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Abstract— In this paper we revisit the supernode-shape selec-
tion problem, that has been widely discussed in bibliograph In
general, the selection of the supernode transformation gely
affects the parallel execution time of the transformed algathm.
Since the minimization of the overall parallel execution tine
via an appropriate supernode transformation is very difficult
to accomplish, researchers have focused on scheduling-awa
supernode transformations that maximize parallelism during
the execution. In this paper we argue that the communication
volume of the transformed algorithm is an important criteri on,
and its minimization should be given high priority. For this
reason we define the metric of the per process communication
volume and propose a method to miminize this metric by se-
lecting a communication-aware supernode shape. Our apprah
is equivalent to defining a proper Cartesian process grid wi
WPl _Cart _Cr eat e, which means that it can be incorporated
in applications in a straightforward manner. Our experimental
results illustrate that by selecting the tile shape with theproposed
method, the total parallel execution time is significantly educed
due to the minimization of the communication volume, desp#
the fact that a few more parallel execution steps are require.

Index Terms—Loop tiling, supernode transformation, tile
shape, MPI, process grid, scheduling.

I. INTRODUCTION

crucially larger than local access times and communicatiartup
latencies are an important hurdle to high performance.

Tiling for coarse-grain parallelism has attracted extensci-
entific research [5]-[26] right after its presentation bigdin
and Triolet in 1988 [1]. Tiling transformation provides filiity
concerning the number of iterations to be grouped togettter i
a single tile (tile size), as well as the shape of the encfpsin
parallelogram. Since the selection of the tile size and sigagatly
affects the properties of the transformed space, resaartiase
focused on defining criteria for an efficient tiling transfation.
Ohta et. al. [17], Hodzic and Shang [11], and Andonov et. al.
[27] focused on the selection of the optimal tile size based
on the special characteristics of the application and thgeta
architecture. Ramanujam and Sadayappan [5], Boulet ef7]al.
and Xue [21] worked on the selection of a tile shape that
minimizes theper tile communication volume, i.e. their goal was
to minimize the dependence vectors cutting the planes dgfini
a tile. In this case, the optimal tile shape is formed by pdane
parallel to the algorithm’s dependence cone. More impdigtan
for a given tile size, Hodzic and Shang [11], [14] and HodbH.
al. [15], [28] determined the tile shape that minimizes theafel
execution steps of the tiled space. In this case,stteeduling-
aware tile shape is obtained by: (a) deciding on an appropriate

Tiling or supernode' transformation has been proposed aBasic tile shape (in most cases, tile sides are again paailee
one of the most efficient methods to map applications baségpendence cone) and (b) properly scaling the sides ofléherti

on stencils onto distributed-memory architectures wigngicant
commucation latencies. Stencil computations are veryugatly
met in image processing and in simulation applicationsltiegu
from the discretization of PDEs using explicit finite-diéace
schemes [2]-[4]. Such applications are essent@ACCROSS
loop nests, i.en-dimensional loop nests with at leastlinearly
independent data dependencies. In order to exdaG®CCROSS
nested loops in the aforementioned parallel architectures
searchers have proposed the application of tiling transition
[5]. Tiling groups neighboring iterations into one comgigdaal
unit, the tile or supernode. For the parallel execution t#dti
iteration spaces, tiles are assigned to the available gsesavhich
are orchestrated to communicate before and after the ceigut

order to minimize the maximum parallel execution path betwe
the first and the last tile.

Determining the optimal tiling transformation, i.e. theeotmat
minimizes parallel execution times, is very difficult, senearious
tiling transformations lead to different transformede() iteration
spaces, memory access patterns, communication graradarit
processor idle times and communication volumes. In order to
evaluate the impact of each of the above factors to the dveral
execution time, one needs to devise a highly accurate phrall
execution model that takes into consideration all the affact®rs.
However, such an execution model is almost impossible tst exi
for the extremely complex modern parallel platforms. Fads th
reason, the researchers simplify their approaches by rdisca

within one tile. In this way, both the communication volumegome of the above factors, paying the cost of suboptimaigtili

and frequency are reduced enabliD@QACCROSSested loops,
that suffer from high communication needs, to efficientlp@axe

transformations. For example, Hogstedt et. al. in [158] [@eter-
mine the shortest path between the first and the last tileowith

onto para||e| p|atf0rms where remote memory access times é@,klng into consideration the communication overhead. zitod

1Throughout relevant research papers the tesupernodeand tiling
transformation have been used to describe the same trarafon. Although
we adopt the term tiling, we have used the term supernode rirtittes and
in several sections of this manuscript as a reference todimensl paper of
Irigoin and Triolet [1].

and Shang in [11], [14] propose a tile-shape selection fgden
assuming constant communication times for all messages.size
This approach disregards the communication data volumk wit
the assumption that the volume-dependent message transmis
is overlapped by useful computations and thus hidden. Hewyev



as shown in [9] and [16], one needs to apply special schegluliit holds J" ™ = {j(j1,jo, ..., jni1) € Z" TN 1; < ji < wy, i =
strategies (that are not considered in [11], [14]) and empld...n + 1}, wherel;,u; € Z are the lower and upper bounds of
sophisticated communication hardware in order to hide spane the i-th loop respectively. The dependencies of the problem are
—and not all- of the transmission time. expressed with constant; { 1)-dimensional dependence vectors
In this paper we focus on a special but important class @f, i = 1...m. We denotecl;j the j-th element of vectowd;.
problems that are frequently met in practice. We assume rem the class of problems under consideration it hafﬁ]s >0,
angular iteration spaces (as in [11]) and non-negative @Msn ; = 1...m andj = 1...n + 1. The dependence matrix of the
in dependence vectors. Note that, a tiling transformatian calgorithm, denotedD, is an (n + 1) x m matrix containing as
be uniquely defined by determining three parameters: (&) titolumns the dependence vectors of the algorithm. The reader
size, (b) basic tile shape and (c) scaling factors of tileesid is referred to [37] for more details on the properties of data
In our approach, we consider the tile size as an input pasmediependencies. It holdsunk(D) = n + 1, which means that the
determined by the computation and communication costs ef thigorithm has:+ 1 linearly independent data dependence vectors.
algorithm and the hardware features of the target architectn Note that, ifrank(D) < n + 1, then the iteration space can be
addition, we consider rectangular basic tile shapes. A @éne partitioned into independent subspaces and parallelizéubut
parallelogram tiling transformation can only be impleneghby the use of tiling [29]. We define the vectdr = (d}, d5, ..., d}, 1)
automatic parallelizing compilers due to the complexitytoé with d; = maxz(d;;),l = 1...m, which expresses the maximum
code that traverses non-rectangular tiles [10], [12]. Rerdbove dependence length per dimension. Unlike [23], [30] we abersi
problem class we propose a new criterion for the selectioanof in-core computations, i.e. all data sets assigned to eantegs
efficient tile shape. This criterion emphasizes the minatian fit in main memory, thus we do not consider secondary storage
of the per processommunication volume. Note that minimizingaccess times. Overall, the algorithms have the general fifrm
the communication overhead is the primary goal of tilinghgra Algorithm 1, whereU is an ¢ + 1)-dimensional matrix and" is
formation, therefore trying to further decrease the comoation a linear function.
data by properly selecting the tile shape seems a good idés in
first place. The problem arises in the cases where the schgdul Algorithm 1: algorithmic model
aware tile shape differs from tt@dmmunication-awardéle shape
proposed here. In this paper we demonstrate that the oritéor
communlcat!on m_lnlr_nlzatlon should be given the gre_atgstrpy 3 for jn — In 10 un do
when targeting distributed memory architectures, sinds the for i 1 to u do
one that more drastically affects the overall executioretofithe * Jntl nL T - 2.
parallel algorithm. ° Ubl = FWUL — i), Ul — dm));
Our method takes into consideration the boundaries of the
initial iteration space and the dependencies of the origata
gorithm, and can be applied on a distributed memory ardhitec
for a limited (fixed) number of processes. This selectionhef t
tile scaling factors is equivalent to determining a virtpabcess ~ Advection is the physical process of transportation witain
topology, and thus can be easily incorporated in a messaffeid, as is for example the transportation of polluted miet
passing programming environment like MPI, with a propetiahi  in the atmosphere. Advection phenomena are very commonly
ization to the parameters of tihdl _Car t _Cr eat e routine. Our Studied in meteorology. The advection equation is the garti
experimental results indicate that the proposed commtioica differential equation (PDE) that governs the motion of aseswed
aware tile shape significantly reduces the overall exeoutine, Scalar as it is advected by a known velocity field (the makténia
compared to the one achieved by the scheduling-aware tilgesh Which advection occurs). The advection equation for a scala
although it requires a larger number of parallel executibases. (€.9. particle density or temperature) is expressed mattieatly
The rest of the paper is organized as follows: Section @S: o
provides useful background knowledge and basic definitions rri asyv
concerning the program model, supernode (tiling) tramséion, L. . . .
scheduling and mapping techniques. Section Ill discusse®ie whered is the vgctor f'.eld’ €.g. the velocity yectqr of th.e material.
detail work concerning criterions and methods for the d&lac In two spatial dimensions the above equation is equivalent t
of efficient tiling transformations, while Section IV defseur v v v )

o . o7 TGz T ayo—
problem and proposes a method to select tiling transfoomsti ot  Ox Yoy

that minimize the per process communication volume. Sedfio |f we need to study an advection process inXax Y space
experimentally tests the efficiency of the proposed apgrdac for a time windowT, we can discretize the initial domain into
terms of total parallel execution times and compares it ® th uniform grid using a time step¢ and space stepdz and
selections proposed by previous research. Finally, Secdb Ay. Then, we can discretize the above PDE using a variety of
provides the overall conclusions drawn from this paper. finite differencing schemes. For example, if we employ Euer-
Forward scheme [31], the time derivativen can E)e substituted by a
- fraction of differences as follows? = . The physics
A. Algorithmic model of the problem allows us to employpwind [31] differencing
Our algorithmic model concerns stencil applications, Wwhicschemes for the space derivatives, which involves comiputat
involve (n + 1)-dimensional perfectly nested loops with constanwith “previous” spatial grid points. This discretizatioregegy
flow dependencies. The iteration spate™ is rectangular, thus favors the direct application of rectangular tiling in theqael.

1 for j; < 11 to uy do

B. Application example: advection equation

Il. PRELIMINARIES



Thus, in this case we can substitute the space partial tigeisa written asJ® = {7557 € Z Al <jP <wfi=1...n+1}.

as follows: 3¢ = % If we substitute the above formulasEach IOO?ntJ?S. in this (0 + 1)-d;mesnsionalsinteger spact’ is a
in Equation (1) we get: distinct tile with coordinateg;,55,...,711)-

At At Given an glgorithm with depender!ce matdx, for a_tiling
U?]ﬂrl = (1 +2aﬂ) Vi — A (v@fl)j +vf(j71)) (2) to be legal, it must holddD > 0. This ensures that tiles are
atomic and that the initial execution order is preserved [8].
where for notational convenience we suppose a uniform comrthe opposite case any execution order of tiles would tesul
putational grid in the two spatial dimensiona{ = Ay) and a deadlock. In this paper we assume that all dependencersecto
az = ay = a. Note that{;, vj; andvjjy are known from the initial contain no negative element and are smaller than the ik siz
and boundary values of the PDE problem. Equation (2) can is allows us to apply rectangular tiling transformatiamisich
easily solved for all points in the discretized computatiogrid are defined by the diagonal matricHs= diag(h1, ha, ..., hni1)
T' x X' xY' whereT' =T/ At, X' = X/Az andY’ =Y/Ay  andP = diag(p1,pa, ..., pnt1)- Figure 1 (left) shows an example

with the nested loop shown in Algorithm 2. of a rectangular tiling transformation.
Finally, we assume that all dependencies are entirely owda
Algorithm 2: nested loop for 2-D advection equation in each supernode’s area, which means {itab| < 1 [20] or

alternatively that the supernode dependence marixcontains
only O's and 1's. This assumption is quite reasonable since
dependence vectors for common problems are relativelylsmal
while tile sizes may result to be orders of magnitude gregter
systems with very fast processors. In this case every tiklse
to exchange data only with its nearest neighbors. The nuwiber
index points contained in a supernode expresses the ragpect

1 for j; < 0to T’ do

2 for jo—1to X’ do

3 for j3 —1to Y’ do

4 Uljr+1[52]lis] = (1+2-a-dt/dz)-Ulj1][j2][i3] —
a-dt/dx - (Ulj]lj2 — 1[js] + Uli]li2]lis — 1]);

The dependence matrix of the above algorithm Iis = computation cost of this supernode (tile), and is calcdlaig
111 . det(P). Thus we havé/.omp = det(P) and for rectangular tiling
0 1 0] andd = (1,1,1). The discretization processtransformations/comp = det(P) = H?:ﬁl Di.

0 0 1

followed leads to nonnegative elements in the dependent@&ma p. Scheduling, mapping and parallel execution time

Note that glternative discretization. schemgz? can Iead' fgelo We will schedule the problems under consideration withdime

dependenmes. The_ rea_der_ can find a_ddltlonal details on %eduling techniques [32], [33]. Central to linear sctiaduis

equation and the discretization process in [31]. the notion of the scheduling vectr. Intuitively, in simple cases,
it suffices to calculate the inner product of a pojrt J" 1 with

C. Supernode transformation II to derive the parallel time step at whighwill be executed.
In a supernode transformation the iteration spadel is In the general case [32]; ¢ J"*' scheduled according to a
partitioned into identicals{+ 1)-dimensional parallelepiped areadinear scheduling vectoIT, will be executed at; = ng;jm,

(tiles or supernodes) formed by + 1 independent families of wherety = —minlli : i € J*! is the alignment constant or the
parallel hyperplanes. Supernode transformation is defyethe initial time of execution of the first point in the iteratiopace,
(n + 1)-dimensional square matrig/. Each row vector ofH  and displl = minlld; : d; € D is the displacement constant
is perpendicular to one family of hyperplanes forming tHesti expressing the time pace of computations. Thus, ajfile J°
Dually, supernode transformation can be definedibyl linearly  will be executed at;s = L%?}t{o |. All points (or tiles) that lie
independent vectors, which are the sides of the supermnodgghin eachn-dimensional surface perpendicular to the scheduling
Similar to matrix H, matrix P contains the side-vectors of ayvector II can execute in parallel, thus, one can employnan
supernode as column vectors. It holdts= H . dimensional array of processes to maximize parallelisn. [B4
Formally supernode transformation is defined as follows:  our approach we will also consider the general case ofian
1 onis - |Hj| dimensional process grid to execute in parattel()-dimensional
reZ" —Z7 () = 2 I iteration (or tiled) spaces.
Jj—H"|Hj] : , .
Suppose, for notational convenience, that = 0, ¢ =
where | Hj| identifies the coordinates of the tile that index point ...n + 1. Then the last point of the iteration spagg.; =

701,72, -,jns1) is mapped to and — H— | Hj| gives the (uy,uz,...,uns1) Will be transformed by a rectangular tiling
coordinates ofj within that tile relative to the tile origin. Thus transformation to the last tilg , = (P 2o ";:ﬁ). Using
the initial (n + 1)-dimensional iteration space is transformed tol = (1,1,...,1) as scheduling vector, then the last tile will be

a (2n + 2)-dimensional one, the space of tiles and the space sgheduled at time steps = Zﬁ;:ll 7+ (to = 0 and supposing
indices within tiles. Indices within tiles have to be sedimly dispIl = 1), which clearly constitutes the total number of parallel
executed, while tiles themselves can be assigned to pexess! time steps for the problems under consideration. In evergligh
executed in parallel according to a valid hyperplane scleeduime step each process performs uninterrupted computadtbim

as we will see in Section II-D. The tiled space’ and the a single tile and communicates with itsneighbors in order to
supernode dependence matfiX’ are defined as follows7® = exchange data. Note that, even if the dependencies of tidepto
G5GT, .35 0F° = [HF), 7 € g7}, DY = {d°]d° = lead to the need for data exchange with diagonal neighbors,
|H(Go+d)|,d € D,jo € J"T10 < |Hjo) < 1} wherej, denotes one can apply indirect message passing techniques (déstirss
the index points belonging in the first complete tile staytirom [35]), in order to limit the neighboring processes to thaon-

the origin of the iteration spac# *!. The tiled space can be alsodiagonal ones. If. is the time to compute one iteratiof, is the
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Fig. 1. Tiling, mapping and scheduling example for 1-D adieecequation.

communication startup latency, is the time to transmit a unit of per tile communication function which needs to be minimized
data andk is the mapping dimension (i.e. the dimension acrogsspecting the legality criterions, in order to minimize thumber
which all tiles are assigned to the same process), then thé t@f dependencies that crosscut the tile’s surfaces. Theses-cr
parallel execution time can be expressed by Equation (3). cutting dependencies are responsible for communicationdsm
r 8 (T e 50 (1] ) a] @ Shoved tat e surtaces ht aeine he i shou be st
g\ T be parallel to the dependence cone of the algorithm.
. . A more general approach could be to search for a tiling trans-
, The above niqugtlon.multlplles th? number of the pare,‘”%rmation that minimizes the total parallel execution tiofethe
.t|me StePS Ei p_:,) W'th,the total time o feagh step. Th',salgorithm as expressed in Equation (3). Note that the etecf
n ﬂrln is decomposed n the computation time of a tilg,rious tiling transformations affects the number of dataime
(Hi:1 Pitc)’ the startup time for _th? commumcatlon along steps and the time for computation and communication pgr. ste
dlmne+nl'5|ons ’éfizland the/transmlssmn time of all messageﬁlinimizing the above equation is quite an intricate taskcsi
(Zi:u#k (szl,j#i pj) ditt). one cannot effectively model the factars ts and¢:. t. being
) o ) ) the computation time of a single iteration within a tile, ludes
Example 1: Figure 1 (left) shows the original iteration spaceihe necessary memory accesses for the computed data. Téie tim
for 1-D advection equat|onJ.(2 ={i01,72)l0 <51 < 8 Q 0 < to access data from memory is crucial for the computationgss
j2 <5) ar}d the dependencies of the problef € (1,0)" and  gpq is greatly affected by the tile size and shape. The ictiera
dy = (1,1)", thusd’ = (1,1)) depicted by arrows. The grey boxest various tiling transformations with the memory subsystis
represent the grouping of neighboring iteration points @8ed gjfficult to model, since a number of factors such as the cate
by the tiling transformation defined by = { 3 (2) . Figure 1 and organization and hardware prefetching mechanisms teeed
) ) ) ) %5,5 .8 be taken into consideration. In any caseannot be considered as
(right) shows the tiled iteration space/{ = {j"(j7',j3)|0 < a constant but, on the contrary, as a proper function of timeti
jP <2A0 < j5 <2}) and the tile dependenciedy{ = (1,0)T L ’ :
1 7 = T ; ! parameters, thus. = tc(p1,p2,-..,pnt+1). Accordingly, thets
dz = (0,1)" anddg = (1,1)" ). We map tiles along the innermostne i gependent on the implementation of the messageénpass
(second in this case) dimension to the same prod@sslz, C'3). - mechanisms employed (e.g. MPI library) and cannot be easily
'_f we apply Ilm_aar scSheduImg W|th_vectdﬁ = (L,1), tr_'e last considered as constant since it includes communicatide that
tile of thf algorithm {5, = (2,2)) will be executed at time step .o o deterministic, such as the management of unexpected
tys = Hjl%st = 4, thus the total number of parallel time steps Wi”messages (e.g. call teceive functions after the arrival of a
be5. Tiles executed at the same time step are shaded in the Sarﬁ)fssage). Finally, even fer which is the simplest of the above
cqlor. According to Equation (3), the total parallel exeiout time parameters, since one needs to simply divide the message siz
will be: with the effective bandwidth of the underlying communioati
T =5(6tc +1s +2t) network, one has to consider implementation-specific ssker
example, various MPI libraries employ different transnuss
mechanisms (eager, rendezvous, etc) according to the geessa
size.
With a goal to minimize the total parallel execution time,
After the proposition of tiling tranformation by lIrigoin dn Hodzic and Shang [14], [36] employ a simpler model than
Triolet [1] researchers started elaborating on efficienbmtimal that of Equation (3). The authors disregard the commuminati
tiling tranformations. Appart from the definition of legalet transmission part, assuming that this task can be overthppe
shapes, i.e. tile shapes that respect the dependencies afgih useful computations. They considey and ts as constants and
rithm and allow uninterrupted execution of tiles, the semhimork thus focus on the selection of tile shapes that minimize oited t
of Ramanujam and Sadayappan [5] introduced the idea ogtilimumber of parallel execution steps. However, as shown iauf@]
transformationsor minimal communicationThey formulated a [16], one needs to apply special scheduling strategiesatieanot

=Ltk \j=1,j#i

IIl. RELATED WORK — “OPTIMAL"” SUPERNODE SHAPES



considered in [14], [36] and employ sophisticated commatiinr  spaceu; X us X ... X u, 41 effectively slices dimension; to C;
hardware in order to hide some part of the transmission t8ma-  parts ¢( = 1...n). This fact is equivalent to applying a rectangular
ilarly, Hogstedt et al. [15] split the communication timestartup tiling transformation described by the following matrix

and transmission times. The former is added to the compatati

. . . . . c; 0 ... 0 0
time as a constant while the latter is again considered apped u/Ch
by computations. Again here the authors select a tile shiage t P =
minimizes the path to reach the last tile, or, in other worals t 0 0 .. un/Cn 0
g o 0 0 .. 0 (gITy C)/(ITiy )

minimize the processor idle times and maximize paralleligve
call the tile shapes selected by [14] and [15kakeduling-aware Where g is the tile size dictated by the underlying architecture
Note that both approaches ignore the total communicatiimwe (Processor speed, interconnection bandwidth etc.) arettaff
imposed by a tiling selection, by assuming that all of thegrais- the grain of the parallelism. Thus, the problem of selecting
sion time is hidden underneath useful computation. Howawvier an efficient tiling transformation, collapses to the deiamit of

not always possible to overlap communication transmissiem the termsCy,Cs,...,Cn of the above tiling transformation.

if advanced scheduling schemes and sophisticated hardavare Moreover, proposing an efficient Cartesian process togotan
employed [16]. In our approach presented in the next segt®n lead to the direct incorporation of the optimization tecjus
show that the minimization of the total communication volumin @ message passing library like MPI, e.g. through the
is an important issue that should be taken into consideratid/Pl -Cart create library routine. Note that, in the above
especially when commodity interconnection networks with ndiscussion it is assumed that all tiles along the inner dsiten
overlapping capabilities are concerned. are mapped to the same process. Since the algorithm contains

Finally, Parsa and Lotfi [23] provide a genetic algorithmtthal© negative dependence element, any permutation of the loop
minimizes an objective function encapsulating processimgn- nest is legal [37], [38], that is, any loop can be selectededo b
munication and disk-access times. Although their approagets the innermost one.
general tiling transformations, their objective functidoes not
represent the overall parallel execution time, while thected Example 2: Suppose we need to solve in parallel a three
transformations are not tested in real problems and ptatfaas dimensional problem withi, = up = uz = 128 and havel6
far as their efficiency is concerned. processes available. Let also the appropriate tile sizdatid
by the parallel platform bg ~ 4096. If we map the first two
dimensions to a process grid; x Cs then clearly we have the
five candidate topologiest: x 16, 2 x 8,4 x 4, 8 x 2 and 16 x 1.

In this section we propose a new criterion for the selectibn qne first topology I x 16) does not partition the first dimension
an efficient tile shape, i.e. the minimization of ther process of the iteration space leading to, = 128, but slices the second
communication volume of the algorithm. In addition, we pd& dimension intol6 pieces leading tg, = 128/16 = 8. Thus we
a method to select a tile shape based on this criterion, ccallgat;,, — 4096 x 16/128% = 4 to determine the tiling parameter
the communication-awardile shape. Prior to this, we formally for the third dimension. Thus, given the constraints on ti@ler
define our problem and provide tiseheduling-awaresolution to  of gyailable processes and the appropriate tile size thevaliive
this problem proposed by previous work. process topologies lead to the following tile shapezs x 8 x 4,

64 x 16 x 4, 32 x 32 x 4, 16 x 64 x 4 and 8 x 128 x 4.

IV. COMMUNICATION-AWARE SUPERNODE SHAPE

A. Definition of the problem

The input of our problem is an algorithm following the modeB. Previous work: Scheduling-aware supernode shape

discussed in Section II-A. For notational convenience valae According to [14], [15], givenC processes for the mapping of
li=0,i=1...n+1, thus we consider am(+ 1) - dimensional an (. + 1)-dimensional algorithm on an-dimensional process
nested loop with a rectangular iteration spage X uz x ... x  grid, the scheduling-aware tiling transformation can beaited
un+1) and a dependence matriw of nonnegative, constant, as a feasible solution to the following optimization prable
flow dependencies. The tile sizg is also given as an input " )
to our problem. Note that the definition of the optimal tile Gi — \/,,La CieNi=1...n } 4)
size is a very difficult problem. However, for a specific phaial ¢ = =G
architecture one can conduct a series of benchmarks taking i A process topology complying to (4) tries to place equal
consideration parameters such as the cache size, the cper pawmber of processes in each dimension, minimizing in thig wa
and the communication latency and bandwidth to experinfigntathe required total number of parallel execution steps, his f
approximate an efficient tile size. Finally, we consider a&dix to consider both the algorithmic dependencies and thetibara
number of available processés space, in order to reduce the communication volume. Theradva
Contrary to related scientific work, we adopt a different agage of such a process topology is that it minimizes the tatenf
proach for the specification of the desirable communicativare the parallel program; it ensures that the most distant goeell
tile shape: Instead of defining a tiling transformation nxaf  start executing its work share at the earliest possible iee.
or P, we equivalently aim at determining an appropriate proceb®te that in this paper we do not compare against [14], [15 as
topology C' =[], C; for the mapping of the parallel algorithm, whole, since these papers propose the selection of a geifiegl
according to the mapping scheme presented in Section Il-bansformation (not necessarily rectangular) that minésithe
Indeed, the selection of the process topology implicitlfoeces a idle tiles of processes. On the contrary, we compare ouroagpr
particular tiling transformation: Determining a topology x Co x  presented in the next paragraph against the approach of{1H}]
-+ x Cy, for the parallel mapping of an algorithm with iterationto solve the problem defined in Section IV-A.



C. Communication-aware supernode shape This difference in communication volume is depicted on #me p
hprocess communication volume as well, derived from Lemma 1,

In this section we discuss that an important criterion far t
P whereVpcomm,1 = 2uz (g + %) and Vpcomm,2 = 2u3(g-+4%2).

selection of an efficient tiling transformation is the commuoa-
tion volume imposed by the transformation. We use the notion|f we apply linear scheduling defined by vecldr= (1,1, 1),
of the per processcommunication volume, i.e. the data that neethen the tile 4,4, T /p3) will be scheduled last according to the
to be sent by one process due to algorithmic dependences. st tiling transformation, and will be executed at timesl =
the problems under consideration, a process imtdémensional 8+ 7/p3, while the respective last tile8(2, T'/p3) of the second
process grid needs to semddistinct messages (one per dimentransformation will be executed at time st€p= 10-+7'/ps. This
sion). The size of each message is equal to the product of ifplies that the first transformation is better as far as tbeak
maximum dependence across the dimension of communicatimsmber of parallel execution steps is concerned, sificec 5.
by the size of the: — 1-dimensional boundary surface. Lemma However, notice that ifi; > 2uz, then Vicomm,1 > Vicomm,2,
provides an expression for this metric. which means that the second transformation is superior imse
Lemma 1:If an (n+1)-dimensional rectangular iteration spac®f total communication volume. Consequently, when it colmes
u1 Xug X ... X un,y1 iS assigned to an-dimensional process grid €xecuting the above problem far > 2us, we need to decide
C1 x Cy x ... x Cy, = C, then the total communication volumebetween scheduling-aware and communication-aware tilimg-

of a non-boundary process is given by the expression: itively, in our example one can see that the communicativara
n n transformation entails a moderate increase in the numbeinoé
Vipcomm = d} H %un—&-l et d, H %Un+1 steps, if we make the reasonable assumption hat; >> 2.
i—1 i -1 Vi On the other hand, if we have, = 4ug, the communication-
Gt w#n () aware transformation leads to almogt% less communication
_ Unt1 [17 w (dﬁcl Tt M) data. For this reason, we claim that the communication-awvar
C u1 Un transformation will lead to a significantly lower total exdmon

whered, = max(dy),l=1...m,i=1...n. time.
Proof: In ann-dimensional process grid, each non-boundary . . . .
process needs to send communication data imposed by the ?ghretforl:]ci)\rf]\:lr:?zletrsma ?;?T\]”c:ﬁs i?encﬁnd'r:'orr: éhatnrgurst hold in
gorithmic dependencies from boundary surfaces to exactly _?_h.e. 0 hi deb (ihco u d(':i'(ljo t(') a fo ou ‘?‘ytﬁ;;f
neighboring processes. The area of the boundary surfatejn t . 'S”'S ac |evzl y the even distribution of communicat
th dimension for this process ;- ; &+ unt1. The communica- N afl process dimensions.

. . . i# ) . -di i
tion data across theth dimension clearly derive from the product -€MMa 2:Letuy xuz x ... X up41 be an f+1)-dimensional

of the area of the boundary surface with the maximum deperederiéctangular iteration spacé, = maz(d;),l =1...m,i=1...n
perpendicular to that dimension, id’é‘-H?:l 141 If We SUM be the maX|mum.dependence per direction @hde the nymber
H o or all di izj of processes available for the parallel execution of therétyn.
the communication data for all dimensions we deduce (S)B i there existC; € N, such that

n
Example 3: As an example, suppose one needs to solve an C= HCZ- (6)
advection problem in a two-dimensional rectangular domain i=1
up X ug for a time windowus. Let the tile size bey, the and
available number of processéas and the data dependencies of diC; dg-Cj i 7
the algorithm lead to the following dependencies per dirimens w0 T (")
1 = (2,0,007, d5 = (0,2,0)7 and d’3 = (0,0,2)". The
rectangular tiling transformation that will be applied cabe
defined by &-dimensional diagonal matri® = diag(p1, p2, p3)-
We partition theu; x uy space in16 tiles and appropriately Proof: According to (6), it holds
adjust the tile height to conform with the restriction of ttike C
size. Thus, we will first determing,p» and subsequently we Cn = C1 X xCpy ®)
n—

\t,i\:gl sﬁ;p R é ey \(Ni will invesjgate;rwo illt1e6rnat|ve )fe:ns('jbleEach process assumps;/C;] iterations along direction, where
Pes, WA = u1/4,p2 = uz/4, ps = 169/urus 1 < i < n. For the sake of simplicity, we assume tfiat/C;] ~

(pr=u1/8,p2 = uz/2,p3 =169/ugug). u;/C;. Using (8), (5) from Lemma 1 can be written by substituting
Figure 2 shows the projection of the tiled iteration space op,

. . as follows:
the j1j2 surface and its allocation to th& processesd - - - c16) "

then process topologg; x --- x C, minimizes the per process
communication for the tiled algorithm off processes.

for the two alternative tiling transformations. Note thamoh upgr [T nz_:l d,C; N dpuny1 [T wi ©)
process is assigned a chain of tiles along tjhe dimension. comm = C Loy, unC1...Ch_1

The shaded parts of Figure 2 represent the communication . 1_1, .

data for the two candidate tiling transformations. The total\ote thatVeomm is substantially a function of’s, ..., Cp—1

communication Volum&comm derives from the boundary area (formally: Veomm Nn_il — R). Let Veomm be the real
between the processe®uf us +3usus for the first transformation €Xtension nyi‘om'rm defined by (9) forC; € R,1 < j < n
and ujyus + Tugus for the second transformation), multiplied(_VCO””” :R"™ —R). For a stationary poinCy, ..., C—1) of
by the maximum coordinate of the dependence matrix in tifgornm @NA1 < j < n — 1 it holds:

corresponding dimension, which in our caseisThus, we have OV comm d;C;  dp,Chn

=0=
Vicomm,1 = 6uiug + 6uguz and Vicomm,2 = 2uiug + ldugus. aC; uj un

(10)
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Fig. 2. Total communication volume and parallel executiteps for two tiling transformations
Also, — o that the approach described above does not theoreticatlyren

"Veomm _ 20 [[i—y wi >0 (11 the finding of the minimum communication volume in integer

aCjQ unC1 ... 0]3. .. Chroa space. However, it greatly restricts the search space aeahpa

an exhaustive search within all possible process topdiogie¢he

Because of (10) and (11)Vcomm has a minimum at cost of possible unoptimality.

(C1,...,Cp—1), and asC; € N,1 < i < n — 1, this will be
the minimum ofVeomm, as well. Therefore, the communication V. EXPERIMENTAL RESULTS
data is minimal when a topologg; x --- x C, satisfying (10)

) In this section we will experimentally evaluate the paialle
is assumed.

performance of the communication-aware tiling transfdioms

or equivalently process topologies as derived from Eqoatl®).

Rt addition, we will compare the proposed topologies adains
the scheduling-aware ones proposed in [14], [15] and derive
from Equation (4). We consider the 2-D and 3-D advection
equation and an artificial kernel with &dimensional nested
loop following the algorithmic model described in Sectidn |
A. Our experimental platform is &6-node Linux cluster (kernel
2.6.23.1). Each node includes two quad-core Xeon chipsibarse
Intel's Core 2 microarchitecture (E5335@2GHz). Two cores p

Finally, Theorem 1 makes use of Lemma 2 to derive
expression for the number of processes in each dimension.

Theorem l:Letwu; xug X...xupyy1 be an @+1)-dimensional
rectangular iteration spacé, = maz(d;),l =1...m,i=1...n
be the maximum dependence per direction @hlde the number
of processes available for the parallel execution of therélym.
In order to minimize the per-process communication voluthe,
number of processes in each dimension should be set by

wi [CTIL, d package share &VIB L2 cache. The interconnection network is
C;= d—f 1 %lu_l,j =1l...n (12) Gigabit Ethernet. We experimented with0 processes running in
Proof: Note that JI'[ hO|dSZ:1 ' the above cluster. We used MPICH v. 1.2.7 MPI implementation
] configured with gcc v. 4.2.3 and applied the -O2 optimization
CIliLidi _ diCh ‘o x dnCn (13) flag to all programs. In order to reduce as much as possible the
17y w u1 Un differences in memory access patterns induced by variding ti

By combining (13) with (10), we can easily deduce (12). m transformations, we applied cache blocking as describgd9h

It should be noted that (12) does not always define a valid ] .
integer process topology: it is possible th@} ¢ N for some A. 2-D advection equation
value ; with 5 = 1...n. However, when truncated to an Recall from Section II-B that the 2-D advection equationkpro
integer, it can serve as a good starting value for an exhvaustiem results in a3-dimensional iteration space which is mapped
algorithm searching for feasible process topologies indlose on a2-dimensional process grid. We experimented with various
neighborhood of the minimum &f comm, as determined by (12). iteration spacesX xY x7') and all possible process topologies for
In practice, asn + 1 does not exceed 3 or 4, ard ranges the100 processes. We mapped tRexY plane on the process grid
up to a few hundreds or maybe thousands of processes, #mel assigned tiles alorifj to the same process. In all cases the
high complexity of the heuristic algorithm does not resuit ischeduling-aware process topology that derives from Emuak
high execution times. Furthermore, the monotonicity ofcfunis 10 x 10. Figure 3 provides information on the scalability of
tion Veomm allows immediate elimination of candidate processur implementation for an increasing number of processoigs
topologies, that lead to increased communication costrderado and four different problem sizes. As expected by the nearest
verify this claim, we measured on a PIII@800MHz the executioneighbor nature of the communication and the dimension ef th
times for the specification of a feasible communicationt@waproblem, the algorithm scales better for larger problemise T
3D process topology, given all possible 4D iteration spacésrdware configuration of our platform enforces severagégdo
(100...10k) x (100...10k) x (100...10k) x un+1, data depen- share the same network interface which is a bounding factor f
dencieg(1...3,0,0,d),(0,1...3,0,d),(0,0,1...3,d")] and for the scalability of our implementation.
100 < C < 1k. The execution time equaled on average 21 msec,Figure 4 presents the first comparison between the schedulin
while under no circumstances did it exceed 0.9 sec. Notd|yfinaaware and the communication-aware strategies for the temiec
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T IRCLKRK denoted with a dot over the corresponding bar. The first ebser
o7 vation that can be made is that the total parallel execuiie t

80 BIOBKOGK e greatly differentiates between different topologies (diference

. reaches even to a factor 6j. These large differences are due

g 60F ) . x ] to the extreme increases in communication times that can be

3 ) imposed by an unfortunate selection of process grid. This fa
5 a0 R 1 justifies our argument that the minimization of the commatian
v volume via the selection of a proper tiling transformatidrosd

20 | e 1 be given high priority. Observe also that the communication
A aware topology outperforms the scheduling-aware topoingle
o ‘ ‘ ‘ ‘ first five iteration spaces, while for the sixth iteration epdoth

0 20 40 60 80 100 120

strategies lead to the selection of@x 10 topology. Note finally

that the communication-aware topology leads to the lowast t

Fig. 3. Scalability of the 2D advection equation. parallel execution times among all topologies in five out iaf s
iteration spaces.

Table | provides a direct comparison between the two stiegeg
of a process topology forX = 50K and Y = 8K. The for the iteration spaces of Figure 5. The communicationrawa
communication-aware topology in this casefsx 4. We varied topology exhibits an improvement in performance compared t
T and the tile size in order to assign a different number obtilehe scheduling-aware topology in five out of six iteratiomegs
(denotedT'iles) to the same process across different runs. What ranges fron2.5% (in iteration spacet0K x 10K x 5K)
observe that when the total number of tiles assigned to eaeh32.8% (in iteration space200K x 2K x 5K). In iteration
process is small, then the scheduling-aware topology doipes space40K x 20K x 5K both strategies propose the® x 10
the communication-aware, since, as expected, for smalbBuwf topology thus leading to the same execution and communica-
total parallel time steps it is crucial to maximize the cameocy tion times. Note that we present the maximum computation
of processes, or in other words to minimize the steps befege tand maximum communication time, reduced over all processes
last process starts its execution. The scheduling-awgreldgy and normalized to themazimum computation time +
enforces the last process to start its execution at partétted mazimum communication time under the scheduling-aware
step 20, while the communication-aware topology enforces thgling transformation. The sum of these partial times is net-
last process to start its execution at parallel time gtefObserve essarily equal to the total execution time, as we depict thestv
also that this difference in concurrency diminishes as tmaber case scenario for both the communication and the compaotatio
of tiles increases. In this case, the reduction of the conication  times (this holds for the 3-D advection equation and thdicietl
volume imposed by the communication-aware topology leads ernel in the next sections). However, despite the relgtismall
smaller total parallel execution times. Note that for maghil differences in the computation times, that can be attribtoedata
parallelization scenarios we assign a number of tiles tdheajcality effects, this profiling confirms that the relativévantage
process significantly larger thad', thus for the forthcoming of the communication-aware tiling transformation can eatly
experiments we will assumgiles > 100. attributed to the respective reduction of the communicetimes.

The communication-aware topology takes into considematie
bounds of the iteration space and adjusts the placement of
processes per dimension in order to reduce the communicatio

# of cores

Iteration space: 50Kx8KxTiles

In our second set of experiments we applied all feasiblega®c
09 1 topologies in various iteration spaces for the 3-D advectio
equation. The iteration space in this casd-gimensional £ x
Y x Z xT) thus, we map the plan& x Y x Z on a3-dimensional
0.8 0 560 10‘00 15:00 20‘00 25‘,00 2000 process grid and assign tiles acrasgo the same process. The
Tiles scheduling-aware process topology in this case is5 x 4, or
5 x4 x5 0r4x5x5. We present the best result from the
Fig. 4. Comparison ofcheduling-awarend communication-awargrocess above three. In each iteration space and process topology we
topologies for various numbers of tiles. experimented with various tile sizes and present the be&sinat
results. Figure 7 provides information on the scalabilifyttoe
In Figure 5 we present normalized parallel execution timekree-dimensional algorithm. In this case the performaacd
decomposed into communication and computation times for scalability are rather poor due to the more intense communi-
iteration spaces and all feasible process topologies. \[erex cation needs of the the three-dimensional process grid laed t
mented with various tile sizes per iteration space and ptdbe consequent bottlenecks created at the shared networlageter
best attained performance. The communication-awaredggds Communication dominates in this application and platfonrich

0.85 1

2 1.2 ' " communication-aware —s— volume. This, as shown from the experimental results, has a
*é 1.15 ¢ scheduling-aware -~ 4 significant positive impact on the overall performance oé th
5 1.1 i algorithm.
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Normalized parallel execution time

200Kx2Kx5K 100Kx2Kx5K 100Kx4Kx5K 50KXx8Kx5K 40Kx10Kx5K 40Kx20Kx5K
Iteration Spaces

Fig. 5. Normalized total parallel execution time for vasateration spaces. Treeheduling-awargopology is10 x 10. Thecommunication-awarés denoted
with a dot over the bar.

lteration spacel Scheduling-aware topologyy Communication-aware topology

P Total time |  Comm. time || Total time | Comm. time

200K x 2K x 5K 112.89 28.44 85.01 4.89
100K x 2K x bK 53.33 10.90 42.68 2.74
100K x 4K x 5K 99.67 15.48 83.67 3.80
50K x 8K x 5K 88.52 7.33 83.57 3.71
40K x 10K x 5K 84.95 4.20 82.89 2.96
40K x 20K x bK 165.96 6.62 165.96 6.62

TABLE |

COMPARISON OFscheduling-awar@ND communication-awar@ ROCESS TOPOLOGIES FOR VARIOUS ITERATION SPACES IND ADVECTION EQUATION.
ALL TIMES OF THE TABLE ARE IN SECONDS

makes our approach to alleviate the communication ovesheaahd the communication-aware process topology lfbiteration

even more relevant. spaces. For the first two iteration spaces both strategiesttethe
proposal of the same topology. The third iteration spa® &
30 ‘ ‘ ‘ T o004 200 x 400 x 1K) is the only one in which the scheduling-aware
” | ooy | topology outperforms the communication-aware one by eofact
800" e of 1.7%. For the rest of the iteration spaces the communication-
0l = @IS | aware topology outperforms the scheduling-aware one bgtarfa
s i that ranges betweef.3% to 213.8%. It is clear that for4-
B 15| R ) . 1 dimensional iteration spaces mapped 3dimensional process
& o grids the selection of a communication-aware process ogyaks
I i - ] even more crucial, since the communication in this casersdou
ol Fr | three dimensions and thus the relevant overhead sevefelytsaf
f-;" performance.
0 0 éO 4‘0 (;0 éO 160 120
# of cores C. Artificial kernel
Fig. 7. Scalability of the 3D advection equation. In this last set of experiments we implemented an artifioéam k

nel expressed by &dimensional nested loop following the model

Figure 6 presents comparison results for four iteratiorcepa of Section II-A in order to compare the two topology selectio
In this case the differences in the total parallel executiore strategies when, apart from the iteration space, the deperes
between different topologies are even greater. The conuation of the problems vary. Note that in 2-D and 3-D advection
overhead imposed by an unfortunate selection of procesdoipyp problems the dependencies in the communication dimensions
can kill performance. Thus it is clear that one needs a @iter were always the same. However, since the communicatiomeawa
to effectively select between thes feasible topologies for this topology takes this factor into consideration as well, weedhd)
problem. Again here, the communication-aware strateggemas and d5, in order to check their impact on performance. Table Il
well in this selection. presents results (total parallel execution times and conization

Table Il performs a comparison between the scheduling@waimes) for three iteration spaces and various combinatioihs
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Fig. 6. Total parallel execution time (sec) for four iteoatispaces in 3-D advection equation. The scheduling-avegr@dgy in all cases is eithérx 5 x 4

or5x4x50r4dx>5x5.

dy x dy. From this table we observe four important issues: (a)

The communication-aware topology adjusts to the iterasigace
shape and to the dependencies of the problem, (i) ¢ut of
23 cases both strategies selected the satfex(10) topology,

(c) In 3 cases the scheduling-aware topology outperformed the

communication-aware topology since the latter caused &-slo

down ranging from2.7% to 23.5% and (d) In 14 cases the
communication-aware topology led to lower parallel ex@gut
times providing an improvement that ranged from% to 96.9%.

D. Overall conclusions on the experiments

The experimental results presented in the previous parhgra

lead us to the following conclusions:

- When the total number of tiles assigned to each process is

“small”, then the minimization of the processor idle times
with the scheduling-aware process topology is importaeg (s

Figure 4), thus the scheduling criterion should be given ~

higher priority. As a rule of thumb, one can prioritize

~
~

scheduling-aware tiling transformations whétiles ~ C.
However, we claim that for the majority of real-life problem

it will hold Tiles > C.

- In clusters with commodity interconnection networks, tsuc

as the one used in our experiments, it is crucial to reduce
the communication volume as much as possiblglilts >

C then the communication-aware process topologies were
able to drastically reduce the communication times with an
important positive impact on total parallel execution time
compared to the scheduling-aware process topologies. The
reduction in total parallel execution time reached up1ef%.
(see Tables I, Il and Ill). The greater differences were ob-
served in 3-D advection which usedalimensional process
grid. In this case the communication overhead increasés, bo
in terms of communication volume and in terms of number
of messages (see Figure 6).

The proposed communication-aware tiling is particularly
efficient when the algorithm exhibits asymmetric data de-



i Scheduling-aware Communication-aware
Iteration space : . : .
Topology | Total time [ Comm. time Topology | Total time | Comm. time
600 x 600 x 600 x 2K 5xX4x5 175.36 125.86 5x4x5 175.36 125.86
800 x 400 x 400 x 1K 5X5x4 61.48 42.65 5X5 x4 61.48 42.65
800 x 200 x 400 x 1K 5xX4x5 30.75 21.37 10 x2x%x5 31.28 21.70
1K x 200 x 1K x 1K 5X5x4 49.99 21.76 10 x 1 x 10 43.89 10.54
2K x 200 x 500 x 1K 5xXx4x5 67.97 25.89 20x 1 x5 43.74 14.96
1K x 500 x 100 x 1K 5Xx5x4 27.85 20.91 20x 5 x 1 23.22 15.46
1K x 200 x 200 x 1K 4x5x%x5 19.18 14.21 25 X 2 X 2 18.56 13.10
1.5K x 200 x 400 x 1K 5X5x4 56.61 40.94 25 x1 x4 41.43 28.45
2K x 100 x 500 x 1K 4x5x%x5 49.77 38.33 25 x1 x4 47.47 32.87
5K x 100 x 50 x 1K 5X5x4 20.75 19.33 50x2x1 10.80 7.35
2K x 200 x 200 x 2K 5xbHx4 77.99 64.167 100 x 1 x1 61.29 46.27
3K x 400 x 400 x 2K 5X5x4 443.78 325.19 100 x 1 x 1 207.58 151.93
TABLE I
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COMPARISON OFscheduling-awar@&ND communication-awar@ ROCESS TOPOLOGIES FOR VARIOUS ITERATION SPACES B¢D ADVECTION EQUATION.
ALL TIMES ARE IN SECONDS

COMPARISON OFscheduling-awar@&ND communication-awareROCESS TOPOLOGIES FOR VARIOUS ITERATION SPACES AND DEPEEICIES IN THE
ARTIFICIAL KERNEL . THE scheduling-awargeOPOLOGY 1S10 x 10. ALL TIMES ARE IN SECONDS

pendencies and/or iteration space

dimensions.

- The proposed communication-aware tiling exhibits very

good performance even when compared to the best possible

total parallel execution time achieved by any topology (see

Figures 5 and 6), since in several cases it succeeds the

minimum time. However, there exist cases where alter-
native topologies minimize the execution time, which is
reasonable since, as discussed in Sections Il and lll, the

minimization of the total parallel execution time is a prel
involving numerous parameters such as cpu power, memory
organization, communication bandwidth and latency. The
communication-aware strategy takes into consideratidyn on
the communication volume of the problem. However, the fact
that based on this sole criterion we were able to mininize
the execution time is several cases and approach close to the
minimum in several others, leads us to the conclusion that

It. space & x d Scheq.-aware topo'log‘ Comm.-awgre topology' % diff
Total time | Comm. time || Topology | Total time [ Comm. time
5K X 5K X 2K 1x1 2.54 0.43 10 x 10 2.54 0.43 0.0
5K X 5K x 2K 2x1 2.60 0.45 5% 20 2.41 0.28 -7.8
5K X 5K X 2K 3x1 2.55 0.44 5 x 20 2.54 0.42 -0.4
5K X 5K x 2K 4x1 2.77 0.54 5% 20 2.63 0.51 -5.3
5K X 5K X 2K 5x1 3.27 1.03 4 x 25 2.49 0.33 -31.3
2K x 4K x 2K 1x1 1.02 0.32 5% 20 0.84 0.13 -21.4
2K x 4K x 2K 1x2 0.85 0.14 10 x 10 0.85 0.14 0.0
2K x 4K x 2K 1x3 0.86 0.16 10 x 10 0.97 0.26 0.0
2K x 4K x 2K 1x4 1.20 0.48 20 x 5 1.57 0.77 +23.5
2K x 4K x 2K 1x5 1.44 0.71 20 x 5 1.48 0.72 +2.7
2K x 4K x 2K 2x1 1.07 0.37 5 x 20 0.86 0.15 -24.4
2K x 4K x 2K 3x1 0.93 0.22 4 x 25 0.98 0.46 +5.1
2K x 4K x 2K 4x1 1.81 1.06 4 x 25 1.23 0.53 -47.2
2K x 4K x 2K 5x1 2.58 1.82 4 x 25 1.31 0.70 -96.9
2K x 8K X 2K 1x1 1.80 0.45 5 x 20 1.67 0.28 -7.7
2K x 8K x 2K 1x2 2.08 0.84 5% 20 1.96 0.57 -6.1
2K x 8K X 2K 1x3 1.74 0.40 10 x 10 1.74 0.40 0.0
2K x 8K x 2K 1x4 2.05 0.80 10 x 10 2.05 0.80 0.0
2K x 8K x 2K 1x5 2.13 0.78 10 x 10 2.13 0.78 0.0
2K x 8K x 2K 2x1 1.81 0.45 4 x 25 1.72 0.30 -5.2
2K x 8K x 2K 3x1 2.25 1.05 4 x 25 2.09 0.64 -7.6
2K x 8K x 2K 4x1 2.61 1.21 2 x 50 1.85 0.48 -41.1
2K x 8K X 2K 5x1 3.10 1.64 2 x50 1.69 0.30 -83.4
TABLE Il
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the minimization of the communication volume should bg7] H. Ohta, Y. Saito, M. Kainaga, and H. Ono, “Optimal Tiléz& Ad-

given a very high priority.

VI. CONCLUSIONS

(18]

This paper presented a novel approach for the selection of an
efficient and feasible tile shape for the parallelizationst#ncil
algorithms. We formulate a simple and applicable method f&lrg]
the specification of an appropriate tile shape, that miresithe
communication volume of a non-boundary process, assumingd2@l

fixed total number of processes. Compared to alternatiee tL
shapes that aim at minimizing the processor idle times thus

maximizing parallelism, the communication-aware tile s
proposed here exhibit significantly lower parallel exemutiimes
for real-life problems. This improvement in performancedis
to the drastic reduction in the communication volume impose
by the proposed tile shapes, that take into consideratien fa4]
bounds of the iteration space and the problem dependenties i
order to reduce communication data. The presented techiciau
be easily combined with th&Pl _Cart _cr eat e primitive, to
deliver efficient Cartesian process topologies.
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