
Received 17 December 2024, accepted 18 February 2025, date of publication 3 March 2025, date of current version 11 March 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3547623

Accelerating Distributed Repartition Joins on
Skewed Datasets via Patch-Based Shuffling
EVDOKIA KASSELA1, IOANNIS KONSTANTINOU 2, AND NECTARIOS KOZIRIS1, (Member, IEEE)
1School of Electrical and Computer Engineering, National Technical University of Athens, 115 27 Athens, Greece
2Department of Informatics and Telecommunications, University of Thessaly, 351 00 Lamia, Greece

Corresponding author: Evdokia Kassela (evie@cslab.ece.ntua.gr)

This work was supported by European Union and Greek National Funds through the Operational Program ‘‘Competitiveness,
Entrepreneurship and Innovation,’’ under the Call RESEARCH—CREATE—INNOVATE under Project T1EDK-04605.

ABSTRACT In distributed workloads involving joins and aggregations, skewed attribute values often cause
load balancing issues, leading to stragglers and increased execution times. Existing solutions often rely on
cost-based models, require extensive parameter tuning, or necessitate modifications to distributed execution
engines, limiting their usability and generality. To address this challenge, we present a novel patch-based
repartitioning algorithm that eliminates load imbalances while minimizing network overhead. Our approach
extends the subset-replicate technique by leveraging data distribution and location statistics to optimize data
locality and reduce unnecessary data movement. Unlike traditional hash-based methods, our technique is
skew-insensitive, requires no parameter tuning, and integrates seamlessly into existing distributed execution
engines as a drop-in replacement for the shuffle mechanism. The proposed method operates in three distinct
stages: (1) statistics collection and load threshold computation, (2) patch-based subgroup assignment to
ensure optimal load balancing with minimal replication, and (3) informed data shuffling and join execution.
This structured process ensures even workload distribution across workers while reducing network I/O.
Theoretical analysis proves the scalability, skew robustness, and load-balancing guarantees of our approach,
establishing bounds on maximum worker load and network data movement. Experimental evaluations
demonstrate that our method achieves perfectly balanced workloads and reduces execution time by up to
81% compared to conventional hash-based joins under moderate to high skew, while introducing negligible
overhead at low skew levels. These improvements are attributed to reduced datamovement, optimizedworker
utilization, and the algorithm’s robust theoretical foundation. Our research provides a versatile and practical
solution for skewed data processing, significantly advancing the efficiency of distributed data management
systems.

INDEX TERMS Load balancing, repartition join, shuffling, subset-replicate.

I. INTRODUCTION
A typical organization/institute nowadays keeps many hun-
dreds of GBs of data distributed in various datastores
depending on their source (e.g. IoT devices [1], [2] or
transactional systems [3]), format (e.g. XML, CSV) and
processing capabilities [4], [5]. The most common cases
include limited structured data stored in relational databases
that are used to perform simple analytics, and large-

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

scale semi-structured or unstructured data stored in NoSQL
databases and distributed file systems on top of which
big data analytics is performed, such as machine learning
pipelines [6], [7], log processing [8], federated learning [9],
SQL, etc. Regardless of the data scale and structure, process-
ing engines exist that allow users to interact with them using
typical SQL data management programming APIs. The most
prominent examples of such engines are Apache Spark [10],
Apache Hive [11], Presto [12] and its newer alternative
Trino [13] which are autonomous distributed processing
engines.

41068

 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0002-7142-8106
https://orcid.org/0000-0002-8887-4321

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 1. Approach 1: Standard repartition join and the effect of skew
presence in a single key (pink).

FIGURE 2. Approach 2: Subset-replicate join splits and replicates the pink
key.

In the context of SQL analytics, when trying to efficiently
join two or more datasets, most of the existing SQL engines
focus on exploiting data locality profits to minimize network
traffic. They achieve this by allowing the query optimizer to
choose the appropriate join operator while the task scheduler
aims to achieve a fine load balancing for the workers by
distributing tasks to them.

The most common algorithm used by distributed execution
engines for joining two large datasets (equi-join) is the
standard repartition join (Alg. 3.1 in [14]) which is based on
the typicalMapReduce paradigm [15]. Repartitioning on both
tables will happen based on the joining attribute using a hash
function, therefore called hash-based repartitioning.With this
repartitioning methodology, the different values of the join
attribute are assigned to different workers. However, if some
values are highly skewed, certain workers will inevitably
present a significantly higher load. Considering a join group
as the set of input records with a specific join attribute value,
a group that corresponds to a value with higher frequency will
have a significantly larger size. Such a group will be assigned
to a single worker using the default hash-based repartitioning
which will overload this worker. The impact of the load
imbalance in such cases is observed in the increased overall
execution time.

A. FIRST APPROACH USING STANDARD REPARTITION
JOIN
To visualize the impact of skew in such cases, we present in
Fig. 1 an example where two relations must be combined,
tables A and B, and the distinct colors represent data that
belong to a different group. Data is split into chunks and
stored in a cluster that consists of storage and compute nodes
(Workers 1-3 in the figure). Table 1 is stored in Workers
1-3 whereas Table B is stored in Workers 1-2. Each group
represents a part of the data that is related to a specific

join/aggregation attribute value and must be processed inde-
pendently. The groups are organized in a distributed manner
during the intermediate shuffle phase of the MapReduce
algorithm [15]. In this phase, every worker extracts a part of
the local group data, and the framework assigns one worker as
the sole responsible to aggregate these parts from both Tables
and perform the entire calculation per group, i.e., execute the
actual join in the ‘‘reduce’’ function. For instance, in Fig. 1
the shuffle phase in denoted with the black arrows and the
aggregation and join calculation for the orange group is
presented as a combination of the partitions A1 and B1 which
will happen inside a specific worker (among workers 1-3).
The rest of the groups will also randomly be assigned to some
worker (either the same or different). If some value appears
with higher frequency (’0’ in Fig. 1) the corresponding group
will contain more data in relation with others (pink) and our
data will be skewed, leading to a bigger processing time
for the unfortunate worker that will perform the specific
calculation. Skew is usually present in one side of the
joined/aggregated relations (Table A in Fig. 1), but in general
both relations could present skew. Given that each group is
assigned to a single worker for processing it, i.e. partitions A0
and B0 of Fig. 1 will be sent to the same worker, this unfor-
tunate worker will receive more load compared with others.

Therefore, the common hash-based repartition join algo-
rithm cannot achieve satisfactory performance by definition
when a dataset presents a high skew. In such cases, a large
part of the data will be placed by the underlying hash-based
shuffling mechanism in a few partitions only (this is also
depicted in Fig.5 in [14]) leading to considerably larger
total execution times caused by worker imbalances: the task
scheduler which is responsible to select the worker that each
data partition will be assigned, will randomly assign some
large partition to a worker without considering the size of it
rendering this worker overloaded. The simplest approach to
address the increased worker load caused by a large group
is to split any large join group into subgroups that will be
distributed to multiple workers, known as the subset-replicate
method.

B. SECOND APPROACH USING SUBSET-REPLICATE JOIN
The state-of-the-art subset-replicate methodology, which is
used to unload workers in such cases, is to split the large
partition A0 which is created from the skewed relation
(Table A) into two subsets A0-0 and A0-1 as presented
in Fig. 2. Each of these subsets will then be sent to a
different worker in order to achieve a more even load balance.
However, each of these workers will need a copy of partition
B0 to perform the computation, hence the name subset-
replicate. Partitions A0-0 and B0 would therefore form one
subgroup, and partitions A0-1 and B0 a second subgroup
which are created from the original group related to key 0.
Every time we choose to split/repartition a single group we
share the load between two or more workers and at the same
time we increase the network traffic due to the duplication of
input records in different subgroups.

VOLUME 13, 2025 41069

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

The subset-replicate methodology is used by all SQL
engines that aim to efficiently process skewed datasets.
However, each engine follows a different approach, with
some engines letting the task scheduler implement this logic
on-the-fly while others implement an entirely new join
algorithm that is based on this method. More information
regarding the subset-replicate methodology and variations
is provided in Section II. Moreover, code-based custom
solutions such as key-salting, which can be used with any
engine, deal only with the load balancing and ignore input
duplication overheads.

Various research works ([16], [17], [18]) have been trying
to develop new join algorithms to address the problem
of joining large skewed datasets over multiple nodes or
engines employing the subset-replicate methodology. Most
of these implementations rely on cost-based models [19]
for the repartitioning decisions and target the minimization
of the estimated execution time. However, these algorithms
are not easily reusable due to the integrated cost models,
lack extensive evaluation over large clusters and non-skewed
datasets ([16], [17]) to prove their generality, come with
autonomous custom-build engines ([16], [18]) or rely on
specific hardware and protocols for their operation [18].
Moreover, some solutions that implement new join operators
without the use of cost models are presented in [20] and [21],
however they are also built on top of custom systems.

On the other hand, popular distributed general-purpose
engines try to address the problem through task mon-
itoring and dynamic rescheduling focusing on the load
balancing aspect of the problem. For example, Apache
Spark implements this logic with the adaptive execution
framework [22] using some user-defined thresholds for
the size of data partitions which are provided as system
configurations (refer to related work Section III for a detailed
discussion on user-defined parameters). However, the applied
methodology can hardly be considered skew insensitive,
as its operation and performance can vary significantly
depending on the defined thresholds which may differ per
use case/query. A similar but more generic approach is
used in SkewTune [23], which makes cost-based decisions
for repartitioning data of MapReduce tasks. Although these
approaches tackle load imbalances that appear in a cluster,
they ignore network overheads, and they are system centric
as they require the modification of the internal operation
of each engine. Although the topic of skew in distributed
data processing has received a lot of attention from the
research community, we have identified a number of gaps
in existing approaches (refer to Section III) which we wish
to address.

In any case, traditional repartitioning techniques, while
effective in general cases, fail to account for skew-induced
load imbalances, leading to suboptimal performance. Exist-
ing solutions often involve intricate parameter tuning, manual
intervention, or require modifications to the underlying
distributed execution engine, limiting their usability in
diverse real-world scenarios.

Our goal is to develop an algorithm that can be used
with any distributed processing system without involving
cost-models and address both the load balancing and
duplication-related network overheads that arise under the
presence of data skew. We present a new skew-insensitive
repartitioning algorithm that can be integrated in any system
in the category of distributed SQL analytics engines to
efficiently execute large-scale joins or any other aggregation
of unordered skewed or unskewed datasets. Since our
implementation is skew-insensitive it can be effectively used
in any case and the user is not required to know beforehand
if the data is skewed. Our algorithm includes a novel
patch-based repartitioning methodology and approximation
techniques. It can be used as a shuffling mechanism in
place of the hash-based shuffling implementation which is
commonly used at present. Our initial, partially developed
algorithm, is presented in [24]. The key features1 of our
technique are:
• Operation insensitive to data skew: using our algorithm
we eliminate the impact of the reduce-side skew and
achieve optimal load-balancing, while the performance
with unskewed datasets is minimally affected. The
run-time overhead of our algorithm is minimal irre-
spective of the level of skew and it requires zero
parameterization.

• Integration with common distributed SQL engines:
irrespective of the internal operation of each engine, our
algorithm could be integrated as-is in any MapReduce-
type engine interacting with its task scheduler. Also, its
operation is not affected by the decisions of the engine’s
query optimizer, or the opposite.

• Locality-aware repartitioning of input data: data statis-
tics will be used to repartition the skewed parts of the
dataset in a way that ensures minimum data movements,
by placing specific partitions to specific workers.

• Priority to local processing: to ensure maximum
exploitation of data locality, we split the repartitioning
procedure in two phases; first we create and assign
as many ‘local’ partitions as possible (which can be
processed with the least required data transfer) and then
randomly process the rest of the partitions.

The rest of the document is organized as follows: in Sec-
tion II, we discuss the state-of-art repartitioning techniques.
In Section III we present the related work. In Section IV,
we present our methodology including examples and imple-
mentation details. The experimental evaluation is presented
in Section V and we conclude our findings in Section VI.

II. SUBSET-REPLICATE PARTITIONING METHODOLOGY
OVERVIEW
In this section, we provide an overview of the subgroup
repartitioning strategy which is most commonly used (with

1This work extends [24] by providing: the fully developed prototypewith a
clear methodology description and discussion about its generic applicability,
an extensive evaluation section with extra experiments, a theoretical analysis
regarding performance and scalability and an expanded related work section.

41070 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

slight variations) for splitting the join groups of an equi-join
in the presence of skew, known as subset-replicate parti-
tioning. In Section II-A we present the calculations required
before applying the partitioning, in Section II-B we describe
the exact partitioning methodology, and in Section II-C we
discuss about the main optimization goals.

A. SKEW EXAMINATION
In order to identify the groups that need to be repartitioned,
the sizes of the various join groups must be first determined.
The frequencies of the join attribute values in each dataset
must be calculated for this purpose, and this information is
gathered through the cardinality estimation mechanism of
typical databases (for a comprehensive survey of cardinality
estimation mechanisms please refer to [19]). Although any
existing data statistics can also be re-used, in general these
simple calculations can be quickly performed either before
the actual join or dynamically during its execution [18], [22],
[23], [25]. Moreover, sampling techniques can be used in
both cases to avoid examining the whole dataset(s) [16], [18],
[26]. Such simple count-style calculations are necessary for
determining skewed values and are part of the initial skew
examination phase in all the existing research works.

B. SUBSET-REPLICATE PARTITIONING
When a decision has been made to split a large group into
two subgroups, the records belonging to each dataset are
considered as two different sets which are handled in a
different way. Depending on the number of records in each
set, the largest set is usually split into two subsets forming
two different subgroups and the records of the other set must
be replicated in both subgroups. This methodology is called
subset-replicate partitioning [27] and is executed iteratively
to split the largest join groups into smaller subgroups. It is
also known as rectangular partitioning, since a join group can
be represented as a rectangle whose side has the size of a
single set and it is consecutively split in smaller rectangles.
It is important to mention that the replication of a set of
records in different subgroups means that the same records
will be sent tomultiple workers instead of a single one, known
as input duplication.

The repartitioning of groups into subgroups can happen
once before the join execution in an offline manner or it
can be a dynamic procedure that constantly calculates the
optimal repartitioning for the remaining records to be joined,
depending on the latest data statistics.

C. OPTIMIZATION TARGETS
The most important decision during the repartitioning
procedure is whether or not to further split a subgroup. The
question can take many different forms: Will the overall
execution time profit?Will we benefitmore from splitting this
set of the group? Will we have better load balancing? Will
the replication of records cause network-related overheads?
This problem can be formulated in many different ways

and various cost models with different optimization rules
have been evaluated in the past. However, there are two
common targets in all existing efforts: a) even load balancing
and b) minimal network traffic. Even the most complicated
execution time models have been created along the same
lines after carefullymodelling theworker processing time and
the network transfer time in terms of the number of records
processed/transferred.

III. RELATED WORK
Various strategies have been proposed to address data skew
in distributed joins, each employing different mechanisms
for skew detection, load balancing, and data replication.
To provide a structured comparison of these approaches,
we present Table 1, which summarizes key attributes of
existing methods and highlights the distinguishing features
of our proposed solution.

BigDawg [16] is, to the best of our knowledge, the first
polystore engine among many, that aims to optimize the
execution of cross-engine shuffle-joins considering the data
skew. In this polystore system, the shuffle-join framework of
SciDB [35] is integrated and modified to operate on simple
relational data instead of multi-dimensional arrays. Initially,
to calculate the data skew, a similar histogram is populated
for each table (engine) by taking random data samples of the
join attribute and the histogram buckets form the join-units.
The final assignment of join-units to engines is produced after
two steps; first each of the join-units is assigned to the engine
that has most data locally to minimize data transfer, and then
an algorithm called Tabu Search is used to unload certain
engines by reassigning join-units to engines with lower cost.
Both the data migration cost and the actual join cost are
considered for each engine, modeled as simple quadratic
functions of the number of tuples. The performance of the
used algorithm is satisfactory even for non-skewed datasets.
However, it is untested with a large number of nodes and
distributed relational engines.

In [17] a novel algorithm for executing hash-joins with
large, skewed datasets is presented. The aim of this work is to
determine the best repartitioning for heavy hitters to balance
the worker load as evenly as possible. A greedy algorithm
that performs rectangular sub-group repartitioning is used
(each side of the rectangle represents a table). This algorithm
gradually increases the number of partitions on each join
side by splitting its largest partition, choosing the side that
produces the greatest benefit in each iteration. To quantify
this benefit, the load expectation and variance of a worker
are defined (load is a linear function of the number of input
and output tuples) and the chosen partitioning is the one
that causes the greatest variance reduction. Although this
repartitioning strategy is considered near-optimal for hash-
joins and does not require any knowledge of the heavy hitters
beforehand, it causes input duplication each time a partition
is split in two which means higher worker load expectation as
the number of partitions increases. The best balance between
load expectation and variance must therefore be determined

VOLUME 13, 2025 41071

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

TABLE 1. Comparison of related work on handling data skew in distributed joins.

such that the running time is minimized. Another linear
model, similar to the worker load, is used for the running
time which includes both the network transfer time and
the join execution time. For each repartitioning decision,
the algorithm uses deterministic assignment of partitions
to workers and then the running time is estimated based
on the number of shuffled tuples and join I/O tuples. The
algorithm terminates when the running time does not improve
significantly and the repartitioning with the lowest running
time is selected. However, the performance of this algorithm
with non-skewed datasets is not properly studied.

A similar, but much simpler approach is used by Apache
Spark ([10], [28]) for handling data skew with the adaptive
execution framework [22] that is included since release 3.0.
If a partition is much larger than the median partition size
(arbitrarily preconfigured to five times bigger than themedian
partition size) and a preconfigured user-defined threshold
value in MB (arbitrarily set to 256 MB), it is split into
smaller partitions that have the average size of non-skewed
partitions or a preconfigured size. Details on configuring
those parameters are provided in Spark’s performance tuning
manual2 in the ‘‘Optimizing skew join’’ section. In this case
the matching partition on the other side of the join needs to
be replicated. Although this methodology can successfully
address the skew problem in specific simple use cases, it relies
on user-defined thresholds and the performance may be hurt
depending on the configuration and the use case. While
Spark developers come with some suggested values that may
work in the general case, they cannot cover every different
dataset, cluster, and query combinations. In cases when those
preconfigured values are not optimal, the user must detect
them considering complex system-specific operations that
may not be easily understood by a non-experienced user.
For example, the user must carefully consider the fact that
when both join sides are skewed, the join could become
a cartesian product with a quadratic blow in the execution
complexity. Moreover, the standard shuffle mechanism is still

2https://spark.apache.org/docs/latest/sql-performance-tuning.html

used to randomly assign partitions to workers and locally
available data are not exploited properly to reduce the amount
of shuffle data which is increased due to the previously
mentioned replication. The main difference between Spark’s
adaptive execution framework and our patch-based approach
in terms of user-defined configurable parameters is that we
do not leave the user decide any parameter; instead, our
approach automatically detects the optimal key population
and replication to mitigate skew.

In Fangorn [25], a recently developed general-purpose
framework that can be used with various workloads
employing multiple execution engines in shared clusters,
the authors use automatic run-time skew detection and
dynamic plan adjustment by gathering statistics during
execution. This approach is based on task management, like
the Spark framework, and locally available data are not
exploited too.

Another system-centric approach is presented with
SkewTune [23]. Being implemented as an extension for
MapReduce-type engines, it monitors task execution and
reacts whenever a slot in the cluster becomes available to
rebalance the load. In order to do so, it stops the task with
the maximum estimated completion time and repartitions
its input data to new tasks using a heuristic algorithm. For
the repartitioning process, SkewTune collects a compressed
summary of the input data. SkewTune addresses different
types of skew that can occur when some keys are more
expensive to process than others, because, for instance, they
are larger in size, or when the hashing partitioning algorithm
does not produce even distributions. The algorithm identifies
straggling tasks by constantly examining their completion
time; when it identifies that the completion time exceeds
a user-defined threshold compared to the mean completion
time, it then splits the load of this task into two different
tasks and dispatches them in idle resources. Although both
SkewTune and our patch based algorithm addresses load
imbalances, our approach targets specifically join operations.
Moreover, our approach uses both load migration (by moving
keys between nodes) and replication (by replicating hot areas

41072 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

into more than one node) to distribute the join load among the
cluster, whereas SkewTune uses only load migration.

In Flow-Join [18] the authors focus on fast skew detec-
tion when executing hash-joins over modern high-speed
networks. A novel algorithm is presented, which detects
heavy hitters and repartitions the data at runtime using small
approximate histograms. Each worker maintains its own
histogram with local heavy hitters, and constantly updates
it using the space-saving algorithm while performing the
join. After processing only 1% of the probe input, each
worker can start using his histogram to decide on its local
heavy hitters based on a fixed skew threshold value. The
probe tuples are normally sent to the build side if no skew
is detected, otherwise they are kept local, and the worker
asks to receive the build side tuples from other workers
asynchronously. This method is called Selective Broadcast
and aims to minimize network transfers. For a more general
approach, a global histogram is built for each of the input
sides and in case the skew is detected in both sides the
heavy hitter tuples are redistributed using the symmetric
fragment replicate shuffling scheme. With this scheme a
grid is created that repartitions data to the servers, in order
to avoid the excessive network I/O and load imbalance
that the Selective Broadcast would cause. The grid shape
depends on the relative frequency of a heavy hitter in both
inputs, i.e., the heavy hitters are repartitioned using a square
grid in case skew is similar in both input sides. The final
algorithm uses lazy tuple materialization while building the
two global histograms and uses a pipelined probing approach
for deciding how each tuple will be joined.

Addressing the increased network traffic that incurs with
the hash-based shuffle mechanism which is used not only in
hash-joins but in the deep learning domain too, the authors
in [29] propose a partial instead of global shuffle of the
data aiming to maximize local processing and minimize data
movement. This approach is also applicable to other domains
too except from the deep learning domain, such as large-scale
relational processing.

In [20] the authors implement three different SkewJoin
strategies to mitigate different data skew scenarios in inner-
and outer- joins. The three strategies present trade-offs
between performance and reliability, and the evaluation
confirms that although they improve the performance by
balancing the workload, each strategy performs best in a
different scenario and there is no single one that outperforms
the others in all scenarios. There are pros and cons in
the usage of each strategy which the user should carefully
consider.

In [21] the authors propose a new join geography called
PRPD (partial redistribution and partial duplication) which
can be used by SQL optimizers when generating a query plan.
The implementation is based on the reasoning that skewed
values are kept locally which saves redistribution cost and
decreases execution time. PRPD not only deals with cases
where only one relation is skewed, but also cases where both
relations are skewed.

In [30] the authors present Nereus, a distributed stream join
processing scheme that is based on adaptive partitioning and
migrations to achieve load balancing between participating
peers. They measure observed load among nodes and
when they detect imbalances, they perform load migrations.
Nevetheless, their work is focused only on streaming data,
and they do not consider also the subset replicate approach
that we follow in our methodology.

In [31] the authors deal with the problem of joining
spatial subtrajectories using MapReduce. They employ a
repartitioning mechanism that achieves load balancing and
collocation of temporally adjacent data called subjtrajectory
join with repartitioning in which they initially sample the
dataset to create equally sized partitions. Nevertheless, their
approach does not consider a subset replicate approach, and
they do not consider data movement costs during the partition
calculation.

In [32] the authors also deal with the problem of joining
spatial datasets by utilizing a distributed processing engine
like Apache Spark. They propose a spatial partitioner that
divides the joining datasets while maximizing resource
utilization, decrease shuffling and reduce execution time.
Although their approach is like our adaptive repartitioning
scheme, they do not consider a subset replicate approach
during partition calculation.

In RelJoin [33] the authors present distributed joins that
consider skewed datasets and implement their approach over
Apache Spark by employing a cost model that considers
transfer and execution time. They study the joins presented
in [14] on skewed datasets. Nevertheless, their main contri-
bution lies in the optimization of the produced query plan
by performing, among others, operand reordering without
dealingwith subset replicate or locality-aware data placement
approaches.

In AlCo [34] the authors propose a fragments allocation
(i.e., partition allocation) method to perform joins in a
distributed database by issuing a genetic algorithm. They
implement their approach in oceanbase [36], an RDBMS
developed by Alibaba and utilize the TPC-H benchmark
to experimentally evaluate their findings. During partition
allocation the authors consider data locality and movement
cost in a similar to our Patch-Based approach, nevertheless
they do not investigate how a subset replicate approach could
be employed.

In [26] the authors extend Mimir [37], their previous
work, and present a skew tolerant MapReduce methodology.
They employ dynamic repartition optimizations to balance
memory usage across workers over an MPI setting. They
devise data-skew strategies based on dynamic repartitions
and ‘‘superkey’’ split strategies for in-memory workloads.
Repartitions are performed in an iterative manner by
utilizing a repartition and bin table that through sampling
collects information about the dataset skew. Consecutive
repartitioning is performed until a load-balancing threshold
is reached. Nevertheless, during repartitioning the authors do
not consider existing data locality. When the repartitioning

VOLUME 13, 2025 41073

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

phase is complete, the superkey split strategy is employed.
The superkey split strategy is in essence a subset replicate
approach that splits ‘‘superkeys’’ values (i.e., specific keys
that contain a large number of values) during the reduce-side
processing into different partitions. This information is kept
on a hash table called ‘‘split’’ table. Nevertheless, their
approach also does not consider data locality during subset
replicate and placement, whereas it merely tries to only
minimize load imbalances without considering imposed
transfer costs.

An orthogonal but yet relevant approach to deal with the
aspect of privacy in distributed cloud-enabled is followed
in [5], [38], and [39]. In these works, the authors provide
efficient indexing structures that can be used in distributed
data stores to maintain the data privacy while allowing query
execution.

In overall, we believe the following gaps exist in the
literature which we aim to address:

A. SKEW-AGNOSTIC DESIGN
Unlike many existing solutions requiring heuristic tuning
of skew parameters, our patch-based algorithm is skew-
insensitive and does not require any heuristic tuning.
It automatically adapts to varying data distributions without
manual intervention.

B. GENERALIZABILITY
Most existing techniques are tailored for specific applications
or data types. The proposed algorithm is designed to integrate
seamlessly into any distributed execution engine, offering a
general-purpose solution for unordered datasets.

C. LOCALITY-AWARE OPTIMIZATION
Traditional hash-based shuffles are network-intensive, as they
indiscriminately redistribute data. The patching mechanism
leverages data locality to minimize network overhead while
balancing load.

IV. METHODOLOGY
In this section, we formulate the problem and describe
our methodology to repartition skewed data. In IV-A we
describe in brief our approach and optimization goals. In IV-B
and IV-C, we present the types of statistics that must be
calculated initially, which will be used by our algorithm
to extract the optimal load balancing and minimize data
movement. We proceed in IV-D where we describe the
high-level logic of our repartitioning algorithm, while in IV-E
we present in detail the patch-based repartitioning. In IV-F the
final shuffle and join algorithm is presented, which is based
on the results of our patch-based repartitioning algorithm.
In the Appendix section B we provide a full example of the
execution of our repartitioning algorithm and compare the
results with other common implementations. In the Appendix
section C we present the exact Algorithm implementations in
pseudo-code. Finally, in IV-G we describe how our approach
can be integrated with existing MPP Databases.

A. APPROACH OVERVIEW
The proper repartitioning of data groups is of crucial
importance to effectively improve the performance of a
highly skewed reduce-side operation. Following the flow,
we choose to focus on the load balancing and network
traffic aspects too, however we introduce a novel approach
which is solely based on the assignment of subgroups to
workers without the need for developing any cost models.
Unlike subset-replicate partitioning, which relies on iterative
splitting and replication of records, our patch-based approach
uses informed subgroup assignment to minimize replication
while maintaining load balance.

Our approach forms a novel shuffling algorithm which
can be used before performing any reduce-side operation,
i.e., before performing any actual key movement or join
computation. The pseudo-code that presents in high-level the
logic of our novel patch-based shuffling algorithm and how it
is used for performing reduce-side operations such as a join is
presented in Algorithm 1. The entire process is split into three
major stages, one involving only statistics and thresholds
calculation, one including the calculation of the patch-based
partitions and the other for the actual data transfer and join
computation, depicted as a diagram in Fig. 3:

• The first stage only calculates the necessary statistics.
This stage consists of the first two steps of Fig. 3, it is
presented in high-level in lines 1-3 of Algorithm 1 and
in more detail in Section IV-B and IV-C.

– In lines 1-2 of Algorithm 1 the group sizes
are extracted and the data location is identified
for every dataset. All workers participate in the
calculation of these statistics. This procedure is the
first step of Fig. 3 and it is described in detail in
Section IV-B.

– In line 3 of Algorithm 1 one worker calculates
the actual join load and a per-worker threshold
to ensure load balancing. This procedure is the
second step of Fig. 3 and it is described in detail
in Section IV-C.

• The second stage performs the patch-based data repar-
titioning. The algorithm that computes the ‘‘patches’’ is
executed in a single worker and consists of two steps as
depicted in Fig. 3 and in more detail in Section IV-D
and IV-E.

– In lines 4-20 of Algorithm 1 we are ready to
form the groups that will be joined together. This
procedure consists of the third and fourth steps of
Fig. 3 and it is described in brief in Section IV-D
and in Algorithm 2.

– First, we aggressively try to identify groups that can
be joined locally, i.e., without performing network
data transfers (step 3 of Fig. 3, lines 4-12 of
Algorithm 2: we extracted the functionality of line 7
into a separate procedure described in Section IV-E
and Algorithm 3 for clarity).

41074 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 3. Pictorial representation of our patch-based algorithm split into its main stages.

– Second, we identify groups that involve data trans-
fer from one worker to the other (step 4 of Fig. 3,
lines 13-20 of Algorithm 2: the functionality of
line 17 is described in Section IV-E andAlgorithm 4
for clarity).

• The third stage performs the actual join after taking
informed decisions calculated in the second stage that
both minimize data transfer and perform load-balancing.
It consists of the last step of Fig. 3 and it is presented
in high-level in lines 21-27 of Algorithm 1 and in more
detail in Section IV-F. An exact algorithmic presentation
of the joining process is described in Algorithm 5.

We argue that through the guided initial creation and
assignment of subgroups to workers one can tackle both
issues:

1) LOAD BALANCING
To achieve an even load balancing, each subgroup must be
assigned to a worker considering its size and the existing
assignments/load of the worker. We consider the load of a
worker as the aggregate size of the subgroups assigned to it
or as the aggregate number of computed output tuples. When
a new subgroup is created, we select a worker for it (based on
different criteria that we explain in subsection IV-D) under the
condition that its total load will not exceed a threshold which
is common for all workers. We therefore prefer to follow
an over-partitioning approach when creating subgroups to
ensure that we have minimal load variance between workers.
We provide more details about this in subsection IV-C.

2) NETWORK TRANSFER
Instead of attempting to minimize the data transfer that is
caused by every splitting/repartitioning decision, we use an
equivalent approach in which we try to ensure maximum
data locality when creating and assigning subgroups. When
we examine how a specific group should be split, we first
consider the workers that have most of the group data stored
locally and we create and assign to them the largest possible
subgroups without overloading them. For the remaining
data of the group, for which we cannot ensure locality,
we iteratively assign the largest possible subgroup to the
worker with the least load. In the following paragraphs we
describe in more detail our methodology and present the
developed algorithmswhich are combined to execute a highly

Algorithm 1 Patch-Based Shuffle and Join High-Level
Overview
Input Input datasets, number of workers
Output Result

1: computeGroupSizes()
2: computeWorkerLocalRecordStats()
3: computeWorkerLoadThreshold()

/* compute subgroups and their assignment to workers */

4: repeat
5: for worker in getWorkersWithMostLocalData() do
6: if workerLoadLessThanThreshold() then
7: computeLocalSubgroupUsingThreshold()
8: assignSubgroupToWorker()
9: updateRecordStatsRemovingSubgroupData()
10: end if
11: end for
12: until no local subgroups can be assigned
13: repeat
14: for group in getLargestRemainingGroups() do
15: getWorkerWithLeastLoad()
16: computeSubgroupBasedOnThreshold()
17: assignSubgroupToWorker()
18: updateRecordStatsRemovingSubgroup()
19: end for
20: until all remaining data are assigned

/* shuffle data using subgroups assignments */
21: for record in input datasets do
22: getInitialRecordGroupAndLocation()
23: getComputedTargetSubgroupsForRecord()
24: tagRecordWithSubgroupId()
25: sendRecordToTargetWorkerOrKeepLocally()
26: end for
27: joinDataOnSubgroupIds()

skewed reduce-side operation (Algorithms 2-5). The exact
algorithm definitions can be found in the Appendix C.

B. LOCAL AND GLOBAL SKEW EXAMINATION
As in all previous works, before we start repartitioning the
groups we must first compute their sizes with a skew exam-
ination phase. Each group corresponds to a specific attribute

VOLUME 13, 2025 41075

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

TABLE 2. Variables notation.

TABLE 3. Number of records in each set and the computed local weights
per worker for group Pa.

value and the data inside it must be joined/aggregated in
the reduce side. The size of each group is calculated as
the product of the frequencies of this specific value in the
two combined datasets. We perform these calculations once
before we execute our repartitioning algorithm and we store
a few different metrics for each group Px : a local weight
lx(n) per worker n and its total size gx . The local weight is
computed for each worker like the group size but using only
its local data. The notation of the variables that we will use is
presented in detail in Table 2.

For example, let us assume two datasets S and T that need
to be joined on a single attribute A, and a join group Pa which
is for the attribute value a. We also assume that there are four
workers available, of which only two contain data related
to the attribute value a. In Table 3, we can see the number
of records in each worker where this value appears (i.e. its
frequency) and the local weights which are computed as

la(n) = sa(n)× ta(n), n = {1, ..,N }. (1)

Using (2), the total number of Sa records across all workers is
|Sa| = 51. Respectively, according to (3), |Ta| = 30. |Sa| and
|Ta| are considered as the group dimensions and the group
size is computed using (4) as ga = 1530.

|Sa| =
N∑
n=1

sa(n) (2)

|Ta| =
N∑
n=1

ta(n) (3)

ga = |Sa| × |Ta| (4)

The size of a join group indicates the total load that this
group will produce in our execution environment, in terms of

the number of comparisons that will be performed (using a
cartesian product) or the number of final output tuples. The
local weights, on the other hand, indicate the load that will be
put on each worker iff its local group data are joined locally.
Most importantly, the local weights are used in our case to
measure the benefit of selecting a ‘local’ join i.e. creating a
subgroup that contains its local data and assigning it to this
particular worker. The highest the local weight of a worker
is for a particular attribute value the least network transfer
will be required for the group given that we attempt to assign
the largest possible subgroup to this worker. Based on our
example, worker 1 is the first candidate to be assigned with
the largest possible subgroup and then worker 0. Workers
2 and 3 will only be used at the end in case the two first
workers have been overloaded.

At the end of the skew examination phase, the local
weights, the group dimensions, and the size for each group
have been computed. Next, we calculate the maximum load
that can be assigned to any worker by our repartitioning
algorithm to ensure an even load balancing.

C. LOAD THRESHOLD CALCULATION FOR BALANCED
LOAD ASSIGNMENT
Let V be the set of all the distinct values of the join attribute
for a specific join operation. Each element in V corresponds
to a different join group. By adding the sizes of all the join
groups that are computed in the skew examination phase,
we can estimate the total load L induced by this join operation
as

L =
∑
v∈V

gv. (5)

Assuming an optimal even load balancing between workers,
the maximum load of a worker, which we will refer to as
maximum capacity, is

Cmax = L/N + 1. (6)

The maximum worker capacity will indicate in our case the
maximum allowed load of a worker andwill be used as a strict
threshold to avoid overloading any single worker at any time.

In practice, when we examine a specific worker that has the
most data of a particular group locally, we will try to assign
the largest possible subgroup to it. If the worker already
has a great amount of load from previous assignments of
other groups and therefore only a little capacity left until
reaching Cmax value, we force the creation of even the
smallest subgroup that can be assigned to it without violating
this threshold to exploit any existing data locality. Although
this may lead to an aggressive over-partitioning that we
should avoid since it causes input duplication, it tends to
happenmore during the last decisions taken by our algorithm.
At this point, both the remaining capacity of workers and
the remaining records are limited and the benefits from
constantly trying to schedule as much local joins as possible
prove to be much more important in overall.

41076 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

D. TWO PHASE REPARTITIONING ALGORITHM
Before we start repartitioning groups and assigning sub-
groups to workers, the maximum worker capacity is com-
puted and is initialized to this value for all workers and all the
computed local weights are gathered and sorted in descending
order creating a queue. Then starting from the largest weight,
we identify the worker and group that it refers to and compute
the largest possible subgroup that can be assigned to the
worker without exceeding its remaining capacity. When we
reach the end of the queue, we update the local weights of the
workers by excluding any records that will not be used again,
and we rebuild the queue using the new local weights. Then
the procedure is repeated with the updated queue.

When we fail to create and assign a new subgroup after
traversing the whole queue (which means that no worker has
enough capacity left) the first phase of our algorithm, that
tries to schedule local computations using the local weights,
is completed.

A second phase follows, for which we create a new queue
by ordering the remaining group data in descending size.
We traverse this queue only once and for each group we
repeatedly assign the largest possible subgroup to the worker
with the most remaining capacity without again exceeding
the maximum allowed load. We do not proceed to the next
group in the queue until all the current group data have been
aggressively assigned to workers. During this second phase,
we therefore randomly schedule reduce-side computations
ignoring the initial data location.

Our repartitioning algorithm is presented in Algorithm 2
and includes the two aforementioned distinct phases. In brief,
in the first phase we create subgroups trying to exploit the
data locality based on the queue that we update constantly,
and the second phase simply handles the remaining group
data ignoring data locality. During both phases, the worker
maximum capacity is never exceeded, leading to optimal load
balancing.

More formally, we first apply local assignment and then
we proceed to global assignment:

1) LOCAL ASSIGNMENT
The assignment of Ploa ⊆ Pa to workers with high local
weight la(n), ensuring:

|Ploa | ≤ min(la(n),Cmax).

2) GLOBAL ASSIGNMENT
The assignment of remaining data Pmova to workers based on
their remaining capacity, ensuring:

|Pmova | ≤ Cmax .

We also define the locality factor for a specific join group
Pa

Locality factor =

∑
n la(n)∑

n(sa(n)+ ta(n))
.

The numerator measures the amount of data processed
locally, while the denominator represents the total data

associated with the group Pa. A locality factor of 1 means all
records are processed locally without requiring data transfer,
therefore this factor approaches 1 under optimal locality.

The computational complexity of Phase 1 depends on the
number of subgroups created, while Phase 2 runs with a
worst-case complexity of O(L), where L is the total load as
defined earlier. In the Appendix section we give a detailed
theoretical analysis and convergence proof of our approach.

In the next subsection, we present a detailed example of
how a single subgroup is created from a group for a specific
worker during the first phase and the different algorithms that
are used in each phase for the subgroup creation.

FIGURE 4. Visualization of join group Pa including the number of records
in each table and the initial placement of records in the workers. The
delimited cross is used to differentiate the location of the data.

E. PATCH-BASED GROUP REPARTITIONING
Continuing from our previous example in subsection IV-B,
we can visualize group Pa in Fig. 4. The size of each side
of the rectangle is equal to the number of records on each
dataset i.e. |Sa| = 51 and |Ta| = 30, and the total area is equal
to the group size. We also note next to each side the part of
records stored in each worker and try to visualize the separate
locations of the data with the delimited black cross. Assuming
that worker 1 is the one with the largest local weight (410)
in the queue for group Pa and assuming that its remaining
capacity until reaching Cmax value is cap(1) = 973, the
first subgroup that we create and assign to worker 1 includes
32 records from Sa and all the 30 records of Ta, and is denoted
as the pink area in Fig. 5.

To explain this subgroup selection, first we try to assign
the whole group (whole rectangle) to worker 1. If its size
exceeds the worker’s remaining capacity as in this case
(ga = 1530 > cap(1) = 973), we try to split the largest

VOLUME 13, 2025 41077

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 5. First subgroup created from the join group Pa, assigned to
worker 1. The subgroup is denoted as a blue rectangle and is colored
differently depending on the worker it is assigned to. The cross-hatched
areas of the subgroup can eventually be computed using only local
records of the worker, while the dashed areas use partially local records.

set between Sa and Ta which is Sa. Initially we will attempt to
select worker’s 1 local Sa records (41) and all of the Ta records
(30) which will create a subgroup of size 41 × 30 = 1230.
As this number still exceeds the available capacity, we finally
decide to select as much local Sa records as possible given the
remaining capacity i.e. we use 973÷30 = 32 records from Sa
in the subgroup that we create. The final subgroup size, which
is the new load assigned toworker 1, is 32×30 = 960, leaving
a remaining capacity of 13 to the worker. The procedure is
depicted in Algorithm 3 and is used during the first phase of
our algorithm.

Regarding the data locality in the created subgroup, all
the 32 Sa records can be found locally on worker 1 (see
table 3), however only the 10 out of 30 Ta records are local
and the remaining 20 will be transferred from worker 0 to
1. The number of records that need to be transferred from
each remote worker is also stored when creating a subgroup
(variables ext in Algorithm 3). It is important to notice that
although we try to use as much local data as possible, the
subgroup contains records transferred from other workers
too, for example in this case the 20 Ta records that we
mentioned. This is necessary to ensure that the 32 local Sa
records will not be used again as they are joined with all the
corresponding Ta records. Therefore, we have fully exploited
the locality for these 32 records since other workers will
not need them. The values of the variables sa, ta, la, ga are
updated at the end, considering that the 32 Sa records of the
subgroup will not be used again.

In the next iterations of Algorithm 3, new subgroups are
examined for creation from various join groups depending on
the updated local weights and the remaining capacity on the
workers. The first and largest local weight that appears on the
queue indicates the group that will be examined next and the
worker that it will be assigned.

During the second phase of our algorithm a slightly
different procedure is used for creating subgroups, which is
presented in Algorithm 4. The difference from Algorithm 3
is that the local weights are no longer used, and the algorithm
will simply create the largest possible subgroup for the
worker.

When Algorithm 2 is complete and all subgroups have
been created, group Pa and the subgroups it is broken into
are presented in Fig. 6. The subgroups appearing in Fig. 6 for
group Pa will therefore be created at random future iterations,
and not necessarily successively as other groups are also
being repartitioned in between.

FIGURE 6. Patch-based repartitioning of the join group Pa. Each subgroup
is denoted as a blue rectangle and is colored differently depending on the
worker it is assigned to. The cross-hatched areas can eventually be
computed using only local records of the worker, while the dashed areas
use partially local records. The simply colored areas are computed only
with remote records that are transferred from other workers.

The complexity of Algorithms 2 and 3 is O(1). In the
worst-case scenario, Algorithm 2 will assign to all the created
subgroups 1 S record and 1 T record therefore turning the
calculation of the output into a cartesian product. The number
of subgroups that will be computed from Algorithm 2 in such
case is L, where L is the total load defined in section III-C
and is equal to the total number of output tuples that will be
computed. Algorithm 2 has a worst-case complexity of O(L).

With the described approach it is clear that we do not split
the largest set exactly in half or use predefined dimensions

41078 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 7. Repartitioning based on patches (left), consecutive divisions
(middle) and size limit (right).

like previous works which consecutively divide in half the
set or create subsets that do not exceed a specific size limit
(Fig. 7). Instead, we aggressively try to exploit the data
locality keeping as many records locally as possible. This
is the reason why we call our repartitioning method patch-
based, since we create subgroups with random dimensions
that resemble patches instead of being subdivisions of the
initial group dimensions. The choice of splitting the largest
set of the two is based on the simple reasoning that if we
split the smallest one then the large set must inevitably be
replicated and used again in the future by other workers
transferring a largest amount of data over the network.

F. FINAL SHUFFLE AND JOIN ALGORITHM
After the subgroups and their assignments are computed
using Algorithm 2, the join or any other reduce-side operation
can be executed.

To perform the required operation, the records must
first be placed into the subgroups by tagging them with
the corresponding subgroup ids. This tagging procedure is
equivalent to a common shuffle as records are transferred to
specific workers and then the actual join operation can be
executed.

More specifically, if for a record’s attribute value there are
relative subgroup(s) that are assigned to the worker itself,
the record will be kept locally and be tagged (with an extra
field) with some subgroup id(s). If there are other workers that
must receive records for this attribute value (noted in their
assigned subgroups) the worker also sends the record with
the appropriate tag(s) to the required workers. Tagging each
record with multiple tags helps us avoid duplicating a record
for each subgroup inside a worker and therefore reduces the
memory footprint of our algorithm.

A graphical representation of the tags that are created for
three Sa records of group Pa which was presented in the
previous subsection, is presented in Fig. 8. The black tagged
entries represent records that will only be tagged and kept
locally, and the red tagged entries represent records that will
be tagged and sent to other workers. In case of record s6 which
is initially located in worker 1, it will be assigned to only one
subgroup (large pink) which contains all Ta records and it is
assigned to worker 1 as we can see in Fig. 8. On the other

hand, record s39 will be included in three different subgroups
to be joined with all the Ta records, one subgroup which is
assigned to worker 0 (large blue) and two other subgroups
assigned to worker 3 (large and small green). The record will
not be emitted twice to worker 3 in this case, instead two tags
will be sent together with this record.

FIGURE 8. Sa records placement in the subgroups created for group Pa.

When the record tagging and transfer is finished all the
workers can start processing their local subgroup data. The
records from each dataset are joined/aggregated on the
selected attribute for each of their common tags i.e. for
each subgroup that they are collocated.

Although Fig. 8 presents tagging to be a simple procedure,
the selection of the subgroups that each record will be
placed is neither straightforward nor a trivial decision. The
complexity of this problem derives from the fact that the
output of Algorithm 2 for each group is a list of subgroups
with their sizes and the number of records required from other
workers. Using this information only, the selection could be
considered as a variation of the subset-sum problem [40]
which is an NP-complete problem. Another approach that
could be used is based on the exact placement of the
subgroups in the larger group rectangle as visualized in Fig. 8,
and then each record will be placed in exactly one row
which automatically indicates the combination of subgroups.
The placement of the subgroups could be based on the
two-dimensional bin packing problem [41] or the rectangle
packing problem ([42], [43]), which are also NP-complete.
However, these solutions, except from a high complexity,
pack the subgroups in a random way ignoring the initial
and final data placement which in our case is specific.
To preserve the locality which is selected by the patch-based
repartitioning algorithm, we therefore implement a custom
approximate method for the record tagging procedure, which

VOLUME 13, 2025 41079

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

aims to apply the results of Algorithm 2 as close as possible
while reducing the complexity of the problem.

The approximate tagging procedure is presented in Algo-
rithm 5 as part of the final patch-based join algorithm and is
based on the following:

• The patch-based repartitioning algorithm preserves for
each subgroup two indices which indicate the position
of the top left corner of each subgroup inside the
group rectangle. The indices are constantly updated
with every subgroup creation and this information is
stored inside the subgroup information. This is omitted
in Algorithms 3 and 4 for ease of readability.

• Since the placement of subgroups is therefore prede-
fined, the selection of subgroups for a single record
becomes equivalent to selecting a row as shown in Fig. 8.
The row contents indicate the subgroups that this record
will be placed.

• To select the row, the subgroups are examined with their
order of creation, which helps in preserving data locality
as the first groups are created with maximal locality.
When a subgroup is selected its indices function as a
placeholder which indicates the selected row, and this
row is marked appropriately and never reused.

• The approximate tagging procedure first tries to assign
the local record of a worker using as a placeholder for the
row a subgroup assigned to the same worker. If this fails,
then it uses a subgroup assigned to another worker that
requires data from this worker (indicated in the subgroup
information). In case both steps fail because no row is
available, the row is randomly selected.

• The subgroup information is not updated during the
tagging procedure to reduce the complexity of the
problem (except from marking the used rows). This
is the reason our algorithm is approximate as it does
not strictly count the records transferred from worker
to worker and may have some deviation from the
theoretical values at the end.

• In the case of S records, a row must be selected similar
to Fig. 8, whereas for T records a column in selected
respectively.

To better understand the row selection procedure and how
the row indices are determined, we will present an example
based on Fig. 8. Initially, during the subgroup creation, the
size, and indices of the top left corner of each subgroup
is stored as we have previously mentioned. In case of the
group that appears in Fig. 8 some of the subgroups would
for example be represented with the following information:
[{subgroup_id = 1, assigned_worker = 1, s_records =
32, t_records = 30, external_s = {}, external_t =
{w0 = 20}, s_idx = 19, t_idx = 0}, {subgroup_id =
2, assigned_worker = 0, s_records = 19, t_records =
8, external_s = {w1 = 9}, external_t = {}, s_idx =
0, t_idx = 0}, ..]. When we examine in which subgroup(s)
should record s6 of group Pa be placed, we start by
checking the initial location of the record which is worker

1. We therefore try to locate the first subgroup which was
assigned to worker 1 which has id 1 and is the largest pink
area in Fig. 8. The value of s_idx = 19 is the placeholder
which indicates the starting row that we will begin searching
for an available (not previously marked) row in this subgroup
and the value s_idx+ s_records = 51 indicates the row index
that we will stop searching. If rows with s_idx ∈ [19, 23] are
already marked as used by other records, we serially increase
the starting index value by one until we locate an available
row which would be row with s_idx = 24 in this case. This
row indicates the subgroups that this record will be placed,
which is only subgroup with id 1 and then this row is marked
as used. In case of record s33 which is initially located in
worker 1 too, we start by examining subgroup with id 1, but
supposing that all rows are used by the previous 32 records
there is no available row in this subgroup. In this case we then
look for the next subgroup which was created and assigned
to worker 1 (the second largest ping area in Fig. 8) which
indicates row with s_idx = 15 as the starting row for our
search. Assuming that this row is available it indicates that
the record must be placed in three different subgroups, one
of which is only assigned to worker 1. It is worth noting that
the three different subgroup ids are directly retrieved from
a structure where we store during the subgroup creation the
subgroup ids that exist in each row.

The complexity of the tagging procedure for a single record
is O(z), where z is the number of subgroups created for the
relevant group. As we can see in Algorithm 5 for each record
the list of subgroups is iterated three times at most.

In terms of memory pressure, the patch-based algorithm
is primarily related to the data structures required for patch
computation. Specifically: Each cluster node maintains only
queues or boundary structures for calculating patches. These
structures are lightweight and do not require significant mem-
ory resources. After patch computation, the join operation is
executed using the underlying distributed processing engine’s
standard strategies (e.g., repartition join).

G. GENERIC APPLICABILITY
In this section we describe how our approach can be
integrated with existing MPP (i.e., Massively Parallel Pro-
cessing) Databases. In Fig. 9 we present a typical software
and hardware stack of an MPP database. We begin by
briefly describing each component in the architecture and we
then discuss the required changes so that our Patch-Based
approach can be integrated.

The stack moves from the infrastructural bottom layers
up to the API layers where the entire functionality is being
‘‘hidden’’ behind a typical SQL client library (upper figure
layer). Therefore, both MPP and legacy centralized RDBMs
seem the same: a client/server approach is used where users
utilize a client library like JDBC or ODBC to connect with
the existing server backend by providing a url-like address
which includes the server’s IP along with other connection
details. When the connection is successful, clients can send
SQL queries to the server and retrieve back the results.

41080 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 9. Typical software and infrastructure stack of an MPP engine.

The second layer presents the query parser module.
It retrieves the user SQL and translates it in an intermediate
tree-like structure using relational algebra. In the tree, nodes
represent abstract calculations (i.e., filters, joins, selections,
projections, etc.) and links depict calculation dependencies
between parent and children nodes. In this layer, SQL is
transformed into an abstract syntax tree (AST) that includes
the necessary calculations to execute the SQL statement
(often refereed to as the ‘‘logical query plan’’).

In the third layer, the logical query plan from the second
layer is being transformed into an exact execution plan
using the query optimization engine (often referred to as
the ‘‘physical query plan’’). The query optimizer performs a
cost-based optimization in which it identifies a set of possible
different execution plans using both well-known algebraic
properties (e.g., commutative and associative properties of
join or select operators, etc.) and different algorithm imple-
mentations (e.g., broadcast vs repartition join, etc. [14]). The
optimizer exploits a metadata DB that contains qualitative
information about existing data (the DB right to the optimizer
in the Figure). Typical information includes table structure,
existing indices, key cardinality, min/max/median values, etc.
An example of such a metadata repository is Apache Hive’s
MetaStore [11]. At the end, an exact computation workflow
(i.e., the physical query plan) is being compiled and is ready
to be executed by the underlying hardware.

In the fourth layer the actual computation takes place.
The execution engine interacts with the underlying hardware
resources in the OS level and executes the physical query
plan. In a typical centralized single node approach the
execution engine creates and executes the necessary threads
through the operating system scheduler. In an MPP approach
the engine interacts with the cluster scheduler that typically

runs in a leader-worker setting (lower level of Fig. 9). The
scheduler is executed in the leader node of a computing clus-
ter and assigns pieces of work into the available worker nodes
according to different policies. Typical cluster schedulers
are MESOS [44], Yarn [45], Google’s Kubernetes,3 Apache
Spark’s Fair Scheduler,4 etc.
Our Patch-Based algorithm can be easily integrated with

existing MPP databases that follow this architecture by
performing targeted changes to the query optimizer and
minimal changes to the query parser in order to allow
the selection of our shuffling mechanism by the user. The
execution engine, client libraries and communication with
existing schedulers remain intact. In the first stages of
the execution of the Patch-Based algorithm where the data
statistics and subgroups are calculated, i.e. Algorithms 2, 3
and 4, some changes are required in the query optimizer
to include in the physical plan as a map-reduce task the
calculation of statistics followed by the execution of our
patch-based algorithm inside the reducer. The shuffling
procedure, which is included in Algorithm 5, will use the
results of this task and should be implemented as a new
shuffle operator to be used in the physical plan in place
of the existing shuffle mechanism that exists between map
and reduce tasks in repartition joins. The optimizer can be
configured to add the initial map-reduce task and select our
shuffling operator in the produced physical plan using a query
hint provided by the user.

Our approach can be highly applicable to a number of
different domains such as:

1) IOT ANALYTICS
IoT systems generate massive amounts of heterogeneous and
skewed data streams [1], [2]. Efficient processing of this
data often involves distributed systems that suffer from load
imbalances. Our patch-based algorithm can ensure uniform
worker utilization, optimizing operations like aggregations
and joins on IoT data.

2) LARGE-SCALE SQL OPERATIONS
In database management systems, particularly in massively
parallel processing (MPP) architectures [3], [10], [11], [13],
[22], operations such as joins, group-by, and aggregations
are sensitive to skew. The proposed algorithm offers a
robust alternative to traditional shuffle mechanisms, ensuring
efficient query execution under skewed workloads.

3) MACHINE LEARNING PIPELINES
Distributed training or preprocessing pipelines often
encounter skewed datasets [6], [7]. The patch-based
technique minimizes training delays by ensuring an even
distribution of data batches across nodes. Moreover, while
the current implementation is tailored for join operations,
the underlying principles could inspire optimizations in

3https://kubernetes.io/
4https://spark.apache.org/docs/latest/job-scheduling.html

VOLUME 13, 2025 41081

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

other areas, such as gradient aggregation in distributed
deep learning which follows a similar computational
approach [46].

4) LOG PROCESSING AND REAL-TIME ANALYTICS
Distributed systems processing application logs, clickstream
data, or telemetry often face skew in partitioned data [8], [47],
[48]. The proposed method reduces bottlenecks, improving
the latency and throughput of these systems.

V. EVALUATION
In this section we perform an extensive experimental
evaluation of our solution. In V-A we describe the datasets
we used and in V-B our experimental setup. In V-C we
evaluate our patch-based repartitioning algorithm in terms
of the quality of the results as well as the execution speed.
Regarding the join operation, in V-D we examine the load
balancing that occurs with our patch-based join algorithm
compared with the ‘naive’ hash-based repartition join using
varying skew factors for the datasets. In V-E we also examine
the size of the data that were transferred over the network,
which we will refer to as shuffle data in the rest of this
section, comparing our algorithm with the simple hash-based
technique using varying skew factors too. In V-F we evaluate
the overall performance of our implementation compared
to the simple hash-based repartition join. For this purpose,
a linear model is used to simulate the total time required for
the data exchange and reduce-side processing in a distributed
cluster. In V-G we examine the scalability of our patch-based
join algorithm compared with the hash-based in terms of
load and data transfer as the number of workers increases
using varying skew factors. Finally, in V-H we summarize the
results and discuss edge case performance.

A. DATASETS AND STATISTICS
Two datasets with a predefined number of records are
generated at the start of each experiment. The number of
distinct key values is defined beforehand, and the datasets
are created using a Zipfian distribution, with the skew
controlled by the distribution’s exponent (θ). Each dataset is
then uniformly divided among N workers, with each worker
handling an equal share in memory, mimicking distributed
systems where local disk access is utilized.

Table 4 provides the datasets’ characteristics, with the
Zipfian distribution implemented using the ZipfDistribution
class from org.apache.commons.math3 (v3.4.1). The sam-
ple() method retrieves indices for key selection based on
the parameters |V |, θS and |V |, θT for datasets S and T ,
respectively.

Post-generation, key frequencies are computed locally and
globally to determine group sizes and dimensions. Partial
aggregation on workers identifies local key distributions,
which are summed globally for weight computation. This
process resembles methods in related studies requiring
pre-computed group statistics.

TABLE 4. Number of workers (N) and dataset specifications for the three
experimental scenarios.

TABLE 5. Final data movement using the approximate tagging procedure.

TABLE 6. Final worker load using the approximate tagging procedure.

TABLE 7. Patch-based repartitioning algorithm execution time.

Fig. 10 illustrates how skew changes with varying θ . For
32 unique keys and 200K records, a uniform distribution (θ =
0) spreads records evenly, while increasing θ concentrates
records on fewer keys. For example, at θ = 2.0, 62% of
records belong to a single key. Though real-world datasets
typically exhibit θ < 1.0, we include extreme values to
highlight algorithm performance under significant skew.

FIGURE 10. Records distribution in the keys for various skew levels.

B. EXPERIMENTAL SETUP
Experiments were conducted on a host with an AMD EPYC
7443P processor, 48 threads, 256 GB DDR4 RAM, and a
RAID 10 array of 22 TB storage. Each experiment defined

41082 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

parameters for dataset size, number of unique keys, workers,
and skew factor (θ) for the zipfian-distributed datasets S
and T . Algorithms were implemented in Java, with workers
represented as threads, each processing a subset of the input
data in memory.

Three join scenarios (Table 4) were simulated, inspired
by entity relationships described in [49]. The first scenario
varied the skew in S (θS : [0, . . . , 2]) while T had no skew,
representing a foreign-foreign key join. The second scenario
applied equal skew to both tables (θ : [0, . . . , 1]), also
modeling a foreign-foreign key join. The third scenario varied
the skew in S (θS : [0, . . . , 2]) while T had unique keys,
forming a primary-foreign key join.

To ensure the statistical significance of our experimental
results, each experiment was executed a sufficient number
of times (typically 10-20 runs, depending on the observed
variance). The presented results represent the average
performance across these runs. Furthermore, we conducted
statistical tests, such as calculating the standard deviation and
confidence intervals, to verify the consistency and reliability
of our findings. In all cases, the variations observed across
multiple runs were minimal, and the results consistently
adhered to the trends reported in the paper, confirming the
robustness of our conclusions.

C. PATCH-BASED REPARTITIONING ALGORITHM
The patch-based repartitioning algorithm was evaluated
for its performance in approximate tagging, focusing on
result quality and execution time. Quality was assessed by
comparing the final subgroup record placement with the
theoretical optimal, using metrics such as additional shuffle
data size (Table 5) and maximum worker load (Table 6).
Divergences were minimal, with shuffle data size differences
mostly below 1% and a maximum of 2.71%. In some
cases, particularly in scenario 3, less data was shuffled than
theoretically expected. Worker load variations were even
smaller, with a maximum increase of 0.33%.

Execution time was benchmarked as a percentage of
the reduce-side join operation’s duration, with overhead
averaging 10% for scenarios 1 and 2, peaking at 13.38%.
Scenario 3 exhibited higher percentages due to its shorter join
execution times. This overhead is considered a reasonable
tradeoff for mitigating skew-induced delays, a benefit
confirmed in Section V-F, where overall execution time
comparisons with the skew-sensitive hash-based join are
provided.

The next sections analyze worker performance during the
join process, contrasting the patch-based and hash-based
approaches.

D. LOAD BALANCING
This section compares the load distribution across workers in
the patch-based and hash-based join implementations as the
skew factor increases.

The maximum observed worker load, normalized to
the average load in each scenario, demonstrates that the
patch-based approach achieves perfect load balancing across
all skew factors, as shown in Figs. 11a to 11c. In contrast, the
hash-based join experiences substantial imbalance, with the
maximumworker load rising sharply to as much as 19.4 times
the average under high skew conditions.

The median worker load, similarly normalized, reveals fur-
ther advantages of the patch-based implementation. As shown
in Figs. 12a to 12c, the patch-based method consistently
maintains balancedmedian loads. Conversely, the hash-based
join suffers from a skew-induced concentration of load, which
causes the median to decrease as fewer workers handle most
of the data while others remain idle. Even under minimal
skew, the hash-based median is suboptimal compared to the
patch-based implementation.

The consistency of these results across all scenarios
highlights the effectiveness of the patch-based algorithm in
mitigating the effects of skew.

E. DATA SHUFFLING
In this section we present the total number of records
transferred over the network and their dispersion to the
workers, comparing our implementation and the ‘naive’ hash-
based join as the skew factor increases.

We start by examining the total number of records that
need to be transferred as the skew factor increases for the two
algorithms. Figs. 13a to 13c present the results for scenarios 1,
2 and 3 respectively. The number of records is normalized
using the initial number of records which is |S| + |T |.
As we can observe in Fig. 13a, in the case of the hash-based

join, the total number of records is always less but close to
the initial number of records. This is expected as each record
is sent exactly once to the relative worker (only in case it is
not already available locally). With our algorithm, the total
number of records is always higher, as expected, due to the
replication that happens.

Comparing with Fig. 13a, in Fig. 13b there is an important
increase in the total shuffle data size for scenario 2 where
skew is present in both tables. As the skew level increases,
we can notice that the shuffle data size increases significantly,
and it is almost 6 times larger in the case of θ = 1.0 whereas
the maximum increase in scenario 1 is 1.6 times.

Finally, in Fig. 13c we observe a significant differentiation
from the previous scenarios as the total size of records
transferred is always smaller compared with the naive
technique. When there is no skew in table S our algorithm
transfers almost the same amount as the naive technique, and
as the skew increases in table S our algorithm tends to transfer
even less data especially for skew factors larger than 0.5. Our
algorithm profits from the exploitation of data locality for
table S in this case which combined with the small size of T
records that will be replicated, leads to a significant reduction
in the amount of data transferred.

Next, we examine the statistical dispersion of the received
number of records in eachworker using theGini index. AGini

VOLUME 13, 2025 41083

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 11. Maximum worker load with the patch-based and hash-based join algorithms for different skew factors.

FIGURE 12. Median worker load with the patch-based and hash-based join algorithms for different skew factors.

FIGURE 13. Produced shuffle data size of the patch-based and hash-based join algorithms for various skew factors applied.

value close to zero represents an exactly equal number of
records sent to each worker, while higher Gini values indicate
greater inequality in the number of records per worker.

In Fig. 14a we present the Gini index value as the skew
factor θS increases for scenario 1. The results show that our
patch-based join algorithm distributes data more evenly to
workers irrespective of the level of skew compared with the
hash-based join, therefore presenting a constantly lower Gini
index value. As the skew factor increases the Gini index
increases for both algorithms for several reasons.

In more detail, at large skew factors our algorithm tends
to sequentially create subgroups for the largest group (by
splitting the S skewed side) which are assigned to all the
workers in turn leading tomore equally sized subgroups being
distributed to the workers. Our algorithm does not present
the optimal distribution however, as the main goal is the
even load balancing and the exploitation of data locality to
reduce the total amount of data transferred, given that the
replication costs cannot be avoided. The hash-based join,
on the other hand, randomly distributes the initial groups to

41084 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 14. Gini index for the shuffle data size sent to each worker with the patch-based and hash-based join algorithms for various skew factors
applied.

the workers, and as the skew factor increases these groups are
more unequally sized leading to more data imbalances.

At small skew factors, our algorithm is suboptimal in
terms of data distribution due to the priority given to
local processing which leads to over-partitioning and over-
replication. The hash-based join is also suboptimal at small
skew factors due to the random distribution of the almost
equally sized groups to the workers using a hash function.

The results are similar for scenario 2 in Fig. 14b. The main
difference from Fig. 14a is that we observe an even better
Gini index value with our algorithm for large skew factors
since equally sized subgroups of the largest group are created
(by splitting the S and T sides in turn) and are distributed to
all the workers.

Regarding scenario 3, in Fig. 14c, the hash-based join
presents an even higher Gini index value as the skew factor
increases to values larger than 0.1, i.e. greater imbalance,
which is normal. For example, when θS = 2.0, at least
62% of the total data will be placed in one worker based
on the distribution of Fig. 10 (T records are negligible). Our
algorithm, on the contrary, presents lower Gini index values.
This is because the unique keys of table T are placed one in
each worker, and this leads to an initial creation of exactly one
subgroup in each of these workers for his unique key during
the first phase of our algorithm. This leads to a perfect load
balancing for low skew levels as equally sized groups will be
evenly distributed to the workers sequentially.

Combining the results of this section, an important
observation is derived. Although with our algorithm at large
skew factors the total size of shuffle data is increasing up to
6X compared with the hash-based technique, these data are
more equally distributed to the workers compared with the
hash-based technique where a significant amount of data will
be sent to a single worker. In other words, the network traffic
will not be concentrated on one worker with our algorithm,
therefore the observed impact of the increased size will be
significantly less visible. This observation will be further
established with the results of the following section (V-F).

F. EXECUTION TIME
The analysis of execution time focuses on the critical
phases of data shuffling and reduce-side execution, which

distinguish the patch-based and hash-based join algorithms.
Common overheads, such as in-memory data loading and
initial statistics calculation, are excluded from the analysis
due to their minimal impact. The study assumes a distributed
cluster setup with single-threaded 2.7GHz cores, a 10Gbit
Ethernet network, and 1KB record sizes. Prior studies [50],
[51], [52] indicate that hash-based joins require 30 CPU
cycles per join output tuple. A linear model estimates
execution time by combining network transfer time and
the processing time of the slowest worker, as given by
Equation 7. The model considers data size and processing
rates to quantify the phases affecting execution time.

t(x, y) =
1000 · y
1.25 · 109

+max
w

(
30 · x(w)
2.7 · 109

)
, (7)

x is a list containing the number of output tuples that
each worker w calculated, and y is the total number of
records that were sent over the network. The first part of
the equation estimates the network transfer time that happens
during the shuffle phase, i.e., during the copying of the remote
group data. The time depends on the data size calculated in
the numerator (the total number of records multiplied with
the record size) divided by the link speed set to 1.25GB/s.
The second part of the equation estimates the time needed
to perform the reduce-side calculations: it depends on the
worker with the biggest output to produce. In this worker the
time depends on the number of output tuples multiplied with
the processing time per tuple (i.e., around 30 clock cycles)
divided by the CPU clock speed, i.e., 2.7GHz.

In Scenario 1 (Fig. 15a), the patch-based algorithm shows
a slower data shuffling phase due to increased data replication
but benefits from better load balancing, being only 1.1 times
slower than the hash-based algorithm for minimal skew. For
higher skew factors (θS ≥ 0.5), the patch-based approach
surpasses the hash-based method, with improvements of 51%
for θ = 1.0 and 82% for θ = 2.0. The overhead from
the patch-based repartitioning algorithm remains negligible,
as seen in Fig. 15a, with CPU times below 0.5 seconds.

In Scenario 2 (Fig. 15b), the findings align with those of
Scenario 1. The patch-based algorithm starts 1.2 times slower
with minimal skew but achieves significant gains, being 58%
faster for θ = 0.75 and 81% faster for θ = 1.0. Again, the

VOLUME 13, 2025 41085

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 15. Estimated execution time split into shuffling and execution phases with the patch-based and hash-based join algorithms for different
skew factors.

TABLE 8. Number of workers (N) and dataset specifications for the
scalability experiments.

repartitioning overhead remains negligible, with CPU times
consistently below one second.

In Scenario 3 (Fig. 15c), the patch-based algorithm
consistently performs as well as or better than the hash-based
approach. For minimal skew, performance is comparable,
but for θ ≥ 1.0, the patch-based method achieves up to
35% faster execution for θ = 2.0. Here, the shuffling
phase dominates the overall execution time, as reduce-side
processing times are minimal. The repartitioning overhead,
approximately 30% of the reduce-side execution time,
is negligible in this case as well.

The results illustrate the patch-based algorithm’s ability
to handle skew efficiently, outperforming the hash-based
method in high-skew scenarios while maintaining minimal
overhead across all scenarios.

G. SCALABILITY
This section evaluates the scalability of the patch-based join
algorithm by analyzing shuffled data distribution and load
handling as the number of workers increases, comparing it
to the hash-based join across varying skew factors in dataset
S. A specialized dataset configuration, detailed in Table 8,
facilitated the experiments.

The shuffle data distribution was analyzed using the Gini
index, as shown in Fig. 16a, which plots the index across
increasing worker counts and skew factors (θS). For small
skew (θS ≤ 0.5), the Gini index rises slowly and remains
below 0.4 even at N > 64. For higher skew, while the index
increases with worker count, the growth rate diminishes as N
exceeds 64. These results align with findings in Section V-E,
demonstrating the algorithm’s ability to maintain balanced
shuffle data distribution across large worker pools.

The execution time was analyzed for both data shuf-
fling and reduce-side phases, with Fig. 16b showing the
shuffling time ratio between the patch-based and hash-
based algorithms. As worker count increases, the patch-based
algorithm requires more time for data shuffling due to
increased subgroups and data replication, especially for
high skew factors (θS > 0.5). For θS = 1.0 and
N = 256, it is up to 13 times slower than the hash-based
approach in this phase. In contrast, Fig. 16c illustrates the
reduce-side execution time ratio, where the patch-based
algorithm consistently outperforms the hash-based join due to
superior load balancing. This advantage is most pronounced
at high skew factors, reaching a 30X improvement for θS =

1.0 and N = 256. The disparity arises as the hash-based
algorithm’s load imbalance worsens with increasing worker
counts, exacerbating bottlenecks.

Overall, the patch-based join algorithm scales effectively,
handling larger worker counts while maintaining balanced
data distribution. Although slower during data shuffling,
it compensates with significantly faster reduce-side execu-
tion, as evident when comparing the y-axes of Figs. 16b
and 16c. This trade-off makes the algorithm well-suited for
environments with high worker counts and pronounced data
skew.

H. SUMMARY AND DISCUSSION
The final key points for the performance of our algorithm
compared with the naive hash-based approach are the
following:
• The results in Figs. 13a to 13c and 14a to 14c confirm
that our algorithm automatically adapts to different
skew levels by dynamically rebalancing data distribution
across workers. The observed reduction in imbalance,
even under severe skew conditions, highlights the
effectiveness of our approach in handling varying
data distributions without requiring manual parameter
tuning.

• Our patch-based join algorithm is on average 45% faster
than the hash-based for a moderate to high skew factor
(θ = 1.0). Moreover, it is 81% faster for an extremely

41086 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 16. Shuffle data size Gini index and time ratios compared to the hash-based approach for different skew factors in tables S (θS) as the
number of workers N increases.

high skew factor (θ = 2.0) in a foreign-foreign key join
scenario (scenario 1, Fig 15a).

• Our patch-based join algorithm is on average 10%
slower than the hash-based approach when there is zero
or little skew in the data (scenario 1, Fig 15a).

• The network-related overhead is, as expected, greater
with our algorithm in foreign-foreign key join scenarios
due to replication of records (scenarios 1 and 2,
Fig 15a and Fig 15b respectively). However, it is
smaller in primary-foreign key join scenarios (scenario
3, Fig. 15c).

• At high skew levels the overall performance is mainly
affected by the load balancing on the workers and less
affected by the network overheads in foreign-foreign
key join scenarios (2 and 3 in Fig 15b and Fig 15c
respectively).

• At high skew levels the skew-related load imbalance and
execution delay is eliminated with our algorithm (right
sides of Figs 15a, 15b and 15c).

• The time overhead that is incurred with the execution of
our patch-based algorithm is negligible.

• Our algorithm can scale to a large number of both cluster
size (experimentally tested up to 250 nodes, which is a
reasonable data center cluster size) and dataset size (in
the order of million keys), as described in Table V-G and
observed in Figures 16a, 16b and 16c.

Regarding the performance of our algorithm in edge
cases, there are two cases in which we evaluated our
implementation.
Edge case 1. As we have previously mentioned, in case

of zero skew the optimal performance is expected to be
achieved by the standard hash-based repartitioning algorithm.
Our approach is on the other hand built to manage optimally
more heavily skewed datasets. We evaluate our algorithm’s
performance against the hash-based approach using zero or
little skew in all the conducted experiments and our algorithm
is on average 10% slower than the hash-based approach.

Edge case 2. The second edge case that we evaluate
is the experimental Scenario 3 in Table 4, where we
execute a primary-foreign key join. Such a join could be
performed using a broadcast join (Alg. 3.2 in [14]) instead
of a repartition join for optimal performance if the table
containing the primary keys is adequately small. Although
it is out of scope of this work to be compared with the
broadcast join implementation, our results indicate that
our patch-based repartitioning algorithm presents improved
performance compared with the hash-based approach for
skewed datasets. Therefore, in cases like scenario 3 where a
broadcast join cannot be used, our algorithm can improve the
performance of a repartition join.

1) STRAGGLER NODE AND RECOVERY MECHANISMS FOR
FAULT TOLERANCE
The proposed patch-based shuffle and join algorithm assumes
a well-maintained and healthy cluster environment, operating
under typical data center conditions with high-speed, low-
latency network connectivity (e.g., 10G links or similar).
Handling stragglers or recovery of failed data transfers
are a complex system-level challenge that is orthogonal
to the core contribution of this work. These scenarios are
already addressed by distributed processing engines such as
Apache Spark, which incorporate speculative execution to
mitigate the impact of slow or delayed nodes even in case of
failures (spark.speculation configuration entry [53]).
Our algorithm operates at the application logic level and relies
on these system-level features for fault tolerance.

2) CROSS-RACK TRANSFERS AND NETWORK CONGESTION
MANAGEMENT
Our algorithm is designed to minimize overall data move-
ment, regardless of whether the network spans multiple racks.
Network congestion and cross-rack transfer optimization
are orthogonal concerns that are typically addressed at the
network infrastructure level or by specialized distributed
file systems and processing engines (see for example the
configuration entry spark.locality.wait of Apache

VOLUME 13, 2025 41087

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

Spark [53]). These considerations could complement our
approach but are not required to demonstrate its efficacy in
load balancing, network movement minimization, and skew
handling.

3) NETWORK BOTTLENECK QUANTIFICATION FOR
LARGE-SCALE DEPLOYMENTS
We have carefully considered the potential for network
bottlenecks in large-scale deployments and provide the
following analysis: The algorithm minimizes data movement
by prioritizing local processing, therefore utilizing mostly the
hard disk speed and utilizing the network only for remote
(global) patches Pmovv .

CPU speed: Assuming a 2.7 GHz CPU and processing
efficiency of approximately 30 cycles/tuple, the system can
process approximately 30 million tuples per second per
worker hardware thread. For 1 KB tuples, this equates to a
throughput of roughly 90 GB/s per worker hardware thread.
Disk R/W speeds: A standard HDD provides 100-200 MB/s,
while an SSD provides 500 MB/s to 7 GB/s depending on
the configuration. The ratio of CPUs to disks in the data
center determines the true bottleneck in such scenarios. Even
in a case where there is a one-to-one mapping of hardware
threads to SSD disks, the limiting factor seems to be the SSD
disk speed. Network speed: In a typical leaf-spine topology
with 25 GbE Top-of-Rack (ToR) switches the network
provides a theoretical throughput of 25 Gb/s (approximately
3.125 GB/s per link). This throughput is sufficient to handle
the inter-node communication requirements without causing
a bottleneck, since a) traffic will be mainly between CPU and
local HDDs minimizing network communication and b) the
limiting factor seems to be the HDD speed R/W. Given the
above, our algorithm does not introduce network bottlenecks
even in large-scale deployments. The network capacity in
modern data centers significantly exceeds the processing and
disk I/O limits, ensuring smooth data movement during patch
redistribution.

VI. CONCLUSION
In this work, we introduced a novel patch-based repartitioning
technique designed to address the critical challenges of load
imbalance and excessive network traffic in distributed join
operations over skewed datasets. Our approach leverages
detailed data distribution and location statistics, enabling
informed subgroup assignment to workers based on local
weight la(n) and an adaptively calculated threshold Cmax .
This deterministic approach eliminates the need for iterative
cost modeling or heuristic parameter tuning, dynamically
adapting to varying levels of data skew.

A. RESEARCH CONTRIBUTIONS
Our research makes several key contributions:

• Novel Patch-based Shuffling Algorithm: We devel-
oped a novel patch-based shuffling algorithm that
operates before any reduce-side operation, effectively

pre-processing data for optimal join execution. This
algorithm consists of three distinct stages: statistic cal-
culation, patch-based partitioning, and data transfer/join
computation.

• Two-Phased Subgroup Assignment: We introduced
a two-phased approach for subgroup assignment. The
first phase prioritizes local processing by assigning
subgroups to workers with the most local data. The
second phase balances load globally by distributing
remaining data to workers with the least load.

• Formal Analysis and Guarantees: We provided a
rigorous theoretical framework, including proofs of
convergence and scalability, demonstrating that our
algorithm guarantees load balancing, limits network
data movement, and effectively handles data skew.
Specifically, we prove that the maximum per-worker
load is bounded and that the total network cost is
O(|S|+|T |N).

B. PRACTICAL IMPACT AND ADVANCEMENTS
Our patch-based repartitioning algorithm represents a signifi-
cant advancement in distributed data processing by providing
a practical, scalable, and theoretically grounded solution for
handling skewed datasets. Unlike conventional hash-based
approaches, which suffer from severe load imbalance and
high network costs under extreme skew, our method dynami-
cally adapts to data distribution, significantly improving per-
formance and efficiency. Seamless integration into existing
distributed frameworks and demonstrated performance gains
of up to 81% faster execution highlight its potential for
real-world adoption in large-scale data processing systems.

C. RESEARCH LIMITATIONS
Despite its strengths, our approach has certain limitations.
The current implementation assumes a well-maintained,
high-speed cluster environment and relies on external
fault-tolerance mechanisms (e.g., speculative execution) to
handle stragglers or failures. Consequently, its performance
may be less optimal in heterogeneous or unreliable network
settings characterized by frequent network partitions or
highly variable link latencies. Furthermore, while our design
effectively minimizes inter-node data transfers, it does
not explicitly optimize for cross-rack transfers or severe
network congestion, leaving room for further system-level
enhancements. Additionally, in scenarios with little or no
data skew, our patch-based method incurs a modest overhead
(approximately 10% slower) compared to traditional hash-
based repartitioning.

D. FUTURE RESEARCH DIRECTIONS
Our research lays the foundation for further exploration
in distributed join optimization. Immediate next steps and
promising research directions include:

• Integration with Existing Distributed Systems:
Adapting our approach for use in widely adopted

41088 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

distributed join frameworks such as Apache Spark
and Trino. Additionally, assessing how easily it can
be incorporated into different execution engines with
minimal modifications and evaluating its performance
on realistic and benchmark workloads such as TPC-DS
and TPC-H to demonstrate its practical advantages.

• Enhanced Fault Tolerance: Investigating deeper
integration of fault-tolerance mechanisms within the
patch-based algorithm to improve robustness in hetero-
geneous or failure-prone environments.

• Extension to Other Join Types: Extending the
patch-based approach to support a broader range of join
operations (e.g., broadcast joins, outer joins and theta
joins) and evaluating its effectiveness across diverse data
distributions and workload scenarios.

• Adaptive Hybrid Approaches: Developing adap-
tive frameworks that dynamically select between
patch-based and traditional hash-based methods based
on real-time skew detection, thereby optimizing perfor-
mance across all levels of data skew.

• Cross-Rack and Congestion Optimization: Exploring
network-aware optimizations that explicitly address
cross-rack transfers and congestion through topology-
aware subgroup assignment and network-level integra-
tion.

E. CONCLUSION AND BROADER IMPACT
In summary, our patch-based repartitioning technique
presents a theoretically robust and practically efficient
solution for accelerating distributed joins on skewed datasets.
By addressing fundamental bottlenecks in skew handling,
our work contributes to the broader field of distributed
computing, enabling more adaptive, efficient, and scalable
data processing. We believe this research opens up new
directions in self-tuning distributed systems, paving the
way for future innovations in large-scale data management,
workload balancing, and network-efficient computation.

APPENDIX A
THEORETICAL ANALYSIS AND CONVERGENCE PROOF
Using the notation from Table 2 we provide a detailed
analysis of the patch-based shuffle and join algorithm with
respect to load balancing, network movement minimization,
and skew handling. We conclude with the provision of
theoretical guarantees regarding the algorithm’s convergence
and scalability.

A. LOAD BALANCING
Objective: Distribute the workload across N workers such
that no worker’s load exceeds the maximum capacity Cmax .
Analysis: For each worker n, its total load is defined as:

Loadn =
∑
a∈V

|Sa(n)| · |Ta(n)|.

The algorithm ensures that:

Loadn ≤ Cmax , ∀n ∈ {1, . . . ,N }.

The repartitioning operates in two phases:
• Phase 1: Local assignment
For each Pa, the subgroup Ploa ⊆ Pa is assigned to
workers nwith the highest la(n) (local weight), provided:

|Sa(n)| · |Ta(n)| ≤ Cmax .

If |Pa| > Cmax , the subgroup Ploa is split into smaller
chunks such that:

|Ploa | = min(la(n),Cmax).

• Phase 2: Global assignment
Remaining data ga (unassigned from Pa) is distributed
to workers with the most remaining capacity:

|Pmova | = min(ga,Cmax).

Convergence: The iterative updates to ga and Cmax ensure
all data is assigned:

ga→ 0 as
∑
n∈N

Cmax ≥
∑
a∈V

ga.

The total load L =
∑

a∈V ga represents the combined size of
all join groups that need to be distributed across N workers.
The algorithm iteratively assigns parts of each join group ga
to workers, prioritizing workers with available capacity. Each
iteration reduces the unassigned portion of ga. Specifically,
in each step, the algorithm assigns a fraction of ga such
that the total load on the selected worker does not exceed
Cmax . Since

∑
n∈N Cmax = N · Cmax = L + N , the total

capacity across all workers exceeds the total workload L.
This guarantees that there is always sufficient room across
the workers to assign all parts of ga, even under skewed
distributions. Convergence is ensured because

∑
n∈N Cmax ≥∑

a∈V ga, meaning the system has the capacity to handle
the entire workload. Thus, the condition

∑
n∈N Cmax ≥∑

a∈V ga ensures that the total workload ga is distributed
across workers and ga→ 0 as the algorithm progresses.

B. NETWORK MOVEMENT MINIMIZATION
Objective: Minimize the number of records |Sa|, |Ta| trans-
ferred between workers during shuffling.

Analysis:
• Phase 1: Local assignment
Prioritize workers with high local weight la(n) for
assigning subgroups. This minimizes the external data
fetched (sa(w′), ta(w′), w′ ̸= n)

• Phase 2: Global assignment
For ga > 0, subgroups Pga are assigned globally. While
this increases the external data fetched, the two-phase
approach ensures this represents a smaller fraction of the
total:

Network cost =
∑
n

∑
a∈V

(
sa(w′)+ ta(w′)

)
, w′ ̸= n.

VOLUME 13, 2025 41089

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 17. Groups and subgroups assignments with different repartitioning algorithms.

TABLE 9. Parameters used for proof of concept.

FIGURE 18. Representation of the initial four groups and their sizes,
as well as the data placement in the two workers.

Our algorithm ensures that the Locality Factor (defined
in Section IV-D) approaches 1 by maximizing the usage
of locally available data before fetching data from external
sources.

Locality Factor =

∑
n la(n)∑

n(sa(n)+ ta(n))
.

The algorithm ensures that
∑

n la(n) is maximized because
workers with high local weights are prioritized for processing
Pa in the first phase.

External data (sa(w′), ta(w′)) is fetched only when strictly
necessary, limiting the increase in

∑
n(sa(n) + ta(n)) in the

denominator.

FIGURE 19. The first subgroup created for group Pb, assigned to worker 0.

FIGURE 20. The second subgroup created for group Pa, assigned to
worker 1.

For skewed groups, the algorithm assigns smaller sub-
groups pa,i to multiple workers in such a way that each
subgroup still processes as much local data as possible.

As the number of workers (N) increases, the chance of
finding a worker with a high local weight la(n) also increases,
further improving locality.

Therefore, under optimal conditions:

Locality factor→ 1 as la(n) ≈ sa(n)+ ta(n) ∀n.

41090 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

FIGURE 21. The third subgroup created for group Pc , assigned to worker
1. The areas noted with ’4’ and ’3’ cannot be assigned to worker 1 to
exploit the data locality, therefore the area noted with ’2’ will be next
studied for worker 0.

FIGURE 22. The fourth subgroup created for group Pd , assigned to
worker 0. The first phase is complete as no more locality-based
subgroups can be created.

FIGURE 23. The fifth and last subgroup is created for group Pc without
considering data locality and is assigned to worker 0.

This implies that most of the data processing happens locally,
with minimal external data movement.

Key result: Compared to hash-based shuffling (where
all data is randomly distributed), patch-based reparti-
tioning reduces data movement by maximizing locality.
This happens because only the data required to bal-
ance workloads is moved, governed by the thresholds in
Algorithms 3 and 4.

Specifically:

Total bytes transferred (patch-based) ≈ O
(
|S| + |T |

N

)
,

compared to O(|S| + |T |) for hash-based.

Locality factor→ 1 as la(n) ≈ sa(n)+ ta(n) ∀n.

C. HANDLING SKEW
Objective: Repartition skewed datasets Pa without requiring
pre-knowledge of Sa,Ta.
Analysis:
Skewed distributions:
Join group Pa is skewed if:

ga = |Sa| · |Ta| ≫

∑
a∈V ga
|V |

.

Common skew patterns include: - Zipfian (|Sa| ∝ a−α ,
α > 1).

Patch-based handling: For each skewed group Pa, the
algorithm ensures:

|Ploa | + |P
mov
a | = |Pa|, |Ploa | · |P

mov
a | ≤ Cmax .

This divides Pa among multiple workers, reducing the load
imbalance caused by skew.

Iterative refinement:
The algorithm dynamically adjusts subgroup sizes

(|Ploa |, |P
mov
a |) to balance the load:

max
n

Loadn = O
(∑

a∈V ga
N

)
.

D. KEY RESULTS - THEORETICAL GUARANTEES
Load balancing:

max
n

Loadn = O
(∑

a∈V ga
N

)
+ O(1).

Network efficiency:
The total network cost is bounded by:

Cnetwork = O
(
|S| + |T |

N

)
. (8)

Skew robustness:
The algorithm handles skewed datasets by distributing ga

across multiple workers without exceeding Cmax :

|Ploa | + |P
mov
a | = |Pa| with |Ploa | · |P

mov
a | ≤ Cmax .

Scalability:
The algorithm scales effectively with increasing |S|, |T |

and N , maintaining:

Texecution = O
(
|S| + |T |

N

)
. (9)

VOLUME 13, 2025 41091

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

Algorithm 2 Patch-Based Repartitioning
Input |Sv|, |Tv|, sv(n), tv(n), lv(n), gv for each worker
n = {1, ..,N } and join attribute value v ∈ V , maximum
capacity Cmax
Output Set R containing worker-subgroup pairs
Procedure patchRepartitionAndAssign():

1: R← ∅
2: cap(n)← Cmax , n = {1, ..,N }
3: q← orderDescending(lv1(1), .., lv1(N), lv2(1), ..)

/* 1st phase */
4: repeat
5: for lv(w) in q do
6: if cap(w) > |Sv| or cap(w) > |Tv| then
7: r ← computeMaxLocalitySubgroup(v,w)
8: R← R ∪ {r}
9: end if
10: end for
11: q← orderDescending(lv1(1), .., lv1(N), lv2(1), ..)
12: until q is unchanged

/* 2nd phase */
13: q← orderDescending(gv1, gv2, ..)
14: for gvinq do
15: while gv > 0 do
16: w← getWorkerWithMostCapacity()
17: r ← computeLocalityAgnosticSubgroup(v,w)
18: R← R ∪ {r}
19: end while
20: end for
21: return R

APPENDIX B
PROOF OF CONCEPT
In this section we will present in detail a simple example of
the execution of Algorithm 2 and analyze the outcome and
profit compared with the common hash-based repartitioning
used for shuffling.

We create two datasets, with the characteristics presented
in Table 9. As we can see in this table, dataset S presents
a significant skew as 23 out of 40 records are referring to
attribute value a, 12 to b and only 5 records to attribute values
c and d. The initial queue is created from variables la, lb, lc, ld
as:

q = [36, 26, 20, 6, 6, 4, 2]

To visualize the repartitioning procedure, which includes
6 iterations in total, we will present graphically the groups
and subgroups after each iteration of the algorithm. The initial
groups, with their sizes, data placement in each worker and
the local weights that form the queue are presented in Fig. 18.

The first subgroup created will be related to lb(0) =
36 which is the first element in the queue and will be assigned
to worker 0. The subgroup will contain 6 Tb records and 12 Sb
records, hence the whole group Pb will be assigned to worker
0. The remaining capacity in worker 0 after this assignment

Algorithm 3 Create Subgroup Exploiting Data Locality
Input attribute value v, worker w, worker capacity cap(w),
|Sv|, |Tv|, sv(n), tv(n), lv(n), gv for each worker n = {1, ..,N }
Output A subgroup Plov of group Pv for worker w with the
maximum data locality
Procedure computeMaxLocalitySubgroup():

1: exts← ∅, extt ← ∅
2: rt ← |Tv|, rs← |Sv|
3: if gv > cap(w) then
4: if |Tv| > |Sv| and |Sv| < cap(w) then
5: rt ← tv(w)
6: if rs × rt > cap(w) then
7: rt ← cap(w)÷ |Sv|
8: end if
9: else if |Tv| < cap(w) then
10: rs← sv(w)
11: if rs × rt > cap(w) then
12: rs← cap(w)÷ |Tv|
13: end if
14: end if
15: if rs × rt > cap(w) then
16: return
17: end if
18: end if
19: if rs > sv(w) then
20: exts← SamountFromOtherWorkers(v,w)
21: end if
22: if rt > tv(w) then
23: extt ← TamountFromOtherWorkers(v,w)
24: end if
25: update cap(w), |Sv|, |Tv|, sv(w), tv(w), lv(w), gv
26: return (v, (unique_subgroup_id,w, rs, rt , exts, extt))

is 95−6 ·12 = 23. As we can see in Fig. 19 a large part of the
created subgroup will be computed with local records, but 2
Tb and 3 Sb records will need to be transferred from worker
1 to 0. The local weights become lb = [0, 0] and the queue is
updated to the following:

q = [26, 20, 6, 4, 2]

The second subgroup created will be related to la(1) =
26 which is the first element in the queue and will be assigned
to worker 1. The subgroup will contain 4 Ta records and 23 Sa
records; hence the whole group Pa will be assigned to worker
1. The remaining capacity in worker 1 after this assignment
is 95 − 4 · 23 = 3. As we can see in Fig. 20 a part of the
created subgroup will be computed with local records, but 2
Ta and 10 Sa records will need to be transferred from worker
0 to 1. The local weights become la = [0, 0] and the queue is
updated to the following:

q = [6, 4, 2]

The third subgroup created will be related to lc(1) =
6 which is the first element in the queue and will be assigned

41092 VOLUME 13, 2025

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

Algorithm 4 Create Subgroup Ignoring Data Locality
Input attribute value v, worker w, capacity cap(w),
|Sv|, |Tv|, gv
Output A subgroup Pmovv of group Pv for worker w ignoring
data locality
Procedure computeLocalityAgnosticSubgroup():

1: exts← ∅, extt ← ∅
2: rt ← |Tv|, rs← |Sv|
3: if gv > cap(w) then
4: if |Tv| > |Sv| then
5: rt ← cap(w)÷ |Sv|
6: else
7: rs← cap(w)÷ |Tv|
8: end if
9: end if
10: exts← SamountFromOtherWorkers(v,w)
11: extt ← TamountFromOtherWorkers(v,w)
12: update cap(w), |Sv|, |Tv|, gv
13: return (v, (unique_subgroup_id,w, rs, rt , exts, extt))

to worker 1. The subgroup will contain 1 Tc and 3 Sc records
and the remaining capacity in worker 1 after this assignment
is 3 − 1 · 3 = 0. As we can see in Fig. 21 only local records
will be used in this subgroup. The local weights become
lc = [0, 3] and the queue is updated to the following:

q = [4, 3, 2]

The first two elements in the queue are related to ld (1) =
4 and lc(1) = 3, however no subgroups can be created for
them since worker 1 has no capacity left. The last element
in the queue related to ld (0) = 2, can however be used to
create a subgroup for worker 0 which still has some capacity
left (Fig. 21). The fourth subgroup created will therefore
be related to ld (0) = 2, and will be assigned to worker 0.
The subgroup will contain 6 Td and 2 Sd records, hence the
whole group Pd will be assigned to worker 0. The remaining
capacity in worker 0 after this assignment is 23− 6 · 2 = 11.
As we can see in Fig. 22 a part of the created subgroup will
be computed with local records, but 4 Td and 1 Sd record will
need to be transferred from worker 1 to 0. The local weights
become ld = [0, 0] and the queue is updated to the following:

q = [3]

At this point we enter the second phase of the repartitioning
algorithm where the remaining groups are simply greedily
assigned to the remaining workers.

The fifth and final subgroup consisting of 3 Tc and 3 Sc
records can be whole assigned to worker 0, which finally
obtains a minimum capacity of 11− 3 · 3 = 2.
The final load of the workers is 95 and 93, which means

that they are perfectly balanced. With the simple hash-based
repartitioning algorithm two groups would be assigned to
worker 0, and the other two to worker 1. Assuming the best-
case scenario, groups Pa and Pc would be assigned to worker

1 and Pb and Pd to worker 0, hence the load of the workers
would be 104 and 84. In the worst-case however, groups Pa
and Pb could be both assigned to worker 1 leading to load
values of 164 and 24, which is a significant load imbalance
as worker 1 would be 6.8X slower than worker 0. The reduce-
side operation’s execution time would be proportional to the
maximum worker load, which is 95 with our repartitioning
algorithm and 164 with the worst-case hash-based approach
i.e. the default ‘naive’ approach would be 73% slower due to
the presence of skew.

The records that were transferred are in total 26, 17 S
records and 9 T records. The default hash-based approach
would in the worst-case scenario transfer 36 records i.e.
38% more than our approach, and in the best-case scenario
24 records i.e. 8% less than our approach. However, in the
base case scenario our approach is 9% faster. We argue that
the benefits of better load balancing in the final measured
execution time are much more important compared to
network-related overheads, especially with the development
of the last generation Ethernet and InfiniBand networks.
We intend to verify this argument in the experimental
evaluation section.

The differences between our approach, the hash-based
repartitioning, and the original subset-replicate method using
group subdivisions are illustrated through a diagram of
subgroup assignments. Fig. 17a depicts the worst-case
scenario for naive hash-based repartitioning, where groupsPa
and Pb are randomly assigned to worker 1, causing a severe
load imbalance.

In the second diagram, appearing in Fig. 17b, we can see
that the subset-replicate methodology splits in half sets Sa and
Sb which are significantly larger and achieves a perfectly even
load balancing. However, with this method sets Ta and Tb
are sent to both workers as we can see in Fig. 17b with the
red arrows. This will increase the size of shuffle data by the
amount |Ta| + |Tb| which corresponds to 10÷ 60 = 0.166 or
17% of the initial total number of records.

Our patch-based method is shown in Fig. 17c. The
subgroups created with our algorithm differ significantly
from the common subset-replicate repartitioning for two
reasons: first, we do not always split skewed groups if
the worker can handle them without being overloaded;
second, we optimize data locality by assigning subgroups
to workers in a specific, non-random manner, reducing
data movement between workers. The order of subgroup
creation and assignment is also carefully chosen to maximize
data locality and minimize transfer. The dashed arrows
in Fig. 17c represent movements that are avoided by our
algorithm, instead using locally available data (denoted as
hatched areas). Only set Sc is replicated, accounting for
5% of the total records, compared to the 17% replication
required by the common subset-replicate method to achieve
the same load balancing. The total shuffle data size is 27%
smaller than in the worst-case hash-based repartitioning,
and 8% larger than in the best-case hash-based approach,
yet we achieve perfectly even load balancing. Thus, our

VOLUME 13, 2025 41093

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

Algorithm 5 Patch-Based Shuffle and Join
Input N , S,T
Output Join result

1: compute(V , s, t, l, g,Cmax)
2: R← patchRepartitionAndAssign()

/* tag each record */
3: for record r inS ∪ T do
4: w← getLocation(r), v← r .A
5: assigned ← False
6: local ← True
7: while not assigned do
8: for targetSubgroup tinR.getAll(v) do

/* first fill subgroups assigned to this worker */
if local and t.getWorker ! = w then

9:10: continue /* next fill subgroups that expect data
from this worker */

11: else if not local and t.ext.get(w) == 0 then
12: continue
13: else if nextEmptyLineExists(t) then
14: tags← ∅
15: for subgroup sbint.getNextLine() do
16: tags.add(sb.getId, sb.getWorker)
17: end for
18: t.fillNextLine()
19: tagAndShuffle(r, tags)
20: assigned ← True
21: break
22: end if
23: end for

/* finally fill random subgroups */
24: if not assigned and not local then
25: for targetSubgroup tinR.getAll(v) do
26: if nextEmptyLineExists(t) then
27: tags← ∅
28: for subgroup sbint.getNextLine() do
29: tags.add(sb.getId, sb.getWorker)
30: end for
31: t.fillNextLine()
32: tagAndShuffle(r, tags)
33: assigned ← True
34: break
35: end if
36: end for
37: end if
38: if not assigned and not local then
39: local ← False
40: end if
41: end while
42: end for
43: joinDataForeachCommonTag()

methodology outperforms both the common subset-replicate
and hash-based repartitioning methods.

APPENDIX C
ALGORITHM DEFINITIONS
See Algorithms 2–5.

REFERENCES
[1] T. Um, G. Lee, and B.-G. Chun, ‘‘Pluto: High-performance IoT-aware

stream processing,’’ in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2021, pp. 79–91.

[2] E. Mehmood and T. Anees, ‘‘Challenges and solutions for processing real-
time big data stream: A systematic literature review,’’ IEEE Access, vol. 8,
pp. 119123–119143, 2020.

[3] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock,
J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee,
A. Motivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis,
and P. Unterbrunner, ‘‘The snowflake elastic data warehouse,’’ in Proc. Int.
Conf. Manage. Data, Jun. 2016, pp. 215–226.

[4] Z. Liu, L. Wan, J. Guo, F. Huang, X. Feng, L. Wang, and J. Ma,
‘‘PPRU: A privacy-preserving reputation updating scheme for cloud-
assisted vehicular networks,’’ IEEE Trans. Veh. Technol., vol. 74, no. 2,
pp. 1877–1892, Feb. 2025.

[5] Y. Miao, Y. Yang, X. Li, Z. Liu, H. Li, K. R. Choo, and R. H. Deng, ‘‘Effi-
cient privacy-preserving spatial range query over outsourced encrypted
data,’’ IEEE Trans. Inf. Forensics Security, vol. 18, pp. 3921–3933,
2023.

[6] B. Mahesh, ‘‘Machine learning algorithms—A review,’’ Int. J. Sci. Res.
(IJSR), vol. 9, no. 1, pp. 381–386, Jan. 2020.

[7] D. Xin, H. Miao, A. Parameswaran, and N. Polyzotis, ‘‘Produc-
tion machine learning pipelines: Empirical analysis and optimiza-
tion opportunities,’’ in Proc. Int. Conf. Manage. Data, Jun. 2021,
pp. 2639–2652.

[8] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum, ‘‘In-situ
MapReduce for log processing,’’ in Proc. USENIX Annu. Tech. Conf.,
2011, pp. 115–129.

[9] J. Guo, Z. Liu, S. Tian, F. Huang, J. Li, X. Li, K. K. Igorevich, and J. Ma,
‘‘TFL-DT: A trust evaluation scheme for federated learning in digital
twin for mobile networks,’’ IEEE J. Sel. Areas Commun., vol. 41, no. 11,
pp. 3548–3560, Nov. 2023.

[10] Apache. (2025). Apache Spark—Unified Engine for Large-Scale
Data Analytics. Accessed: Feb. 19, 2025. [Online]. Available:
https://spark.apache.org/

[11] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, ‘‘Hive: A warehousing solution over a map-
reduce framework,’’Proc. VLDBEndowment, vol. 2, no. 2, pp. 1626–1629,
Aug. 2009, doi: 10.14778/1687553.1687609.

[12] Presto. (2025). Presto DB. Accessed: Feb. 19, 2025. [Online]. Available:
https://prestodb.io/

[13] M. Fuller, M. Moser, and M. Traverso, Trino: The Definitive Guide.
Sebastopol, CA, USA: O’Reilly Media, 2022.

[14] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian, ‘‘A comparison of join algorithms for log processing in
MaPreduce,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2010,
pp. 975–986.

[15] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing
on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[16] A. M. Gupta, V. Gadepally, and M. Stonebraker, ‘‘Cross-engine query
execution in federated database systems,’’ in Proc. IEEE High Perform.
Extreme Comput. Conf. (HPEC), Sep. 2016, pp. 1–6.

[17] R. Li, M. Riedewald, and X. Deng, ‘‘Submodularity of distributed
join computation,’’ in Proc. Int. Conf. Manage. Data, May 2018,
pp. 1237–1252.

[18] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann, ‘‘Flow-join:
Adaptive skew handling for distributed joins over high-speed net-
works,’’ in Proc. IEEE 32nd Int. Conf. Data Eng. (ICDE), May 2016,
pp. 1194–1205.

[19] H. Lan, Z. Bao, and Y. Peng, ‘‘A survey on advancing the DBMS query
optimizer: Cardinality estimation, cost model, and plan enumeration,’’
Data Sci. Eng., vol. 6, no. 1, pp. 86–101, Mar. 2021.

[20] N. Bruno, Y. Kwon, and M.-C. Wu, ‘‘Advanced join strategies for large-
scale distributed computation,’’ Proc. VLDB Endowment, vol. 7, no. 13,
pp. 1484–1495, Aug. 2014.

41094 VOLUME 13, 2025

http://dx.doi.org/10.14778/1687553.1687609

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

[21] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, ‘‘Handling data skew in
parallel joins in shared-nothing systems,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, Jun. 2008, pp. 1043–1052.

[22] Databricks. Adaptive Execution. Accessed: Feb. 19, 2025. [Online].
Available: https://www.databricks.com/blog/2020/05/29/adaptive-query-
execution-speeding-up-spark-sql-at-runtime.html

[23] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, ‘‘SkewTune: Mitigating
skew in mapreduce applications,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, May 2012, pp. 25–36.

[24] E. Kassela, ‘‘Load-centric data shuffling with a patch-based repartitioning
algorithm exploiting the data placement and distribution,’’ M.S. thesis,
School Elect. Comput. Eng., Nature Tech. Univ. Athens (NTUA), Athens,
Greece, 2023.

[25] Y. Chen, J. Wang, Y. Lu, Y. Han, Z. Lv, X. Min, H. Cai, W. Zhang,
H. Fan, C. Li, T. Guan, W. Lin, Y. Jia, and J. Zhou, ‘‘Fangorn:
Adaptive execution framework for heterogeneous workloads on shared
clusters,’’ Proc. VLDB Endowment, vol. 14, no. 12, pp. 2972–2985,
Jul. 2021.

[26] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer,
‘‘Memory-efficient and skew-tolerant MapReduce over MPI for super-
computing systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 12,
pp. 2734–2748, Dec. 2020.

[27] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri, ‘‘Practical
skew handling in parallel joins,’’ Proc. VLDB Endowment, pp. 27–40,
Aug. 1992.

[28] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, ‘‘Apache spark: A unified engine
for big data processing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65,
Oct. 2016.

[29] T. T. Nguyen, F. Trahay, J. Domke, A. Drozd, E. Vatai, J. Liao, M. Wahib,
and B. Gerofi, ‘‘Why globally re-shuffle? Revisiting data shuffling in large
scale deep learning,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2022, pp. 1085–1096.

[30] S. Yu, H. Chen, and H. Jin, ‘‘Nereus: A distributed stream band join system
with adaptive range partitioning,’’ IEEE Trans. Consum. Electron., vol. 69,
no. 4, pp. 949–961, Nov. 2023.

[31] P. Tampakis, C. Doulkeridis, N. Pelekis, and Y. Theodoridis, ‘‘Distributed
subtrajectory join on massive datasets,’’ ACM Trans. Spatial Algorithms
Syst., vol. 6, no. 2, pp. 1–29, Jun. 2020.

[32] A. Zeidan and H. T. Vo, ‘‘Efficient spatial data partitioning for
distributed kNN joins,’’ J. Big Data, vol. 9, no. 1, pp. 1–42,
Dec. 2022.

[33] F. Liang, F. C. M. Lau, H. Cui, Y. Li, B. Lin, C. Li, and X. Hu, ‘‘RelJoin:
Relative-cost-based selection of distributed join methods for query plan
optimization,’’ Inf. Sci., vol. 658, Feb. 2024, Art. no. 120022.

[34] J. Gao, W. Liu, Z. Li, J. Zhang, and L. Shen, ‘‘A general fragments
allocationmethod for join query in distributed database,’’ Inf. Sci., vol. 512,
pp. 1249–1263, Feb. 2020.

[35] J. Duggan, O. Papaemmanouil, L. Battle, and M. Stonebraker, ‘‘Skew-
aware join optimization for array databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, May 2015, pp. 123–135.

[36] Z. Yang, ‘‘The architecture of OceanBase relational database sys-
tem,’’ J. East China Normal Univ., vol. 2014, no. 5, pp. 141–148,
Sep. 2014.

[37] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer,
‘‘Mimir: Memory-efficient and scalable MapReduce for large supercom-
puting systems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2017, pp. 1098–1108.

[38] Y. Miao, F. Li, X. Li, Z. Liu, J. Ning, H. Li, K. R. Choo, and R. H. Deng,
‘‘Time-controllable keyword search scheme with efficient revocation in
mobile E-health cloud,’’ IEEE Trans. Mobile Comput., vol. 23, no. 5,
pp. 3650–3665, May 2024.

[39] Y. Miao, Y. Yang, X. Li, L. Wei, Z. Liu, and R. H. Deng,
‘‘Efficient privacy-preserving spatial data query in cloud comput-
ing,’’ IEEE Trans. Knowl. Data Eng., vol. 36, no. 1, pp. 122–136,
Jan. 2024.

[40] C. P. Schnorr andM. Euchner, ‘‘Lattice basis reduction: Improved practical
algorithms and solving subset sum problems,’’ Math. Program., vol. 66,
nos. 1–3, pp. 181–199, Aug. 1994.

[41] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, ‘‘Approximation and
online algorithms for multidimensional bin packing: A survey,’’ Comput.
Sci. Rev., vol. 24, pp. 63–79, May 2017.

[42] E. D. Demaine and M. L. Demaine, ‘‘Jigsaw puzzles, edge matching,
and polyomino packing: Connections and complexity,’’ Graphs Combina-
torics, vol. 23, no. 1, pp. 195–208, Jun. 2007.

[43] A. Lodi, S. Martello, and M. Monaci, ‘‘Two-dimensional packing
problems: A survey,’’ Eur. J. Oper. Res., vol. 141, no. 2, pp. 241–252,
Sep. 2002.

[44] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, ‘‘Mesos: A platform for fine-grained resource
sharing in the data center,’’ in Proc. 8th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2011.

[45] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, and B. Saha, ‘‘Apache
Hadoop YARN: Yet another resource negotiator,’’ in Proc. 4th Annu.
Symp. Cloud Comput., 2013, pp. 1–16.

[46] D. Jankov, B. Yuan, S. Luo, and C. Jermaine, ‘‘Distributed numerical and
machine learning computations via two-phase execution of aggregated
join trees,’’ Proc. VLDB Endowment, vol. 14, no. 7, pp. 1228–1240,
Mar. 2021.

[47] R. Tang, N. K. Aridas, and M. S. A. Talip, ‘‘Design of a data
processing method for the farmland environmental monitoring based
on improved spark components,’’ Frontiers Big Data, vol. 6, pp. 1–9,
Nov. 2023.

[48] Y. Jahnavi, Y. Pavan Kumar Reddy, V. S. K. Sindhura, V. Tiwari, and S. Sri-
vastava, ‘‘A novel processing of scalable web log data using map reduce
framework,’’ in Proc. Comput. Vis. Robot.. Singapore: Springer, 2023,
pp. 15–25.

[49] P. P.-S. Chen, ‘‘The entity-relationship model—Toward a unified view of
data,’’ ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, Mar. 1976, doi:
10.1145/320434.320440.

[50] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, ‘‘Sort vs. Hash revisited: Fast join
implementation on modern multi-core CPUs,’’ Proc. VLDB Endowment,
vol. 2, no. 2, pp. 1378–1389, Aug. 2009.

[51] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, ‘‘Multi-core, main-
memory joins: Sort vs. hash revisited,’’ Proc. VLDB Endowment, vol. 7,
no. 1, pp. 85–96, Sep. 2013.

[52] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu, ‘‘Main-
memory hash joins on multi-core CPUs: Tuning to the underlying
hardware,’’ in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE), Apr. 2013,
pp. 362–373.

[53] Apache. (2025). Apache Spark Configuration. Accessed: Feb. 19, 2025.
[Online]. Available: https://spark.apache.org/docs/latest/configuration.
html

EVDOKIA KASSELA received the Master of
Engineering degree in electrical and computer
engineering and the Master of Science degree
in data science and machine learning from the
National Technical University of Athens (NTUA),
in 2013 and 2023, respectively, where she is
currently pursuing the Ph.D. degree with the
Computing Systems Laboratory. She was a Teach-
ing Assistant in various big-data related courses
offered by the School of Electrical and Computer

Engineering, NTUA. Currently, she also works as a Senior-level Data
Engineer. Her research interests include big data topics and relational
processing.

VOLUME 13, 2025 41095

http://dx.doi.org/10.1145/320434.320440

E. Kassela et al.: Accelerating Distributed Repartition Joins on Skewed Datasets via Patch-Based Shuffling

IOANNIS KONSTANTINOU received theDiploma
degree in electrical and computer engineering and
the M.Sc. degree in techno-economic systems
from the National Technical University of Athens
(NTUA), in 2004 and 2011, respectively. He is cur-
rently an Associate Professor with the Informatics
and Telecommunications Department, University
of Thessaly, where he regularly teaches operating
systems and programming courses. He is also a
Senior Researcher with the Computing Systems

Laboratory, National Technical University of Athens, where he also teaches
advanced topics in databases. He also serves as a member for the Board of
Directors of KTP SA. His research interests include large scale distributed
data management systems (cloud computing and big-data systems). He was
a recipient of one Best Paper Award (IEEE CCGRID 2013) and one Best
Paper Award Nomination (IEEE CCGRID 2015) for his work on large-scale
distributed systems.

NECTARIOS KOZIRIS (Member, IEEE) is cur-
rently a Professor in computer science and the For-
merDean of the School of Electrical andComputer
Engineering, National Technical University of
Athens. His research interests include parallel and
distributed systems, interaction between compil-
ers, OS and architectures, datacenter hyperconver-
gence, scalable data management, and large scale
storage systems. He has co-authored more than
180 research articles with more than 6600 citations

(H-index: 36). Since 1998, he has been involved in the organization of
many international scientific conferences, including IPDPS, ICPP, SC, and
SPAA. He has given many invited talks in conferences and universities.
He was a recipient of two best paper awards for his research in parallel
and distributed computing (IEEE/ACM IPDPS 2001 and CCGRID 2013)
and had received honorary recognition from Intel, in 2015, for his research
and insightful contributions in transactional memory (TSX synchronization
extensions). He has participated as a partner or a consortium coordinator in
several EU projects involving large-scale systems. He is a member of the
IEEE Computer Society, a Senior Member of the ACM, and the elected
Chair of the IEEE Greece Section and started the IEEE Computer Society
Greece. To promote the open source software in Greece, he co-founded the
Greek Free/Open Source Software Society (GFOSS-www.ellak.gr), in 2008,
with members 29 Greek universities and research centers, where he is
also serving as the Vice-Chair for the Board of Directors. For the last
ten years (2004–2014), he has served as the Vice-Chair for the Greek
Research and Technology Network-GRNET. He has been the Founder
of the Okeanos Project, since 2012, a public cloud IaaS infrastructure,
among the biggest ones in the European public sector (topping out
beyond 10.000 active VMs), powered by the open source Synnefo software
(www.synnefo.org). He is also serving as the National Delegate for European
High Performance Joint Undertaking (EuroHPC JU), where he is also
a member of the Governing Board. For more information visit the link
(http://www.cslab.ece.ntua.gr/nkoziris).

41096 VOLUME 13, 2025

