thrw−Br ·latr−Bw ·latw−Ct ·|VMs|

Function r1(s) considers total throughput thr, total la-

tency lat and the number of VMs, hence it is load unaware.

Function r2(s) uses the same metrics divided by query type:

read throughput thrr, read latency latr, write throughput

thrw, write latency latw and VMs and is therefore load

aware. We use a plus sign for the metrics considered

profitable and a minus sign for the costly ones.

In order to calculate parameters A,B,C,Ar, Aw, Br, Bw,
Ct, a good understanding of the system’s operation is

required, which can be obtained by the training phase. As

a result, the analysis of the training phase is very important

in grasping this knowledge and applying it as we do in

the following procedure. Our chosen values for function

r1 are A = .001, B = .002, C = 1.4. We apply double

weight in latency in relation to throughput, based on the

throughput and latency values that appear in Figures 4, 5

for 100% read load (30-60K throughput, 4-40K latency).

For the number of VMs (values 4-10) a greater parameter

was required so that TIRAMOLA doesn’t add/remove nodes

too greedily or too modestly. With function r1 load unaware

TIRAMOLA is expected to work flawlessly with a read-only

load and its efficiency with other types of loads remains to

be seen. For function r2 we chose Ar = .0005, Aw = .0005,

Br = .0003, Bw = .0007, Ct = 1.2. We split the value of

A into Ar and Aw, as read and write throughput are of

the same order of magnitude. A different method was used

for latency parameters since read and write latencies have

a proportion of at least 10 units (sec. IV-B). Based on this

fact, we would have chosen a write latency parameter 10

times higher than the read latency one. Instead, we chose

a 2 times greater parameter, thus relying more on read and

less on write latency, as read latency shows steeper changes

when the type of load changes. It is therefore considered a

more representative metric for identifying the type of load

(Fig. 5, sec. IV-B). To select Br, Bw and Ct a more extensive

experimentation was required. We note here that our intent

is not to find perfect parameter values but to demonstrate

the procedure that is followed in setting up a new reward

function and the system’s efficiency with different reward

functions when the type and size of the input load change.

In our first experiment we apply three different types of

loads with 100%, 84% and 67% read requests, all with the

same sinusoid-like shape with a period of 1.5 hour (10x

slower than training load) and an average of 30K req/sec.

We didn’t increase write percentage any further because

67% read and 33% write requests is already a heavy-write

workload and the cluster’s performance drops drastically

after one hour due to intensive flushing and data maintenance

(sec. III). We register the observed system’s output as well

as the decisions taken using r1(s) over time in Fig. 7. The

area that is filled with the lightest color depicts the served

read workload in req/sec, whereas the darkest area depicts

the write workload. The dotted lines represent the cluster

size in VMs and their steps depict TIRAMOLA’s decisions.

TIRAMOLA manages to behave according to the system’s

load for the three load types, as shown in Fig. 7. With 100%

read requests, increase and decrease size actions follow

the load trend. However, with 84% and 67% read requests

TIRAMOLA doesn’t behave similarly as the cluster’s size

increases to 7 nodes too soon and then exhibits frequent

small fluctuations. This indicates that when TIRAMOLA

uses reward function r1, it can’t operate with any type of

load as efficiently as it does with 100% read load. Reward

function r1 doesn’t take into account the type of load, it

only considers total throughput and total latency. Thus, the

data points included in the throughput slice and used by the

clustering engine come from every type of load that displays

199

0 20 40 60 80 100 120 140 160
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

0 20 40 60 80 100 120 140 160
Time (min)

4

5

6

7

8

9

10

C
lu

st
er

 S
iz

e

0 20 40 60 80 100 120 140 160
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

0 20 40 60 80 100 120 140 160
Time (min)

4

5

6

7

8

9

10

C
lu

st
er

 S
iz

e

0 20 40 60 80 100 120 140 160
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

0 20 40 60 80 100 120 140 160
Time (min)

4

5

6

7

8

9

10

C
lu

st
er

 S
iz

e

Figure 7: System behavior with r1(s) when applying three similar loads with 100%, 84% and 67% read queries respectively

0 20 40 60 80 100 120 140 160
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

0 20 40 60 80 100 120 140 160
Time (min)

4

5

6

7

8

9

10

C
lu

st
er

 S
iz

e

0 20 40 60 80 100 120 140 160
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

0 20 40 60 80 100 120 140 160
Time (min)

4

5

6

7

8

9

10

C
lu

st
er

 S
iz

e

0 20 40 60 80 100 120 140 160
Time (min)

0

20K

40K

60K

80K

L
oa

d
(r

eq
/s

ec
)

0 20 40 60 80 100 120 140 160
Time (min)

4

5

6

7

8

9

10

C
lu

st
er

 S
iz

e

Figure 8: System behavior with r2(s) when applying three similar loads with 100%, 84% and 67% read queries respectively

similar total throughput. This way, the estimated gains are

totally different from the current gain as they are based on

irrelevant data from different load types and TIRAMOLA

is driven to a wrong state. Latency plays an important role,

since it changes significantly when the load type changes

(sec. IV-B) turning the centroids’ y-coordinates irrelevant.

Fig. 8 displays TIRAMOLA’s behavior when we use

reward function r2 with the same input load. With r2
TIRAMOLA is taking better decisions for all 3 load types,

adding and removing VMs as load increases and decreases,

yet its behavior is not perfect. Small fluctuations appear

which can be handled by fine tuning the parameters of r2, or

by configuring TIRAMOLA to make decisions based on the

average of the three latest (instead of one) measurements to

avoid unstable throughput measurements that appear when

write requests increase, as observed in Fig. 3. Reward

function r2 allows TIRAMOLA to handle more types of

loads quite efficiently now that the type of load is considered

and the decision is taken performing a clustering of the data

corresponding to a certain type of load. This was anticipated

as a system’s performance may alter significantly when

the load type changes and TIRAMOLA needs to be aware

of that fact. Finally, we note that the different frequency

in the training load and the applied load does not affect

TIRAMOLA, showing its ability to adapt to any applied

load and operate normally if correctly configured.

In conclusion, our analysis proves that the load-aware

version of TIRAMOLA can perform more informed scaling

decisions compared to the unaware one, enabling it to adapt

to workloads of different types, magnitudes and frequencies.

ACKNOWLEDGMENTS

This work has been funded by EU and GR Resources un-

der the Hellenic (GSRT) ”COOPERATION 2009” National

Action ”09SYN-72-881” MoDisSense Project.

REFERENCES

[1] AWS Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/.
[2] Cassandra. http://cassandra.apache.org/.
[3] EMCVoice. http://onforb.es/1rnYzdp.
[4] HBase. http://hbase.apache.org/.
[5] Jelastic. http://jelastic.com/.
[6] MongoDB. http://www.mongodb.org/.
[7] OpenStack. https://www.openstack.org/.
[8] M. Armbrust et al. A View of Cloud Computing. Communi-

cations of the ACM, 53(4):50–58, 2010.
[9] S. Barker et al. ShuttleDB: Database-Aware Elasticity in the

Cloud. In ICAC, 2014.
[10] M. Chalkiadaki and K. Magoutis. Managing service per-

formance in the cassandra distributed storage system. In
CloudCom. IEEE, 2013.

[11] G. Chen et al. Energy-aware server provisioning and load
dispatching for connection-intensive internet services. In
NSDI, volume 8, pages 337–350, 2008.

[12] B. Cooper et al. Benchmarking cloud serving systems with
YCSB. In SOCC, pages 143–154, 2010.

[13] F. Cruz, , F. Maia, M. Matos, R. Oliveira, J. Paulo, J. Pereira,
and R. Vilaa. MET: Workload aware elasticity for NoSQL.
In ACM ECCS, 2013.

[14] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch. Autoscale: Dynamic, Robust Capacity Management
for Multi-tier Data Centers. ACM (TOCS), 30(4):14, 2012.

[15] H. Herodotou et al. Starfish: A Self-tuning System for Big
Data Analytics. In CIDR, 2011.

[16] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and
B. Maggs. Cutting the electric bill for internet-scale systems.
SIGCOMM, 39(4):123–134, 2009.

[17] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero,
H.-A. Jacobsen, and S. Mankovskii. Solving Big Data Chal-
lenges for Enterprise Application Performance Management.
In VLDB, 2012.

[18] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas,
and N. Koziris. Automated, Elastic Resource Provisioning
for NoSQL Clusters Using TIRAMOLA. In CCGrid, 2013.

200

