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Abstract—Over the last years, deep learning has gained an
increase in popularity in various domains introducing complex
models to handle the data explosion. However, while such model
architectures can support the enormous amount of data, a single
computing node cannot train the model using the whole data set
in a timely fashion. Thus, specialized distributed architectures
have been proposed, most of which follow data parallelism
schemes, as the widely used parameter server approach. In
this setup, each worker contributes to the training process in
an asynchronous manner. While asynchronous training does
not suffer from synchronization overheads, it introduces the
problem of stale gradients which might cause the model to
diverge during the training process. In this paper, we examine
different data assignment schemes to workers, which facilitate
the asynchronous learning approach. Specifically, w e propose
two different algorithms to perform the data sharding. Our
experimental evaluation indicated that when stratification is
taken into account the validation results present up to 6.X less
variance compared to standard sharding creation. When further
data exploration for hidden stratification is performed, validation
metrics can be slightly optimized. This method also achieves to
reduce the variance of training and validation metrics by up to
8X and 2X respectively.

Index Terms—deep learning, distributed training, data man-
agement

I. INTRODUCTION

Over the last years, deep learning has become a field
of increasing interest and popularity. Neural networks have
widely been adopted in a variety of big data data applications.
For instance, neural networks are widely used in the image
classification [ 1, 2], the s peech recognition [ 3, 4] and natural
language processing [5, 6] and other fields [7, 8]. In the first
two applications, convolutional and recurrent neural network
are used respectively for classification purposes.

The wide use of neural networks in various domains, as
those stated above, followed by the vast amount of data
that emerges, has led to the creation of more complex and
deep model architectures. This complexity is necessary to
create more accurate models for such large datasets. For
example, Microsoft has proposed the ResNet architecture in
2015 [9] which achieves to effectively classify the ImageNet
Dataset [10]. During the same year, Digital Reasoning has
proposed an 160 billion parameter network [11] specialized
for natural language processing tasks.
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While the constantly increasing amount of data can be
used to create more accurate models with complex network
architectures, the total size of the data and the neural networks
prohibit training on a single machine. Thus, there have been
proposed ways to train models in a distributed fashion. Multi-
ple systems are designed to support distributed deep learning,
as Google TensorFlow [12], and PyTorch [13] (original de-
veloped by Facebook). Moreover, deep learning libraries have
also been developed for general purpose distributed systemssd
BigDL [14], a framework designed for Apache Spark [15, 16].
Other systems, as Uber’s Horovod [17], have been designed
to provide ease of use on the distributed training using scripts
designed for single-node training.

Distributed deep learning systems follow either the model or
the data parallelism approach to create neural network models.
On the one hand, model parallelism [18, 19] implies that the
model is distributed across different machines, so that each
part of the model fits in the memory of each worker. On
the other hand, data parallelism [20] is used to handle the
increasing volume of the data, where data are split into shards
assigned to different cluster machines. Each machine is used to
train a global model only with the data assigned to them. Note
that nowadays the vast majority of distributed deep learning
systems support data parallelism, while it can be applied the
same regardless of the model used for the training [21].

The aforementioned systems can use the data parallelism
scheme under different architectures. In some systems, as
PyTorch and TensorFlow, workers can operate synchronously,
organised in all-reduce rings to combine their training up-
dates [22, 23]. Another common architecture is the param-
eter server one, where a global model is trained either
synchronously or asynchronously with gradients computed
from different workers. This architecture is supported by
TensorFlow [24] for one of the provided programming APIs,
while PyTorch provides all the essential building blocks to
implement the parameter server case [22].

Due to the lack of synchronization, asynchronous parameter
server learning does not suffer from any related time over-
heads [25]. However, it is sensitive to conflicting and stale
updates, which may not favor the quality of the resulting
model [26, 27].
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In this paper, we examine whether systematic data sharding
is capable of further enhancing the asynchronous training
approach. Up to now, data are usually randomly assigned
to workers regardless of the training mode. However, one
question that emerges is whether random assignment further
affects the quality of the asynchronous learning [28]. This
approach is compared with two others presented in section
III, which take into account obvious and hidden stratification
patterns.

As a motivation experiment, we train a simple 4-layer CNN
network over the CIFAR-10 dataset multiple times, having
randomly distributed the data to the workers before each
run. Figure 1 presents the training and the validation loss
per experiment. In this figure, we notice the existence of
variance between the loss values from the subsequent runs.
This observation further motivated our research over whether
various sharding techniques lead to more stable results. Note
that when machine learning is applied in domains, as health
applications, it is important that the resulting model presents
small variance in the classification accuracy. For instance, in
the case of predicting the risk of diabetes, reliability model
metrics depend on the standard deviation, and therefore the
variance, of the model’s accuracy [29]. Thus, to make more
reliable models under asynchronous learning, it is crucial to
further reduce the variance in the resulting metrics.

The main contributions of this paper are the following:

« We propose two systematic sharding approaches, the
Stratified and the Distribution Aware approach.

o We provide a detailed experimental evaluation as a proof
of concept of how and why systematic data sharding
can stabilize the asynchronous learning process. When
stratification is considered, variance of validation metrics
can be reduced by up to 6 X. Distribution Aware sharding
can enhance training and validation metrics in most cases
with up to 8X and 2X less variance respectively.

The rest of the paper is organized as follows: Section
IT presents any preliminary information necessary for the
reader to fully understand the paper. Section III describes
the proposed algorithms, followed by a detailed experimental
evaluation in IV. Finally, in V and VI, we present related work
and summarize our contributions.

II. PRELIMINARIES

In this section, we will discuss any preliminary knowledge
necessary for the reader to fully understand this paper. Table I
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TABLE I: Terms and symbols used in the paper

Term/

Symbol Description
A parameter server task of the parameter
Server .
server architecture
Worker A W.orker task of the parameter server
architecture
Shard Subset of the dataset assigned to a worker
Mini-Batch The number of training examples used in
Size (B) one iteration of SGD (globally)
Per-Worker The number of training examples a worker
Mini-Batch uses from the local shard to apply the SGD
Size (W B) per each iteration
k(:ttn(lg% Initial learning rate for single-worker case
Learning Learning rate per worker for the
Rate (avw) distributed case
Epoch A full training pass on the dataset
Global Model | Model stored in servers
Evaluator Task evaluating the global model

refers to all the related terms and symbols that are used
throughout this paper.

A. Deep Neural Networks and Stochastic Gradient Descent

Deep neural networks [30] aim to approximate some func-
tion f : R™ — R. In the context of classification problems, this
function is used to classify a feature vector Z to a category y,
i.e. y = f(&; W), where & is used to denote the neural network
parameters. Neural networks are organized as a sequence of
layers, which are sequentially connected. Thus, the output of
one layer becomes the input of the following one. Depending
on the task, different layer types have been proposed, as
convolutional layers for image classification [1].

Using neural networks for classification, requires that the
neural network is trained to provide the best approximation of
the aforementioned function f in respect to its parameters .
The set of model parameters « that can provide such approx-
imation is the minimizer of a loss function, which describes
the error of a model given a set of example feature vectors
1, %2, ..., Tpn and the corresponding predictions y1, Y2, .-+, Yn.
This set of parameters « is located by the Stochastic Gradient
Descent (SGD) algorithm or any of its variants [31, 32],
probably accelerated by the momentum method [33]

Let L : R® — R be the loss function used on training a
model with parameters w. The k-th iteration of SGD [34],
based on a randomly selected training example (Z,yx), is
mathematically formulated as follows:

(D

where w; and a stand for the model parameters in the i-th
iteration of the SGD and the learning rate respectively.

SGD is more commonly used in the form of mini-batch
SGD. In mini-batch SGD, a random set of n training examples
(Z1,11), (Z2,Y2), .., (Zn,yn) is used to update the model
parameters in each training iteration. The update is performed
based on the average of the gradients computed by each
training example and equation 1 is rewritten as follows:

Wrt1 = Wy — o - Vg, L(W; i, )

. L a Lo
W1 = Wh — Z Vo, L(Wk; T3, yi) 2

=1
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Fig. 2: Parameter Server Architecture

The number of training examples that the mini-batch consists
of is called mini-batch size.

B. Parameter Server Architecture

Training deep neural networks, and machine learning mod-
els in general, can be scaled if multiple devices are available.
A state-of-the-art architecture designed for this purpose is the
parameter server one [19, 35, 36], used from a variety of ML-
related systems, as TensorFlow [12]. To train a deep neural
network under the parameter server, a set of parameter server
and worker tasks are deployed. Parameter server tasks are
responsible for storing and updating the global model [37]. On
the contrary, worker tasks use the SGD optimization algorithm
to compute gradient updates on their local copies of the model,
used by the parameter server tasks to update the global one.

The whole training procedure, when the parameter server
approach is used, is fully depicted in Figure 2. At first, a
worker task updates its local model parameters from the latest
global ones received from the parameter server tasks (Step
1). Step 2 includes a worker extracting a mini-batch of data
points from the subset of data that was assigned to them,
namely a data shard. Note that the data shards of each worker
are disjoint. Sequentially, the extracted mini-batch is used to
compute a set of gradients of the loss function on their local
copy of the model (Step 3). Having computed these gradients,
they are sent back to parameter servers (Step 4). Finally, in
Step 5, the parameter servers update the global model with the
received gradients. The aforementioned procedure is repeated
until the model has been trained for a user-defined number of
epochs or until other criteria are met (e.g. early stopping [38]).

C. Hyperparameters in Distributed Training

Before training a deep learning model, it is necessary to
identify the set of hyperparameters for both the layers of
the neural network and the various parameters that affect the
training, as the mini-batch size B, the learning rate a, etc.
Hyperparameter tuning is very challenging, since data affect
the right choice of hyperparameters [39].
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Even if the hyperparameters have been carefully selected
for a single-node training of a neural network, they cannot
be taken as granted for the case of the distributed training.
In case the distributed training follows the parameter server
architecture, instead of attempting to tune the hyperparameters
for each distributed training setup, crucial hyperparameters,
as the per-worker mini-batch size W B and the learning rate
«, can be computed from the hyperparameters used when
performing single-node training [40].

Suppose that the best hyperparameters to train a neural
network on a single-node setup are B for the mini-batch size
and « for the learning rate. Let the train be performed on a
cluster following the parameter server architecture. Regarding
the W B hyperparameter, its product with the number of
workers has to be constant. Given that single-node training has
one worker and B is the best mini-batch size, in a distributed
setup with n workers, W B can be adapted as follows:

B
B=n-WB<+= WB=— 3)

n
Furthermore, the learning rate ay,, of a distributed setup can
be computed from the learning rate « of the equivalent single-
node training following equation 4.

oy = 2 (4)
n

D. Asynchronous Training

The parameter server architecture, presented in subsection
II-B, is widely used with workers updating the global model
in an asynchronous manner (see introductory section I). In
asynchronous learning each worker computes gradients using
the global parameters parameter that they received from the
server upon their last gradient updates. It is important to
mention that, on the same training step, the workers may well
use different parameters in order to compute the new gradients.
Under this case, equation 2 is rewritten as shown in equation
5, where Wy denotes the parameters retrieved from the servers
to compute the gradients and Wy, wi41 the current and the
resulting global parameters respectively.

o W B
Wit1 = Wy — Win : z; Vi, L(Wes Ts, yi) )
i=
Note that workers using older parameters causes stale gra-
dients, mentioned in the introductory section I, which might
cause the model to diverge. The learning rate adaption, shown
in equation 4 is performed to handle the staleness phenomena,
by reducing each worker’s contribution on the global model.

III. APPROACHES

In distributed learning, under the data parallelism approach,
workers contribute to the global model with gradients com-
puted using different subsets of the data, as it was decribed
in Section II. Currently, distributed deep learning systems
randomly assign data to workers. TensorFlow, for instance,
uses the shard mechanism in its data pipeline [41], which
assigns training examples to workers in a round-robin fashion.
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Fig. 3: Stratified assignment: Half of the points from each
class are assigned to each shard.

Since the purpose of this paper is to compare the effect of
data assignment techniques to workers, we create a custom
mechanism that creates the shards offline according to the
method the user prefers. Note that it is safe to create the shards
beforehand, since the equivalent mechanism of TensorFlow
described, suggests to be applied at first. Thus, the data
assignment is static upon the training process.

In this paper, we propose an offline data assignment system.
This system takes as input the data set, located in a shared
or distributed file system, from which we want to create the
various shards, the number of workers (/V) that participate in
the training process and the algorithm that will assign training
examples to workers followed by any related parameters.
Having provided this information, the related algorithm is
used to create N shards from the dataset, by assigning worker
indicative labels to each training example.

In this paper, we examine three different algorithms regard-
ing the data shard creation process. As a baseline, a random
data assignment to workers is used.

A. Stratified Sharding

Random data assignment cannot ensure that each worker
will have an equivalent view on the train data set. For instance,
let us present a scenario where only two classes are present
in the train data set, where each class represents half of the
available data. Depending on the order of the training exam-
ples, some workers may well have available more examples
from the one class compared to those from the other. Thus,
the workers will not have a representative view of the world
that these data describe, but each one will recognize one class
as dominant regarding its frequency. In the aforementioned
scenario, workers may attempt to lead the parameters of the
global model to a different direction from each other, such
that the model will more efficiently categorize the examples
available in their local shard, affecting the efficiency of the
resulting model.

Inspired from machine learning basics, we propose stratified
assignment as another technique, which is able to guarantee
that each worker will be provided with a data shard that is
equivalent to the world the whole train set describes. The
aforementioned equivalence refers to each shard consisting of
the same percentage from each class compared to the one on
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1: procedure STRATIFIEDSHARDING(z, y, 1)
2: > X is an array of multidimensional tensor repre-
senting training examples
>y is the correspongin array of labels
> workers have identifiers 0, 1, ..., n-1
classes = unique(y) > Identify available classes
for each class in classes do
z_class,y_class = in_class(z,y, class)
class_size = length(y_class)
9: for i = 0 to class_size — 1 do

10: > Round Robin split for each class
11: worker_id = i mod n

12: Assign example z_class(i) to worker_id

13: Assign label y_class(i) to worker_id

14: end for

15: end for

16: end procedure

Fig. 4: Stratified data sharding to workers using mod
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Fig. 5: Example of 2-dimensional points organized in dense
(A, B) and sparse (C, D) neighbourhoods.

the whole train data set. The result of creating shards using
the stratified approach is illustrated in Figure 3.

Figure 4 outlines the algorithm used to perform a stratified
assignment. The first step is to find the set of distinct classes,
given the array of labels (line 5). Sequentially, we retrieve the
set of training examples in each class (line 7). Finally, for
every such set the data are given in a round robin manner to
the workers (lines 9 - 13). This approach guarantees that each
class percentage remains intact in the sample compared to the
one on the whole train set.

B. Distribution Aware Sharding

Stratified assignment is an obvious way to provide the
participating workers with an equivalent view of the data.
However, apart from the obvious class stratification, hidden
stratification may also exist in the data set. Data can be
further categorized to neighbourhoods (clusters), based on
their position in respect to other data points.

Distribution aware sharding takes into account the neigh-
bourhoods in the same manner the stratified one uses the
classes. Figure 5 illustrates an example of neighbourhoods
in the 2-D space, where some (A, B) consist of adequate
points and others (C, D) of isolated examples. It is important
to mention that we cannot determine whether this isolated
points are outliers or if the available data set does not consist
of more equivalent points. Therefore, outlier points forming
sparse neighbourhoods should be handled in a different way.
Thus, our algorithm distinguishes two cases:



1: procedure DISTRAWARESHARDING(z, y, n, classes)
2: > X is an array of multidimensional tensor repre-
senting training examples

3: >y is the correspongin array of labels
4: > workers have identifiers 0, 1, ..., n-1
5: > classes is the number of classes for the KMeans
algorithm
6: z_flattened = flatten(x) > Flatten each example
7: z_distribution = PC A(z_flattened)
8: cluster_ids = K Means(z_distribution, classes)
9: clusters = unique(cluster_ids) > Identify clusters
10: for each cluster in clusters do
11: z_cluster, y_cluster = in_cluster(z,y, cluster)
12: cluster_size = length(y_cluster)
13: if cluster_size > n then
14: for i = 0 to cluster_size — 1 do
15: > Round Robin split for each cluster
16: worker_id = i mod n
17: Assign example z_cluster(i) to worker_id
18: Assign label y_cluster(i) to worker_id
19: end for
20: else
21: Assign each x(i) in x_cluster to all workers
22: Assign each y(i) in y_cluster to all workers
23: end if
24: end for
25: end procedure

Fig. 6: Distribution aware data sharding to workers using mod

1) Densely populated neighbourhoods: Data points from
such neighbourhood shall be assigned in a round robin
fashion to workers. This assignment provides each
worker an equivalent view of this neighbourhood.

Sparsely populated neighbourhoods: Each worker
should be also provided with a view from such neigh-
bourhoods. Since the data points are insufficient to split,
we broadcast the whole neighbourhood to all workers.

2)

Distribution aware assignment is fully outlined in Figure 6.
First, in order to have data points in R", we flatten each
training example (line 6). KMeans algorithm [42, 43] is used
to identify the various neighbourhoods that can be formed by
the available data (line 8), using as input a summarized version
of the data set with minimal loss, which resulted by applying
PCA) [44] (line 7). Finally, a round robin assignment is per-
formed for each densely populated neighbourhood (lines 11-
19), while sparsely populated neighbourhoods are broadcast to
all workers (lines 21-22). Note that we consider sparse neigh-
bourhoods those with less points than the number of workers.
This assumption is made, since otherwise each worker cannot
have an equivalent view on these neighbourhoods.

C. Time Complexity

Having presented our sharding approaches, it is important
to identify their time complexity. Suppose a dataset of n
training examples in the d—dimensional space is available.
The baseline random assignment can be implemented in O(n),
by choosing to assign each example to one of the workers
with the less assigned data. Stratified sharding is implemented
with two nested for loops, passing the data points once (see
Figure 4). Thus, stratified sharding also is a O(n) algorithm.
Regarding the distribution aware approach, its computational
complexity is determined by applying the PCA and KMeans
algorithms, which are used from the scikit-learn library in our
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implementation. PCA has a O(n - d?) [45] time complexity.
KMeans, since we fix a number of maximum iterations 7' to
150, becomes a O(k-n) [46] algorithm, where k is the desired
number of neighbourhoods. Therefore, the distribution aware
sharding is a O(n - maz{d?, k}) algorithm.

IV. EXPERIMENTS

In this section, we provide an extensive experimental eval-
uation of the algorithms presented in section III.

A. Experimental Setup

We conduct our experimental evaluation with a cluster
consisting of 15 virtual machines. Each virtual machine has
4 CPUs and 16GB RAM and operates with Ubuntu 16.04.6
LTS. We use TensorFlow to build and train the models under
the parameter server architecture. As a common distributed
file system, we use Apache Hadoop [47] deployed with 1
namenode and 14 datanodes.

Regarding the tasks that participate in the training, each one
is deployed in a different VM. In further detail, we deploy
2 servers, 12 workers and 1 evaluator task. In the training
process, each worker exploits only data assigned to them from
the sharding algorithm.

Note that there are no GPUs available on our experimental
cluster. However, since we want to evaluate how the model
quality under an asynchronous training setup is affected from
the algorithm used to create the data shard, the lack of such
accelators is not crucial for the quality of our experiments.

B. Datasets, Networks and Training Setup

We evaluate the proposed data sharding schemes with
benchmarks from the Image Classification domain. The exper-
imental evaluation for the different data assignment strategies
is performed on training the ResNet-56v1 network [9] with the
CIFAR-10 and CIFAR-100 [48] respectively. CIFAR-100 is
examined both with the coarse and fine grain labels available.
Regarding the network configuration, [9] clearly proposed a
set of hyperparameters for training on the CIFAR datasets in
the single node case. Taking the aforementioned single node
training configuration into account, we adjust the necessary
hyperparameters for the distributed setup (see Section II-C).

For each experiment we perform five runs and provide the
mean values and the variance of the final loss and accuracy
over the training and the validation set. We further discuss any
effects that occur by using each sharding approach. Regarding
the Distribution Aware technique, we consider the same global
data set size as the baseline. In this way, we do not further
train the model with more mini - batches per epoch, but study
how sparse neighbourhoods can affect the training results.

C. CIFARIO

1) Metrics and Variance.: Table II outlines the mean
and variance of training and validations metrics for each
sharding approach applied on the CIFAR-10 dataset. While
using stratified sharding led to similar reduction of the train
loss, it is important to notice its effect on the variance of the



TABLE II: Statistics (5 runs) of final Training and Validation Loss / Accuracy on the CIFAR-10 dataset per method

Training Metrics Validation Metrics

Method Loss Accuracy Loss Accuracy
Mean Variance Mean Variance Mean Variance Mean Variance
Random 0.165786 | 0.001567 | 0.920000 | 0.001086 | 0.442370 | 0.006174 | 0.935489 | 0.000863
Stratified 0.165751 | 0.001312 | 0.922397 | 0.000736 | 0.444076 | 0.005401 | 0.935396 | 0.000284
” E 20 | 0.165237 | 0.002471 | 0.921583 | 0.004059 | 0.445127 | 0.004059 | 0.935291 | 0.000648
Distribution Aware | &€ [ 30 | 0.165166 | 0.001270 | 0.922218 | 0.000128 | 0.442075 | 0.003431 | 0.935885 | 0.000550
o 2 40 | 0.165046 | 0.000761 | 0.921884 [ 0.000851 | 0.441692 | 0.011402 | 0.935127 | 0.001338

TABLE III: Sparsely populated neighbourhoods through Distribution Aware Algorithm (various cluster sizes as input) with the
resulting validation metrics for 3 of the runs (CIFAR-10). Mean Size refer to the mean population of all those neighbourhoods.

#Clusters Run #1 _ Run #2 ] Run #3 .
Sparse | Mean Valid. Sparse | Mean Valid. Sparse | Mean Valid.
Neighb. Size | Accuracy | Neighb. Size Accuracy | Neighb. Size | Accuracy
20 2 1 0.9352 1 1 0.9345 3 1 0.9361
30 6 2.83 0.9351 6 1.17 0.9361 4 1.25 0.9364
40 7 1.57 0.9370 8 1 0.9345 11 1.56 0.9330

TABLE IV: Statistics (5 runs) of final Training and Validation

Loss / Accuracy on the Coarse CIFAR-100 dataset per method

Training Metrics Validation Metrics
Method Loss Accuracy Loss Accuracy

Mean Variance Mean Variance Mean Variance Mean Variance

Random 0.352169 | 0.004761 | 0.811742 | 0.003103 | 1.216487 | 0.010065 | 0.805993 | 0.004452
Stratified 0.346032 | 0.001903 | 0.814008 | 0.000766 | 1.232794 | 0.006096 | 0.805841 | 0.000728
2 E 30 | 0.349379 | 0.003350 | 0.812987 | 0.002031 | 1.219970 | 0.009967 | 0.806072 | 0.000931

Distribution Aware | <€ | 40 | 0.350087 | 0.001738 | 0.812330 | 0.000535 | 1.211612 | 0.008745 | 0.806237 | 0.002374
o 2 60 | 0.347240 | 0.001893 | 0.812624 | 0.001138 | 1.209313 | 0.021793 | 0.805775 | 0.003009

metrics. Stratified sharding concludes in training and valida-
tion accuracy with 1.47X and 3.03X less variance compared
to the baseline. Loss values also follow similar patterns.

Distribution aware mechanism leads to a slight enhancement
in the metrics and might further the decrease of the variance.
For instance, when sharding using 30 neighbourhoods, the
validation accuracy meets the best value of 0.9359. Training
accuracy is enhanced by 0.22% with a 8.48X less variance
compared to random. Compared to the baseline, variance of
validation metrics is also enhanced by up to 1.57.X.

Overall, in the CIFAR-10 series of experiments, the baseline
random approach presents nearly the greatest variance, which
We will further discuss in section IV-D2. Greater variance in
the validation metrics is only met when using a large number
of neighbourhoods compared to the number of classes in the
dataset. This effect is discussed in the next subsection (IV-C2).

2) Effect of Sparsely Populated Neighbourhoods.: An-
other interesting insight comes from examining how the model
metrics are affected when increasing the number of classes
provided in the distribution aware algorithm. The training loss
and its variance are constantly decreasing with the increase
of the proposed number of neighbourhoods. However, in the
validation metrics of Table II, we notice that if we provide
the algorithm with a large number of neighbourhoods, their
variance becomes larger, indicating that the model might
slightly overfit. Since sparsely populated neighbourhoods are
broadcasted to all workers, it is more likely that a greater
number of examples will be reused from all workers while
increasing the number of neighbourhoods. For example, in the
case of 40 neighbourhoods, a more closer look on each distinct
run asserted the above statement. During one of the runs, as
shown in Table III, 11 sparsely populated neighbourhoods ap-

pear to slightly harm the validation accuracy which concluded
in a value of 0.9330. On the other hand, when 7 sparsely
populated neighbourhoods occurred, the validation accuracy
managed to reach 0.9370. Note that the validation loss on this
case was 0.4329 leading to a 2% enhancement from the results
of the baseline method. Overall, while the distribution aware
sharding can enhance the value of the metrics, we should not
examine a large number of neighbourhoods to avoid the case
of multiple sparsely populated ones.

D. Coarse - Grain CIFAR-100

1) Metrics and Variance.: Table IV presents the final
training and the validation metrics of training the Resnet-
56v1 network of the CIFAR-100 dataset with the coarse -
grain labels, having the data sharded to workers with all the
aforementioned techniques. Stratified sharding led to results
that minimize the training metrics and the variance of the
validation metrics. Specifically, the variance of the validation
loss and accuracy was 1.65X and 6.11X smaller than the
baseline. Training loss was also minimized by 2%.

While stratified sharding manages to minimize the variance,
the actual value of the validation metrics is minimized when
using the distribution aware sharding algorithm. In IV-C2
the experimental evaluation indicated that distribution aware
sharding, when given the appropriate number of clusters as
input, could provide the model with the best validation metrics
and smaller variance than the baseline. Table IV can further
support this claim. Providing the algorithm with twice the
number of classes, appear to have an enhanced validation loss
with 1.21X less variance from the round - robin sharding.
The same applies for the validation accuracy, which meets its
best value of 0.806237 in this setup. Note that validation loss
is minimized when the number of clusters in the algorithm
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Fig. 7: Box plots representing the number of class examples in each shard created randomly for 3 of the runs.

TABLE V: Statistics (5 runs) of final Training and Validation

Loss / Accuracy on the Fine CIFAR-100 dataset per method

Training Metrics Validation Metrics
Method Loss Accuracy Loss Accuracy
Mean Variance Mean Variance Mean Variance | Mean Variance
Random 0.512164 | 0.009550 | 0.744448 | 0.007855 | 1.841267 | 0.026051 | 0.704707 | 0.002222
Stratified 0.516125 | 0.009296 | 0.744203 | 0.003107 | 1.817435 | 0.011633 | 0.708432 | 0.001225
:,,E 50 0.513846 | 0.004085 | 0.746785 | 0.000764 | 1.835961 | 0.019680 | 0.707048 | 0.004526
Distribution Aware | 8 g [ 100 | 0.521913 | 0.008164 | 0.743808 | 0.005842 | 1.851682 | 0.015945 | 0.703488 | 0.003561
o 2 200 | 0.510340 | 0.006247 | 0.746949 | 0.001134 | 1.839176 | 0.013421 | 0.708234 | 0.002264
is set to three times the number of classes (60). However, 9
. . . 2
the variance in this setup appears to suffer from the sparse 510
neighbourhoods effect discussed in IV-C2. E
2) Random Sharding Weakness.: Having discussed the 510!
variance minimization that can be achieved from the stratified 3
sharding algorithm, it is important to further understand why .% o0
. . 1
the default random approach results to larger variance in the 2
validation metrics. Figure 7 presents a group of box plots for B
H <
3 of the runs of the random shafcl.lng approach. Each box & 2500 (Coarse) CIFAR-100 (Fine) CIFAR-10
plot describes the number of training examples from each Dataset
FZA Random O Stratified X3 Distribution Aware

class that is assigned to each worker. CIFAR-100 consists of
20 equally populated coarse grain labels. Sharding the data
set into 12 workers should provide each with approximately
208 training examples from each category. Most workers have
a median number of examples per class close to this value
and overall (200, 215) as a 50% confidence interval in most
cases. However, the box plots indicate that several classes are
distributed unequally to the workers. For instance, a closer
look on the box plots referring to the second and third runs
(Figures 7b and 7c) indicates that most of the workers have
180—230 and 175—235 training examples from each category
respectively, leading to unbalanced sharding for some classes.
Thus, a worker will try to adjust the model more on one
specific class leading to greater variance in both training and
validation metrics between the training attempts. Of course,
an outlier number of examples per class could further hurt the
variance, as for instance in the case of workers 2 and 7 from
the second run (Figure 7b) and worker 2 from the third run
(Figure 7c¢), since the divergence of the class size compared to
the rest will further create dominant or subdominant classes.

This non - uniform view each worker has on the data, is not
met on the proposed algorithms. Stratfied shards preserve the
percentage of each class size from the whole dataset. Distri-
bution aware technique, considers further hidden stratification,
which also avoids this problem, if the appropriate number of
clusters is given as input (Section IV-C2).

Fig. 8: Average Sharding Technique Time per Dataset

E. Fine - Grain CIFARI00

1) Metrics and Variance: Table V reveals some interesting
findings regarding the validation metrics. To begin with, as
discussed in IV-C1 and IV-D1, the variance of the validation
metrics is minimized when using stratified shards. Specifically,
both validation loss and accuracy are less variant by 2.23X and
1.81.X respectively. Apart from the variance, this series of ex-
periments shows shards derived from the stratified algorithm,
also manage to slightly enhance the values of the validation
loss and accuracy to 1.81X and 70.84% respectively.

As it is shown in Table V training loss is not minimized by
shards created from the stratified approach. When distribution
aware shards are used, the model appears to minimize the
training loss and maximize the training accuracy, followed
by similar validation accuracy to the one of the stratified
case. While the distribution aware case does not minimize
the variance of the validation metrics, it also presents lower
values of variance compared to the baseline method.

F. Time Ovehead of Data Sharding

Figure 8 presents the average execution time in seconds
for creating shards with technique. For the distribution aware
technique we present the mean execution time over all classes
examined for each dataset. Stratified and Mod sharding tech-
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niques, as same complexity algorithms (see Section III-C),
induce almost the same time overhead to the whole training
process, which is less than 1 sec. Distribution aware’s overhead
is ~ 100 seconds, which does not burden the whole training
process, since the ResNet-50 network needed approximately
4 hours to converge in the cluster.

Since GPUs are not used to train our models, we need
to ensure that the time overhead induced from the sharding
algorithms is not important in case accelerators are available.
Let us take as an example the family of CIFAR datasets. As
we mentioned in IV-B, each of these datasets is used to train a
model following the ResNet-50 architecture with the proposed
hyperparameters, i.e a global mini-batch size of 128 training
examples. Thus, according to II-C, W B is approximately 10
training examples. Benchmarking indicated that TensorFlow
needs approximately 0.11 seconds to train a ResNet-56v1
network with a W B mini-batch on a Tesla GPU [49]. In such
case, each worker will need 7800 seconds and, therefore, the
overhead of the distribution aware approach is insignificant.

G. Discussion

Having presented a detailed evaluation on sharding algo-
rithms, in this section we discuss our findings to help the
reader understand the benefits and the drawbacks of each one.
Random sharding approach appears to have large variance in
the training and validation metrics in general. As we discussed
in IV-D2, workers appear to be biased towards one or more
classes, which will affect the resulting global model. Stratified
sharding comes as a solution to this problem, since each
worker has a uniform distribution over the population of each
class and, therefore, an equivalent view to the data.

Distribution Aware approach appears to be further use-
ful when the train set presents further hidden stratification
(coarse CIFAR-100). It is crucial to set the correct number
of neighbourhoods in the algorithm, in order to avoid the
sparse neighbourhoods effect (see Section IV-C2). Considering
the results we obtained from all the CIFAR family datasets
that we examined, we recommend to set the number of
neighbourhoods twice the number of classes. However, if prior
knowledge indicates no hidden stratification patterns, stratified
sharding should be preferred.

To generalize our results, it is important to observe the
structure of each dataset. CIFAR-10 contains a few classes
(10) with multiple points each (5000). On the contrary, fine-
grain CIFAR-100 has multiple classes (100) which are less
populated (500 data points / class). Coarse-grain CIFAR-
100 is an example of a dataset with hidden patters. These
different structures encapsulated by the CIFAR family datasets
could allow us to generalize our findings, regarding how each
sharding technique affects the variance in the metrics.

In case of applying the Distribution Aware algorithm in
much larger datasets, distributed PCA and KMeans should be
preferred to minimize the time overhead [50, 51].

V. RELATED WORK

According to our research study, we are the first that
examine whether data sharding is able to stabilize the learning
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process in an asynchronous parameter server setup. However,
there are numerous works that attempt to issue other problems
in such learning setups. Authors in [52] alter asynchronous
SGD to handle stale gradients by including a decaying fac-
tor proportionate to a staleness index in the SGD equation.
Various other approaches have been also examined regarding
staleness as a variable learning rate [53] and aging relating
parameters [54]. Furthermore, In a 2020 research work [55],
the authors introduce MLfabric, a communication layer that
forwards gradients to parameter servers in order to guarantee
faster convergence and handle stragglers.

While the aforementioned works focus on solving problems
induced by the parameter server architecture itself, our work
is inspired from machine learning fundamentals where strat-
ification is used to achieve more stable classification results.
For instance, it is widely used in cross validation techniques
for standard single node machine learning, where it reduces
the metrics’ variance [56]. Except core machine learning
techniques, stratification is adopted in domain specific model
training. Emphasizing on hidden stratification, in [57] they
conclude that in some cases, medical related classification
models should not be used without considering any hidden
patterns. In other domains, stratification is tested over graph
partitioning to isolate disjoint subgraphs [58]. Hidden strati-
fication pattern are also used by DSH [59], where PCA and
KMeans are adopted to create families of hash functions in
order to address the approximate nearest neighbour problem.

In section IV-D2, we actually identified that data skew in
workers’ shards could increase the variance of the training
metrics. In [60], the authors mention that in single node
learning data skew can create biased models and propose data
generation techniques to overcome this obstacle. While data
augmentation was adopted by each worker, in our work we
acertained that in the asynchronous distributed setup, more
representative shards with no skew lead to less variance in
the results. When data are in different locations and data
skew problems appear, more complex approaches can be
adopted [61]. However, one of our work’s core assumptions
is that data exist in a shared or distributed file system, which
opens the way to exploit simpler approaches as stratification.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the effect of data assignment in an
asynchronous distributed learning setup under the parameter
server architecture. Specifically, we propose two algorithms,
the stratified and the distribution aware one, for assign-
ing training examples on workers. The proposed approaches
present smaller variance both on training and validation met-
rics. Specifically, validation metrics present up to 8 X and 2.X
less variance in the stratified and distribution aware techniques,
followed also by a slight enhancement in the metric values.

Having shown that asynchronous training could be more
stable depending on how the data shards are created, we aim to
examine how the knowledge of the proposed algorithms could
be used in hash functions that would assign data points to
workers in real time, supporting online asynchronous learning.
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