
Understanding the Performance of Sparse Matrix-Vector Multiplication

Georgios Goumas, Kornilios Kourtis, Nikos Anastopoulos, Vasileios Karakasis and Nectarios Koziris

National Technical University of Athens

Computing Systems Laboratory

School of Electrical and Computer Engineering

{goumas, kkourt, anastop, bkk, nkoziris}@cslab.ece.ntua.gr

Abstract

In this paper we revisit the performance issues of the

widely used sparse matrix-vector multiplication (SpMxV)

kernel on modern microarchitectures. Previous scientific

work reports a number of different factors that may sig-

nificantly reduce performance. However, the interaction of

these factors with the underlying architectural characteris-

tics is not clearly understood, a fact that may lead to mis-

guided and thus unsuccessful attempts for optimization. In

order to gain an insight on the details of SpMxV perfor-

mance, we conduct a suite of experiments on a rich set of

matrices for three different commodity hardware platforms.

Based on our experiments we extract useful conclusions that

can serve as guidelines for the subsequent optimization pro-

cess of the kernel.

1. Introduction

Sparse matrix-vector multiplication (SpMxV) is one of

the most important computational kernels, lying at the heart

of very effective and popular iterative solution methods like

CG and GMRES [15], which are used to solve sparse sys-

tems arising from the simulation of a large variety of physi-

cal, financial, social etc. problems. SpMxV is generally re-

ported to perform poorly on modern microprocessors (e.g.

10% of peak performance [19]) mainly due to the fact that

it is a memory-bound application [6]. Matrix-vector multi-

plication exhibits more intense memory access needs than

other traditional algebra kernels like matrix multiplication

(MxM) or LU decomposition, which are more computa-

tionally intensive. MxM and LU benefit from the so called

surface-to-volume effect, since for a problem size of n they

perform O(n3) operations on O(n2) amount of data. On

the contrary, matrix-vector multiplication performs O(n2)

This research is supported by the PENED 2003 Project (EPAN), co-funded

by the European Social Fund (75%) and National Resources (25%).

operations on O(n2) amount of data, which means that the

ratio of memory access to floating point operations is sig-

nificantly higher. Seen from another point of view, there

is little data reuse in the matrix-vector multiplication, i.e.

very restricted temporal locality. When sparsity comes into

play, the performance is further degraded. In order to avoid

extra computation and storage overheads imposed by the

large majority of the zero elements contained in the sparse

matrix, the non-zero elements of the matrix are stored con-

tiguously in memory, while additional data structures assist

in the proper traversal of the matrix and vector elements.

For example, the classic Compressed Storage Row (CSR)

format [2] uses the row ptr structure to index the start

of each row within the non-zero element matrix a, and the

col ind structure to index the column each element is as-

sociated with. These additional data structures used for in-

dexing greatly affect the kernel’s performance, since they

add additional memory access operations, memory band-

width pressure and cache interference. Sparse matrices also

incur irregular accesses to the input vector x (CSR format

is assumed) that follow the sparsity pattern of the matrix.

This irregularity complicates the utilization of data reuse

on vector x and increases the number of cache misses on

this vector. Finally, there is also a non-obvious implication

in sparsity: the rows of the sparse matrices have varying

lengths which are frequently small. This fact increases the

loop overheads since a small number of computations is per-

formed in each loop iteration.

A large number of research papers [1, 3, 5, 8–13, 16–20]

have proposed optimization techniques to improve the per-

formance of SpMxV (see Section 2 for details). A general

conclusion is that SpMxV can be efficiently optimized by

exploiting information regarding the matrix structure and

the processor’s architectural characteristics. In general, pre-

vious research focuses on a subset of the reported problems

and proposes optimizations applied to a limited number of

sparse matrices. This fact, along with the CPUs used in

various previous works, may lead to contradictory conclu-

sions and, perhaps, to confusion regarding the problems and

candidate solutions for SpMxV optimization. In addition,

the exact reason for performance gain after the application

of the proposed optimizations is rarely investigated. For

example, blocking implemented with the use of the Block

Compressed Storage Row (BCSR) format was proposed by

Im and Yelick [8] as a transformation to tame irregular ac-

cesses on the input vector and exploit its inherent reuse as

in dense matrix optimizations. One-dimensional blocking

is also proposed by Pinar and Heath [13] in order to reduce

indirect memory references, while, quite recently, Buttari et

al. [3] and Vuduc and Moon [19] accentuate the merit of

blocking (the latter with variably sized blocks), as a trans-

formation to reduce indirect references and enable register

level blocking and unrolling. However, it is not clarified if

the benefits of blocking can be actually attributed to better

cache utilization, memory access reduction or ILP improve-

ment. Furthermore, White and Sadayappan [20] report that

the lack of locality is not a crucial issue in SpMxV, whereas

many important previous works exploit reuse on the input

vector in order to improve performance [5, 11, 12, 17].

The goal of this paper is to assist in understanding the

performance issues of SpMxV on modern microprocessors.

To our knowledge, there are no experimental results con-

cerning the performance behavior of this kernel, or any of

its optimized versions, on current microarchitectures. In or-

der to achieve this goal, we have categorized the problems

of the algorithm as reported in literature. For each prob-

lem we conduct a series of experiments in order to quantify

its effect on performance. Our experimental results provide

valuable insight on the performance of SpMxV on modern

microprocessors and reveal issues that will probably prove

particularly useful in the process of optimization. Our ex-

periments are performed on a large suite of 100 matrices se-

lected from Tim Davis’ collection [4]. Based on the conclu-

sions drawn from the conducted experiments, we propose

guidelines that can aid the optimization process.

The rest of the paper is organized as follows: Section 2

presents related work on SpMxV and optimization methods

and Section 3 presents the basic algorithm and the reported

problems. In Section 4 we present various experimental

results that illuminate the performance issues of SpMxV,

while Section 5 summarizes our conclusions and discusses

future research work.

2. Related work

Sparse matrix-vector multiplication has attracted inten-

sive scientific attention in the last two decades. The pro-

posal of efficient storage formats for sparse matrices like

CSR, BCSR, CDS, Ellpack-Itpack and JAD [2, 10, 15] was

one of the primary concerns. Temam and Jalby [16] per-

form a thorough analysis of the cache behavior of the al-

gorithm, pointing out the problem of the irregular access

pattern in the input vector x. Toledo [17] deals with this

problem by proposing a permutation of the matrix that fa-

vors cache reuse in the access of x. Furthermore, the ap-

plication of blocking is also proposed in that work, in order

to both exploit temporal locality on x and reduce the need

for indirect indexing through col ind. Software prefetch-

ing for a and col ind is also used to improve memory

access performance. The proposed techniques were eval-

uated over 13 sparse matrices on a Power2 processor and

achieved a significant performance gain for the majority of

them. White and Sadayappan [20] state that data locality

is not the most crucial issue in sparse matrix-vector multi-

ply. Instead, small line lengths, which are frequently en-

countered in sparse matrices, may drastically degrade per-

formance due to the reduction of ILP. For this reason, the

authors propose alternative storage schemes that enable un-

rolling. Their experimental results exhibited performance

gains on an HP PA-RISC processor for all 10 sparse matri-

ces used. Pinar and Heath [13] refer to irregular and indirect

accesses on x as the main factors responsible for perfor-

mance degradation. Focusing on indirect accesses, the ap-

plication of one-dimensional blocking with the BCSR stor-

age format is proposed, in order to drastically reduce the

number of indirect memory references. In addition, a col-

umn reordering technique is also proposed, which enables

the construction of larger dense sub-blocks. An average

1.21 speedup is reported for 11 matrices on a Sun Ultra-

SPARC II processor.

With a primary goal to exploit reuse on vector x, Im

and Yelick propose the application of register blocking,

cache blocking and reordering [7, 8]. Additionally, their

blocked versions of the algorithm are capable of reducing

loop overheads and indirect referencing, while increasing

the degree of ILP. Register blocking is the most promis-

ing of the above techniques. The authors also propose a

heuristic to determine an efficient block size. They per-

form their experiments on four different processors (Ultra-

SPARC I, MIPS 10000, Alpha 21164, PowerPC604e) for a

wide matrix suite involving 46 matrices. For almost a quar-

ter of these matrices register blocking achieved significant

performance benefits. Geus and Röllin [5] apply software

pipelining to increase ILP, register blocking to reduce in-

direct references and matrix reordering to exploit the reuse

on x. They perform a set of experiments on a variety of

processors (Pentium III, UltraSPARC, Alpha 21164, PA-

8000, PA 8500, Power2, i860 XP) and report significant

performance gains on two matrices originating from the dis-

cretization of 3−D Maxwell’s Equations with FEM. Vuduc

et al. [18] estimate the performance bounds of the algorithm

and evaluate the register blocked code in respect to these

bounds. Furthermore, they propose a new approach to se-

lect near-optimal register block sizes. Mellor-Crummey and

Garvin [9] accentuate the problem of short row lengths and

propose the application of the well-known unroll-and-jam

compiler optimization in order to deal with it. Unroll-and-

jam achieves a 1.11–2.3 speedup for two matrices taken

from the SAGE package measured on MIPS R12000, Al-

pha 21264A, Power3-II and Itanium processors. Pichel et

al. [11] model the inherent locality of a specific matrix with

the use of distance functions and improve this locality by

applying reordering to the original matrix. The same group

proposes also the use of register blocking to further increase

performance [12]. The authors report an average of 15%
improvement for 15 sparse matrices on MIPS R10000, Ul-

traSPARC II, UltraSPARC III and Pentium III processors.

Buttari et al. [3] provide a performance model for the

blocked version of the algorithm based on BCSR format,

and propose a method to select dense blocks efficiently.

Their experimental results are performed on K6, Power3

and Itanium II processors for a suite of 20 sparse matri-

ces and validate the accuracy of the proposed performance

model. Vuduc et al. [19] extend the notion of blocking

in order to exploit variable block shapes and, in order to

achieve this, decompose the original matrix to a proper sum

of submatrices, having each submatrix stored in the BCSR

format. Their approach is tested on the Ultra2i, Pentium

III-M, Power4 and Itanium II processors for a suite of 10
FEM matrices that contain dense sub-blocks. The proposed

method achieves better performance than pure BCSR in all

processors except Itanium II. Finally, Willcock and Lums-

daine [21] mitigate the memory bandwidth pressure, by pro-

viding an approach to compress the indexing structure of

the sparse matrix, sacrificing in this way some CPU cycles.

They perform their experiments on a PowerPC 970 and an

Opteron processor for 20 matrices, achieving an average of

15% speedup.

Summarizing on the results of previous research on the

field, the following conclusions may be drawn: (a) the ma-

trix suites used in the experimental evaluations are usually

quite small, (b) the evaluation platforms include in most

cases previous generation microarchitectures, (c) the con-

clusions are sometimes contradictory and (d) the perfor-

mance gains attained by the proposed methods are not thor-

oughly analyzed in relevance to the specific problems at-

tacked. The goal of this work is to understand the perfor-

mance issues of SpMxV kernel on modern microprocessors

and provide solid optimization guidelines. For this reason

we employ a wide suite of 100 matrices, perform a large va-

riety of experiments and report performance data and infor-

mation collected from the performance monitoring facilities

provided by the microprocessors.

3. Basic algorithm and problems

The most frequently applied storage format for sparse

matrices is the Compressed Storage Row (CSR) [2]. Ac-

cording to this format, the nnz non-zero elements of a

sparse matrix with n rows are stored contiguously in mem-

ory in row-major order. The col ind array of size nnz
stores the column of each element in the original matrix,

and the row ptr array of size n + 1 stores the beginning

of each row. Fig. 1 shows an example of the CSR format

for a sparse 6 × 6 matrix (a), along with the implementa-

tion of the matrix-vector multiplication for a dense N × M
matrix (b) and the matrix-vector multiplication for a sparse

matrix stored in CSR (c).

According to literature, SpMxV presents the following

problems that can potentially affect its performance:

- Memory intensity (no temporal locality in the matrix)

[3, 6, 9]. This is an inherent problem in the algorithm,

regardless the matrix is sparse or dense. Unlike other

important numerical codes like matrix multiplication

(MxM) or LU decomposition, the kernel is memory

bound, while the elements of the matrix in matrix-

vector multiply are used only once.

- Indirect memory references [13]. This is the most ap-

parent implication of sparsity. In order to save memory

space and reduce floating-point operations, only the

non-zero elements of the matrix are stored. To achieve

this, the indices to the matrix elements need to be

stored and accessed from memory, via the col ind

and row ptr data structures. This fact implies addi-

tional load operations, traffic for the memory subsys-

tem and cache interference.

- Irregular memory accesses for vector x [5, 7, 11]. Un-

like the case of dense matrices where the access to the

vector x is sequential, in sparse matrices this access is

irregular and dependent on the sparsity structure of the

matrix. This fact complicates the process of exploiting

the inherent reuse in the access of vector x.

- Short row lengths [3, 9, 20]: Although this problem is

not obvious, it is very often met in practice. Many

sparse matrices exhibit a large number of rows of short

length. This fact may degrade performance due to the

significant overhead of the loops, when the trip count

of the inner loop is small.

4. Experimental evaluation

4.1. Experimental preliminaries

Our experiments were performed on a 100 matrices set

(see Table 4). The majority of them was selected from Tim

Davis’ collection [4]. The first matrix is a dense 1000×1000
matrix, matrices 2-45 are also used in SPARSITY [7], ma-

trix #46 is a 10000 × 10000 random, sparse matrix, ma-

trix #87 is a 5-pt stencil, finite-difference matrix created

� �� �� �� �� �� �� �� �� � � � � �� 	 �
 � �� � � � � �� � � � � � �� � � � � �� �� � � � � � � � � � � � � � � ��� � � !" # � � ��� � � � �$�% & ' $
(a) CSR Storage format.

for (i=0; i<N; i++)

for (j=0, l=i*M; j<M; j++)

y[i] += a[l+j]*x[j];

(b) Dense Matrix

for (i=0; i<N; i++)

for (j=row_ptr[i]; j<row_ptr[i+1]; j++)

y[i] += a[j]*x[col_ind[j]];

(c) Sparse Matrix

Figure 1. Example of the CSR storage format, dense and sparse matrix-vector multiplication kernels.

by SPARSKIT [14], while the rest are the largest rectan-

gular matrices of the collection both in terms of non-zero

elements and number of rows. All matrices are stored in

CSR format.

The experimental platform includes three different mi-

croproccessors: an Intel Core 2 Xeon (Clockspeed:

2.6GHz, 4MB L2 cache –Woodcrest), an Intel Pentium 4

Xeon (Clockspeed: 2.8GHz, 1MB L2 cache –Netburst) and

an AMD Opteron (Clockspeed: 1.8GHz, 1MB L2 cache

–Opteron). These processors are a representative set of

commodity processors currently available. The systems run

Linux (kernel version 2.6) for the x86 64 ISA, while the

programs were compiled using gcc version 4.1 with the

-O3 -funroll-loops optimization flags. The latter

switch causes the compiler to apply loop unrolling to all

loops of the program.

The experiments were conducted by measuring the exe-

cution time of 128 consecutive SpMxV operations with ran-

domly created x vectors for every matrix in the set and for

each different microprocessor. The floating point operations

per second (FLOPS) metric of each run was calculated by

dividing the total number of operations (2×nnz) by the ex-

ecution time. We used 64-bit integers for the representation

of indices in col ind and applied double precision arith-

metic. It should be noted that we made no attempt to artifi-

cially pollute the cache after each iteration, in order to better

simulate iterative scientific application behavior, where the

data of the matrices are present in the cache, either because

they have just been produced, or because they were recently

accessed.

One of the most prominent characteristics of modern

processors is hardware prefetching. Hardware prefetching

is a technique to mitigate the ever-growing memory wall

problem by hiding memory latency. It is based on a sim-

ple hardware predictor that detects reference patterns (e.g.

serialized accesses) and transparently prefetches cachelines

from main memory to the CPU cache hierarchy. In order

to gain a better insight on the performance issues involved,

we conducted experimental tests to evaluate the effect of

hardware prefetching in the SpMxV kernel by disabling it.

We present results for Intel processors only since there does

not seem to be a (documented) way to disable hardware

prefetching for AMD processors. A summary of the results

obtained is presented in Table 1.

Processor
matrices with

speedup > 10%
average

speedup

max

speedup

Woodcrest 84 1.90 2.27
Netburst 93 2.29 2.81

Table 1. Performance impact of hardware

prefetching on SpMxV kernel for Intel proces-
sors.

4.2 Experimental evaluation of serial Sp-
MxV

4.2.1 Basic performance of serial SpMxV

Fig. 2 shows the detailed performance results for the Sp-

MxV kernel in terms of FLOPS for each matrix and ar-

chitecture on the experimental set. To gain a better un-

derstanding of the results, we consider the benchmark of

a Dense Matrix-Vector (DMxV) Multiplication, for a dense

matrix 1024× 1024, as an upper bound for the peak perfor-

mance of the SpMxV kernel. Summarized results are pre-

sented in Table 2. As expected, the more recent Woodcrest

processor outperforms the other two in the whole matrix

set. Moreover, while Netburst and Opteron exhibit similar

behavior for each matrix, Woodcrest in some cases devi-

ates greatly. This is apparent, for example, in #14, #16
and #54 matrices, where the performance for the Wood-

crest increases by a large factor. This is, most probably,

due to its larger L2 cache. Furthermore, it is clear from

de
ns

e

ra
ef

sk
y3

ol
af

u

bc
ss

tk
35

ve
nk

at
01 cr
ys

tk
02

cr
ys

tk
03

na
sa

sr
b

3d
tu

be

ct
20

st
if

af
23

56
0

ra
ef

sk
y4

ex
11

rd
is

t1
av

41
09

2

or
an

i6
78

rim

m
em

pl
us

ge
m

at
11

lh
r1

0

go
od

w
in

ba
ye

r0
2 ba

ye
r1

0

co
at

er
2

fin
an

51
2

on
et

on
e2

pw
t

vi
br

ob
ox

w
an

g4

ln
sp

39
37

ln
s_

39
37

sh
er

m
an

5

sh
er

m
an

3

or
sr

eg
_1

sa
yl

r4

sh
yy

16
1

w
an

g3

m
cf

e

jp
w

h_
99

1

gu
pt

a1 lp
_c

re
_b

lp
_c

re
_d

lp
_f

it2
p

lp
_n

ug
20

ap
ac

he
2

ra
nd

om
10

00
00

bc
ss

tk
32

m
sc

10
84

8

m
sc

23
05

2

bo
ne

01
0

0 5 10 15 20 25 30 35 40 45 50

matrix id

0

200

400

600

800

1000

1200

P
e

rf
o

rm
a

n
c
e

 (
M

F
L

O
P

S
)

woodcrest
netburst
opteron

H
am

rle
3

A
S

IC
_3

20
ks

S
i8

7H
76

S
iN

a
sh

ip
_0

01

af
_5

_k
10

1

A
S

IC
_6

80
k

bc
ss

tk
37

bm
w

3_
2 bu

nd
le

1

ca
ge

13

tu
ro

n_
m

A
S

IC
_6

80
ks

th
re

ad

e4
0r

20
00

sm
e3

D
a

fid
ap

01
1

fid
ap

m
11

gu
pt

a2

he
lm

2d
03

ho
od

in
lin

e_
1

la
ng

ua
ge

ld
oo

r

m
ar

io
00

2

nd
12

k

nd
6k

pw
tk

ra
il_

79
84

1

ra
ja

t3
1 rm

a1
0

s3
dk

q4
m

2

nd
24

k

af
_s

he
ll9

ki
m

2

ra
ja

t3
0

fd
if2

02
x2

02
x1

02

sm
e3

D
b

st
om

ac
h

th
er

m
al

2

F
1 to

rs
o3

ca
ge

14

au
di

kw
_1

S
i4

1G
e4

1H
72

cr
an

ks
eg

_2

G
a4

1A
s4

1H
72

af
_s

he
ll1

0

bo
ne

S
10

m
sd

oo
r

50 55 60 65 70 75 80 85 90 95 100

matrix id

0

200

400

600

800

1000

P
e

rf
o

rm
a

n
c
e

 (
M

F
L

O
P

S
)

Figure 2. Performance of the SpMxV kernel: MFLOPS for each matrix and architecture.

Fig. 2 that the performance across the matrix set has great

diversity. In order to further elaborate on this observation,

we make a distinction between two different classes in the

matrix set: the matrices whose working set fits perfectly

into L2 cache, and thus experience only compulsory misses,

and the matrices whose working set is larger than the L2

cache size and may experience capacity misses. The for-

mula for the calculation of the working set (ws) in bytes

is: ws = (nnz × 2 + nrows × 2 + ncols) × 8. In Fig. 3

we present the performance attained by each matrix, with

its working set marked on the x axis. The vertical line in

each graph designates the size of L2 cache for each archi-

tecture. This figure clarifies that the great differences be-

tween the performance of various matrices are due to the

size of their working sets. If the working set of a matrix

fits in the cache, then significantly higher performance is

expected. It is evident that the performance issues involved

for each category are different and comparing the perfor-

mance of matrices from different classes may lead to false

conclusions.

Additionally, Fig. 4 presents the performance of each

matrix with respect to the L2 cache miss-rate as measured

from the performance counters for each processor. As an-

ticipated, working sets that are smaller than the cache size

exhibit close to zero L2 miss-rate. At a coarser level,

there seems to be a correlation between the performance in

Processor max min average DMxV

Woodcrest 1208.07 185.73 495.53 790.66
Netburst 615.15 112.15 297.88 658.82
Opteron 494.51 119.97 273.72 507.49

Table 2. Summarized results (MFLOPS) for
the performance of the SpMxV kernel.

FLOPS and L2 misses. Regardless, the L2 miss-rate met-

ric does not suffice alone to understand the performance of

the kernel. For example, there are cases where a great in-

crease in the miss-rate does not have an equivalent effect on

performance, whereas matrices with similar miss-rates have

significantly varying MFLOPS.

4.2.2 Irregular accesses

In order to evaluate the performance impact of irregular ac-

cesses on x, we have developed a benchmark, henceforth

called noxmiss, which tries to eliminate cache misses on

vector x. More precisely, noxmiss zeroes out the col ind

array, so that each reference to x accesses only x[0], re-

sulting in an almost perfect access pattern on x. Note that

the noxmiss version of the algorithm differs from the stan-

dard one only in the values of the data included in the

col ind array, and thus executes exactly the same opera-

0.1 1.0 10.0 100.0 1000.0

working set size (MBytes)

0

200

400

600

800

1000

1200

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

woodcrest

0.1 1.0 10.0 100.0 1000.0

working set size (MBytes)

0

200

400

600

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

netburst

0.1 1.0 10.0 100.0 1000.0

working set size (MBytes)

0

200

400

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

opteron

Figure 3. Performance of the SpMxV kernel in relation to the working set size for all architectures.

The vertical line in each graph designates the size of the L2 cache for each architecture.

0.0 2.5 5.0 7.5 10.0 12.5

L2 Cache miss rate (%)

0

200

400

600

800

1000

1200

1400

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

woodcrest (ws > cs)
woodcrest (ws < cs)

0.0 2.5 5.0 7.5 10.0 12.5 15.0

L2 Cache miss rate (%)

0

200

400

600

800
P

e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

netburst (ws > cs)
netburst (ws < cs)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

L2 Cache miss rate (%)

0

200

400

600

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

opteron (ws > cs)
opteron (ws < cs)

Figure 4. Performance of the SpMxV kernel in relation to the L2 cache miss-rate as reported from the

performance counters.

tions. Obviously, its calculations are incorrect, but it is quite

safe to assume that any performance deviation observed be-

tween the two versions is due to the effect of irregular ac-

cesses on the input vector x. Results of the experiments for

the noxmiss are presented in Table 3.

Processor
Speedup Matrices with speedup:

average max > 10% > 20% > 30%

Woodcrest 1.27 1.74 28 15 11

Netburst 1.33 2.91 26 13 6

Opteron 1.28 2.37 32 16 10

Table 3. Summarized results for the noxmiss

benchmark: Speedup and number of ma-

trices that encountered a minimum perfor-
mance gain of 10%, 20% and 30%.

It is worth noticing that only a small percentage of the

matrices (no more than 1/3 of the total matrix set), did

encounter a significant amount of performance speedup of

over 10% for all processors. This means that the irregular

access pattern of SpMxV is not the prevailing performance

problem. For the large majority of matrices it seems that

the access on x presents some regularity that either favors

data reuse from the caches, or exhibits patterns that can be

detected by the hardware prefetching mechanisms. How-

ever, the majority of matrices that performed rather poorly

on the standard benchmark, encountered quite significant

speedup on the noxmiss benchmark. This leads to the con-

clusion that there exists a subset of matrices, where the ir-

regular accesses on x pose a considerable impediment on

performance. These matrices have a rather irregular non-

zero element pattern, which finally leads to poor access and

low reuse on x and tends to degrade performance.

4.2.3 Short row lengths

Short row lengths that are frequently met in sparse matrices

lead to a small trip count in the inner loop, a fact that may

degrade performance due to the increased overhead of the

loops. In order to evaluate the impact of short row lengths

on the performance of SpMxV, we focus on matrices that

include a large percentage of short rows. Fig. 5 shows the

performance of matrices in which more than 80% of the

rows contain less than eight elements. The x axis sorts these

matrices by their ws. The vertical line represents the cache

size of each processor and the horizontal line represents the

average performance across all matrices (see Table 2). The

obvious conclusion that can be drawn from Fig. 5 is that ma-

trices with large working sets and many short rows exhibit

performance significantly lower than the average. This per-

formance degradation could be attributed to the loop over-

head. However, the fact that matrices with many short rows

and small working sets achieve remarkably good perfor-

mance, provides a hint that loop overhead should not be the

0.1 1.0 10.0 100.0 1000.0

working set size (MBytes)

0

200

400

600

800

1000

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

woodcrest

0.1 1.0 10.0 100.0 1000.0

working set size (MBytes)

0

200

400

600

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

netburst

0.1 1.0 10.0 100.0 1000.0

working set size (MBytes)

0

200

400

600

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

opteron

Figure 5. Performance of matrices with small number of elements (< 8) for 80% or more of their rows,
in relation to their working set. Vertical line marks the L2 cache size for each processor. Horizontal

line marks the average performance.

only factor. Another important observation that supports the

above point is that the matrices reported in Fig. 5 coincide

(with few exceptions) with the matrices that benefited when

the noxmiss benchmark was applied to them. These facts

guide us to the conclusion that short row lengths may indi-

cate a large number of cache misses for the x vector. This

can be explained by the fact that short row lengths increase

the possibility to access completely different elements of x

in subsequent rows.

4.2.4 Indirect memory references

There are two indirect memory accesses in the SpMxV ker-

nel: one in row ptr to determine the bounds of the inner

loop and one for the x access (col ind). To investigate

the effect of the indirect memory references in the perfor-

mance of the kernel we used synthetic matrices with a con-

stant number of contiguous elements per row. These matri-

ces enable us to eliminate both cases of indirect accesses by

replacing them with sequential ones (noind-rowptr, noind-

colind). Next, we compare the performance of the new ver-

sions with standard in order to attain a qualitative view on

the performance impact of the indirect references. We ap-

plied the original SpMxV kernel and the modified versions

on a number of synthetic matrices with 1, 048, 576 elements

and varying row length.

Fig. 6 summarizes the performance measured for a sub-

set of the row lengths applied. The performance does not

significantly deviate for different row lengths. It is clear

that the indirect memory references in row ptr do not af-

fect performance. This is quite predictable since these ref-

erences are rare and replace an already existing overhead in

the inner loop initialization. On the other hand, the over-

head in the indirect access of x through col ind leads to

a dramatic degradation in performance. In this case each

memory access of x is burdened by one additional memory

access which increases the ws of the problem, adds extra

instructions in the code and limits the IPC of the kernel.

4.2.5 Memory intensity (no temporal locality in the

matrix)

The intense memory requirements and the lack of tempo-

ral locality are two issues strongly related. In SpMxV each

matrix element participates in only two FP operations. This

fact increases the memory to FP operations ratio and sig-

nificantly affects SpMxV’s performance. Thus, the per-

formance of the kernel is not determined by the processor

speed, but by the ability of the memory subsystem to pro-

vide data to the CPU [6]. In order to further illuminate this

feature of the kernel, we performed a simple, comparative

set of experiments: we used 32-bit instead of 64-bit integers

for the col ind structure, in order to reduce the total size

of the working set. Woodcrest exhibited a 1.20, Netburst a

1.29 and Opteron 1.17 speedup. It is quite impressive that

the decrease of the ws by a factor of 22.4% led to a signif-

icant increase in performance. Based on these results, we

can conclude that the improvement observed in the case of

indirect memory accesses (see Fig. 6) is mainly due to the

reduction of the ws. The same applies for the benefits of

the BCSR format [3, 8, 19], which uses one index for each

dense sub-block saving in this way valuable memory space

in col ind.

Furthermore, the kernel exhibits no reuse in the data

structures a, col ind and row ptr that represent the

matrix. The lack of temporal locality is traditionally be-

lieved to affect performance. However, as seen in Fig. 1,

all aforementioned structures are accessed in a very regular,

streaming pattern with unit stride. The hardware prefetcher

is able to detect these simple access patterns and transpar-

ently fetch their corresponding cache-lines from memory

(see Section 4.1 for experimental information on the effect

of hardware prefetching). Thus, it is quite safe to conclude

that the lack of temporal locality in the matrix causes an

insignificant number of cache misses and therefore perfor-

mance is not affected by this particular factor.

16 64 128 512 1024

Row Length (elements)

0

200

400

600

800

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

woodcrest (standard)
woodcrest (noind-rowptr)
woodcrest (noind-colind)

16 64 128 512 1024

Row Length (elements)

0

200

400

600

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

netburst (standard)
netburst (noind-rowptr)
netburst (noind-colind)

16 64 128 512 1024

Row Length (elements)

0

200

400

P
e
rf

o
rm

a
n
c
e
 (

M
F

L
O

P
S

)

opteron (standard)
opteron (noind-rowptr)
opteron (noind-colind)

Figure 6. Performance of the standard, noind-rowptr, noind-colind versions for different number of ele-
ments per row.

4.3 Conclusions on the experiments and
optimization guidelines

Based on the experimental evaluation of the previous

sections, a number of interesting conclusions can be drawn.

At first, the performance of the kernel is greatly affected by

the matrix working set. As shown in Fig. 3, matrices with

working sets that entirely fit in the L2 cache exhibit a signif-

icantly higher performance. However, since these matrices

correspond to small problems, their optimization is of lim-

ited importance and thus we focus on matrices with large

working sets that do not fit in the L2 cache. In addition,

reduction of the ws for the same problem releases memory

bus resources and leads to significant execution speedups.

The memory intensity of the algorithm along with the effect

of the indirect memory reference on x are the most crucial

factors for the poor performance of SpMxV and affect all

matrices. On the other hand, the irregularity in the access of

x and the existence of many short rows affect performance

at a smaller range and relate to a rather limited subset of the

matrices. Finally, the lack of temporal locality in the ma-

trix structures does not affect performance through issues

that could be optimized (e.g. cache misses) but inherently

increases the number of memory accesses.

In an attempt to quantify the effect of each of the afore-

mentioned issues, we performed statistical analysis of our

results that is summarized in Fig. 7, where a number of

bars is included for each architecture. The first three bars

represent the performance of a matrix vector multiplication

for a dense matrix (1024 × 1024) stored in dense format

(dmv) and stored in csr format for the standard case (csr-

dense) and the noind-colind benchmark (csr-dense-noind-

colind). The csr-avg-nosr-reg represents average perfro-

mance across all matrices in the suite with working sets

larger than the L2 size, while the rest of the bars correspond

to all possible subsets of these matrices based on their reg-

ularity (-irregular/-regular) and on whether they are domi-

nated by short rows or not (-sr/-nosr). The criterion for the

irregularity is the presence of a significant speedup (> 10%)

for the noxmiss benchmark, while for the dominance of

short rows is the presence of a large percentage (> 80%)

of small row lengths (< 8). Note that all matrices involved

in this graph have working sets larger than the L2 size. The

numbers over the bars indicate the number of matrices that

belong in the particular set. Note, for example, that there ex-

ist too few matrices that are dominated by short rows and do

not face performance degradation due to irregularity. This

observation further supports our assumption that short rows

increase the possibility for irregular accesses on x.

The most important observation from the figure is that

one could set three levels of performance. The performance

level determined by DMxV, the average performance level

and the lowest level determined by “bad” matrices with

irregularity and dominating short row lengths. Roughly

speaking, the dramatic degradation (slowdown by a factor

of about 2) of performance between DMxV and average

level is due to the indirect references through col ind.

From that level, if a matrix exhibits some poor characteris-

tics like irregularity and many short rows, the performance

may further drop by a factor of about 1.35. On the other

hand, if a matrix is not dominated by short rows and ac-

cesses x in a regular manner, its performance may exhibit

a 1.1 speedup to that of the average and reach that of dense

matrices stored in CSR. Note also, that the majority of the

matrices falls in that last category. Thus, our experimental

results lead us to the following guidelines for optimization:

1. Reduce the ws size by using the smallest possible data

types (e.g. 32-bit or 16-bit integers for col ind, sin-

gle precision storage for x) in order to reduce the pres-

sure on the memory subsystem. Even sacrificing CPU

cycles to reduce the ws size (e.g. by applying com-

pression) will also lead to performance improvement

(as in [21]). Storage structures that increase the ws
have small opportunities to succeed.

2. Reduce indirect memory referencing. This could be

achieved by exploiting regular structures within the

matrix such as full diagonals (as in [1]) or dense sub-

woodcrest netburst opteron
0

100

200

300

400

500

600

700

800

P
e

rf
o

rm
a

n
c
e

 (
F

L
O

P
S

)

78
54 1

10

13 90
58

6 14
12

90
56

3 16
15

dmv
csr-dense-noind-colind
csr-dense
csr-avg
csr-avg-nosr-regular
csr-avg-sr-regular
csr-avg-nosr-irregular
csr-avg-sr-irregular

Figure 7. Conclusive performance results of the SpMxV kernel for all architectures.

blocks (e.g. BCSR format as in [3, 8, 19]).

3. Pad sparingly. Adding many non-zero elements to ac-

complish an optimization approach may dramatically

affect performance, mainly due to the increase in the

ws. The extra floating-point operations should not cre-

ate such a big problem, since the CPU has idle cycles

to spare. Thus, the BCSR format used in [3, 8, 19] is

expected to be beneficial only in the subset of matrices

that contain many dense subblocks.

4. Beware of short row lengths and loop overheads. Some

optimization approaches split the matrix into a sum of

submatrices (as in [1,19]). In this case one should take

care that the submatrices do not fall into the category

of matrices with short row lengths. Alternatively, one

may insert an additional outer loop in the multiplica-

tion kernel (as in [13]). This may also incur significant

overheads especially in matrices with short rows.

5. Identify matrices with problematic access on the x vec-

tor and apply cache reuse optimizations only to them.

6. There is no need to apply software prefetching to at-

tack the problem of the lack of temporal locality as

long as the CPU supports hardware prefetching.

5 Conclusions – Future work

In this paper we presented extensive experimental re-

sults regarding the performance issues of sparse matrix-

vector multiplication on modern microprocessor architec-

tures. Our results illuminate and quantify the effect of the

reported problems on the kernel’s performance and can aid

in forming a guideline to optimize the code. For future

work, we will apply the knowledge gained from this paper

in order to optimize the kernel using a short vectorization

approach, which we believe that will provide performance

benefits from the reduction of the working set, the indirect

referencing and from the utilization of vector memory loads

and floating-point operations.

References

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high

performance algorithm using pre-processing for the sparse

matrix-vector multiplication. In Supercomputing’92, pages

32–41, Minn., MN, Nov. 1992. IEEE.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato,

J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V.

der Vorst. Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods. SIAM, Philadelphia,

1994.

[3] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone. Per-

formance optimization and modeling of blocked sparse ker-

nels. Technical Report ICL-UT-04-05, Innovative Comput-

ing Laboratory, University of Tennessee, 2005.

[4] T. Davis. University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices. NA Di-

gest, vol. 97, no. 23, June 1997.

[5] R. Geus and S. Röllin. Towards a fast parallel sparse matrix-

vector multiplication. In Parallel Computing: Fundamentals

and Applications, International Conference ParCo, pages

308–315. Imperial College Press, 1999.

[6] W. Gropp, D. Kaushik, D. Keyes, and B. Smith. Toward

realistic performance bounds for implicit cfd codes. 1999.

[7] E. Im. Optimizing the performance of sparse matrix-vector

multiplication. PhD thesis, University of California, Berke-

ley, May 2000.

[8] E. Im and K. Yelick. Optimizing sparse matrix computations

for register reuse in SPARSITY. Lecture Notes in Computer

Science, 2073:127–136, 2001.

[9] J. Mellor-Crummey and J. Garvin. Optimizing sparse

matrix-vector product computations using unroll and jam.

International Journal of High Performance Computing Ap-

plications, 18(2):225, 2004.

[10] G. Paolini and G. Radicati di Brozolo. Data structures to

vectorize CG algorithms for general sparsity patterns. BIT

Numerical Mathematics, 29(4):703–718, 1989.

[11] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera.

Improving the locality of the sparse matrix-vector product

on shared memory multiprocessors. In PDP, pages 66–71.

IEEE Computer Society, 2004.

[12] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera.

Performance optimization of irregular codes based on the

Matrix nrows nnz ws(KB) Matrix nrows nnz ws(KB)
001.dense 1,000 1,000,000 15,648 051.Hamrle3 1,447,360 5,514,242 120,083
002.raefsky3 21,200 1,488,768 23,759 052.ASIC 320ks 321,671 1,827,807 36,099
003.olafu 16,146 515,651 8,435 053.Si87H76 240,369 5,451,000 90,806
004.bcsstk35 30,237 740,200 12,274 054.SiNa 5,743 102,265 1,732
005.venkat01 62,424 1,717,792 28,304 055.ship 001 34,920 2,339,575 37,374
006.crystk02 13,965 491,274 8,003 056.af 5 k101 503,625 9,027,150 152,853
007.crystk03 24,696 887,937 14,453 057.ASIC 680k 682,862 3,871,773 76,501
008.nasasrb 54,870 1,366,097 22,631 058.bcsstk37 25,503 583,240 9,711
009.3dtube 45,330 1,629,474 26,523 059.bmw3 2 227,362 5,757,996 95,297
010.ct20stif 52,329 1,375,396 22,717 060.bundle1 10,581 390,741 6,353
011.af23560 23,560 484,256 8,119 061.cage13 445,315 7,479,343 127,302
012.raefsky4 19,779 674,195 10,998 062.turon m 189,924 912,345 18,707
013.ex11 16,614 1,096,948 17,529 063.ASIC 680ks 682,712 2,329,176 52,394
014.rdist1 4,134 94,408 1,572 064.thread 29,736 2,249,892 35,852
015.av41092 41,092 1,683,902 27,274 065.e40r2000 17,281 553,956 9,061
016.orani678 2,529 90,158 1,468 066.sme3Da 12,504 874,887 13,963
017.rim 22,560 1,014,951 16,387 067.fidap011 16,614 1,091,362 17,442
018.memplus 17,758 126,150 2,387 068.fidapm11 22,294 623,554 10,266
019.gemat11 4,929 33,185 634 069.gupta2 62,064 2,155,175 35,129
020.lhr10 10,672 232,633 3,885 070.helm2d03 392,257 1,567,096 33,679
021.goodwin 7,320 324,784 5,246 071.hood 220,542 5,494,489 91,020
022.bayer02 13,935 63,679 1,322 072.inline 1 503,712 18,660,027 303,369
023.bayer10 13,436 94,926 1,798 073.language 399,130 1,216,334 28,360
024.coater2 9,540 207,308 3,463 074.ldoor 952,203 23,737,339 393,213
025.finan512 74,752 335,872 7,000 075.mario002 389,874 1,167,685 27,383
026.onetone2 36,057 227,628 4,402 076.nd12k 36,000 7,128,473 112,226
027.pwt 36,519 181,313 3,689 077.nd6k 18,000 3,457,658 54,448
028.vibrobox 12,328 177,578 3,064 078.pwtk 217,918 5,926,171 97,704
029.wang4 26,064 177,168 3,379 079.rail 79841 79,841 316,881 6,823
030.lnsp3937 3,937 25,407 489 080.rajat31 4,690,002 20,316,253 427,363
031.lns 3937 3,937 25,407 489 081.rma10 46,835 2,374,001 38,191
032.sherman5 3,312 20,793 403 082.s3dkq4m2 90,449 2,455,670 40,490
033.sherman3 5,005 20,033 430 083.nd24k 72,000 14,393,817 226,591
034.orsreg 1 2,205 14,133 273 084.af shell9 504,855 9,046,865 153,190
035.saylr4 3,564 12,940 286 085.kim2 456,976 11,330,020 187,742
036.shyy161 76,480 329,762 6,945 086.rajat30 643,994 6,175,377 111,584
037.wang3 26,064 177,168 3,379 087.fdif202x202x102 4,000,000 27,840,000 528,750
038.mcfe 765 24,382 399 088.sme3Db 29,067 2,081,063 33,198
039.jpwh 991 991 6,027 117 089.stomach 213,360 3,021,648 52,214
040.gupta1 31,802 1,098,006 17,902 090.thermal2 1,228,045 4,904,179 105,410
041.lp cre b 9,647 260,785 4,301 091.F1 343,791 13,590,452 220,408
042.lp cre d 8,894 246,614 4,062 092.torso3 259,156 4,429,042 75,278
043.lp fit2p 3,000 50,284 856 093.cage14 1,505,785 27,130,349 459,204
044.lp nug20 15,240 304,800 5,120 094.audikw 1 943,695 39,297,771 636,146
045.apache2 715,176 2,766,523 59,989 095.Si41Ge41H72 185,639 7,598,452 123,077
046.random100000 100,000 14,977,726 236,371 096.crankseg 2 63,838 7,106,348 112,533
047.bcsstk32 44,609 1,029,655 17,134 097.Ga41As41H72 268,096 9,378,286 152,819
048.msc10848 10,848 620,313 9,947 098.af shell10 1,508,065 27,090,195 458,630
049.msc23052 23,052 588,933 9,742 099.boneS10 914,898 28,191,660 461,938
050.bone010 986,703 36,326,514 590,728 100.msdoor 415,863 10,328,399 171,128

Table 4. Matrix suite.

combination of reordering and blocking techniques. Parallel

Computing, 31(8-9):858–876, 2005.

[13] A. Pinar and M. T. Heath. Improving performance of sparse

matrix-vector multiplication. In Supercomputing’99, Port-

land, OR, Nov. 1999. ACM SIGARCH and IEEE.

[14] Y. Saad. Sparskit: A basic tool kit for sparse matrix com-

putation. Technical report, Center for Supercomputing Re-

search and Development, University of Illinois at Urbana

Champaign, 1990.

[15] Y. Saad. Iterative Methods for Sparse Linear Systems.

SIAM, Philadelphia, PA, USA, 2003.

[16] O. Temam and W. Jalby. Characterizing the behavior of

sparse algorithms on caches. In Supercomputing’92, pages

578–587, Minnesota., MN, Nov. 1992. IEEE.

[17] S. Toledo. Improving the memory-system performance of

sparse-matrix vector multiplication. IBM Journal of Re-

search and Development, 41(6):711–725, 1997.

[18] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and

B. Lee. Performance optimizations and bounds for sparse

matrix-vector multiply. In Supercomputing, Baltimore, MD,

Nov. 2002.

[19] R. W. Vuduc and H. Moon. Fast sparse matrix-vector

multiplication by exploiting variable block structure. In

High Performance Computing and Communications, vol-

ume 3726 of Lecture Notes in Computer Science, pages 807–

816. Springer, 2005.

[20] J. White and P. Sadayappan. On improving the performance

of sparse matrix-vector multiplication. In 4th International

Conference on High Performance Computing (HiPC ’97),

1997.

[21] J. Willcock and A. Lumsdaine. Accelerating sparse ma-

trix computations via data compression. In ICS ’06: Pro-

ceedings of the 20th annual international conference on Su-

percomputing, pages 307–316, New York, NY, USA, 2006.

ACM Press.

