
DBalancer: Distributed Load Balancing for NoSQL
Data-stores

Ioannis Konstantinou? Dimitrios Tsoumakos♦ Ioannis Mytilinis? Nectarios Koziris?
?CSLAB, National

Technical University of Athens
{ikons,gmytil,nkoziris}@cslab.ece.ntua.gr

♦Department of Informatics
Ionian University

dtsouma@ionio.gr

ABSTRACT
Unanticipated load spikes or skewed data access patterns
may lead to severe performance degradation in data serv-
ing applications, a typical problem of distributed NoSQL
data-stores. In these cases, load balancing is a necessary op-
eration. In this demonstration, we present the DBalancer,
a generic distributed module that can be installed on top
of a typical NoSQL data-store and provide an efficient and
highly configurable load balancing mechanism. Balancing
is performed by simple message exchanges and typical data
movement operations supported by most modern NoSQL
data-stores. We present the system’s architecture, we de-
scribe in detail its modules and their interaction and we im-
plement a suite of different algorithms on top of it. Through
a web-based interactive GUI we allow the users to launch No-
SQL clusters of various sizes, to apply numerous skewed and
dynamic workloads and to compare the implemented load
balancing algorithms. Videos and graphs showcasing each
algorithm’s effect on a number of indicative performance
and cost metrics will be created on the fly for every setup.
By browsing the results of different executions users will be
able to grasp each algorithm’s balancing mechanisms and
performance impact in a number of representative setups.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distrib. databases

Keywords
NoSQL, Load balancing, Cloud computing

1. INTRODUCTION
The data explosion we are witnessing has pushed central-

ized data-management approaches to their limits. Where
strict adherence to the relational and ACID model is not
required, a number of distributed, shared-nothing, systems
called NoSQL engines [1] have been proposed. Balancing
large and dynamically changing numbers of user requests in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$10.00.

such distributed systems has always been an area of focus.
Load balancing techniques based, for instance, in consistent
hashing [13], are employed by the majority of modern No-
SQL stores [17, 11] to equally allocate data and incoming
requests to the available nodes. Although hashing initially
solves the data to machines allocation problem, there are
many situations in which this proves suboptimal.

First, although data placement can be equally balanced,
this is not the case with data access in highly skewed distri-
butions where a small portion of popular data may get the
majority of the applied load [9]. This is a primary reason
for degraded performance even in over provisioned infras-
tructures. For instance, on-line gaming clusters that handle
user requests can experience a high density of items and
queries around a specific terrain area (e.g., users during a
“battle”) served by a single server [18]. Skew detection and
handling is more difficult in distributed environments [16] in
which coordination is not straight-forward. Moreover, unan-
ticipated high loads that occur due to a popular event, e.g.,
the death of Michael Jackson [2], the earthquake in Japan,
etc, lead to the flash crowd effect [12], in which the comput-
ing infrastructure fails to accommodate the high volume of
incoming requests.

Second, since hashing destroys locality, it cannot be em-
ployed in situations where semantically close items need to
be stored in an order-preserving way in order to support
range queries. Range queries are present in many popular
applications and include queries such as “find all hospitals
between 3rd Avenue and 7th Avenue”and prefix queries like
“find all words that begin with the letters goo”, etc.

Consequently, NoSQL systems offer load balancing meth-
ods that re-partition and re-distribute data items between
nodes. For instance, Cassandra’s load balancing [3] is per-
formed only during node additions by transferring half of
the keys of the most loaded node, or with a user-executed
script. This operation does not minimize the amount of
transferred data and does not balance data or user-generated
load. Voldemort [21] supports a similar operation [4] with
the same drawbacks: centralized and user-triggered execu-
tion. It uses a static number of partitions and its goal is to
allocate them “evenly” to physical nodes. Riak [5] uses the
notion of vnodes, inspired by Chord’s [20] virtual nodes, and
assigns them to physical nodes in a many-to-one manner.
Balancing is performed only during node addition/removals
and lacks customization. MongoDB utilizes the cluster bal-
ancer module [6], which migrates data chunks between dif-
ferent shards when the chunk number ratio of the biggest
shard to the smallest one reaches a certain threshold. This

is a similar operation that lacks flexibility, apart from the
threshold parameter setting. Hadoop’s HDFS balancer [7]
works in the same way: when a node’s utilization crosses
the mean cluster’s utilization over a user-defined threshold,
a rebalancing operation is initiated.

In any case, we notice that all load balancing solutions are
not automated, non-customizable and do not always lead the
system in a balanced state in a fast and efficient way. What
is more, although every balancing method utilizes the same
primitive operations (i.e., data transfer operations between
servers with different loads), it is designed and implemented
with only a specific system in mind, leading to a suite of
similar and not generally applicable approaches.

In this work, make the following contributions:

• We present the DBalancer, a generic distributed module
that performs fast and cost-efficient load balancing on top
of any distributed NoSQL datastore. The DBalancer of-
fers the following novel features:
Datastore Abstraction: the DBalancer is completely
independent of the underlying NoSQL data-store. Data-
store users need only define a set of specific primitive
actions such as item movement and routing table infor-
mation/management commands to take advantage of the
DBalancer ’s features.
Algorithm abstraction: New load balancing algorithms
can be easily defined by giving a set of message types and
actions along with the appropriate trigger conditions.
Distributed operation: The module does not need any
central co-ordination point in order to operate. it is in-
stalled on a per-node basis and is functional even when
only a portion of the network’s nodes is operational.
Light-weight design: the DBalancer has been designed
to have the least impact on the running node. Only a
small number of sync and probing messages are utilized
in order to co-ordinate the load balancing procedure.

• We build the DBalancer on top of Cassandra [17] a state-
of-the art distributed NoSQL data-store.

• We present a suite of load balancing algorithm implemen-
tations on top of the DBalancer a state of the art al-
gorithm proposed by [14], and a collection of algorithms
presented in [15].

In this demonstration, the participants will be able to
examine the behavior of the DBalancer when varying the
following: (a) cluster setup: allow for different cluster size
ranging from 4 to 40 nodes of different hardware config-
urations for various number of stored items and different
DBalancer algorithm setup with a selection between NIX,
MIG, NIXMIG and IB algorithms (b) workload: select from
a variety of skewed and dynamic workload types. Zipfian,
where the probability of a key i being asked is analogous to
i−θ, or pulse-like, where a range of keys has a constant load
and the rest of the keys are not requested, workloads with a
varying degree of skewness will be used. Moreover, dynamic
workloads in which the load suddenly changes its skew will
be employed. The participants will be able to watch on-the-
fly generated videos showing the effect on the cluster nodes’
load during time when the algorithms redistribute items and
nodes. Apart from this, a set of real-time graphs and ag-
gregated system statistics such as the number of messages
and keys transferred, the variation of the system’s imbal-
ance, mean query response time and throughput, CPU us-

Coordinator

Overlay manager

DBalancer

load movement

commands

get

node list

Data-store Adaptor

fix routing

find remote nodes
move data

and/or nodes

Find

nodes

fix routing

get load info
exchange

balance and sync

messages

Mover

Prober

Define

balancing

algorithm DBalancer
DBalancer

DBalancer

Cassandra ...
move data & fix routing

Figure 1: The DBalancer Architecture

age, network traffic, etc during time for each execution will
be presented.

2. ARCHITECTURE
The DBalancer features an architecture that is illustrated

in Figure 1. In essence, the DBalancer component runs in
every datastore’s node and it is configured with the desired
balancing algorithm. It performs message exchanges in or-
der to find balancing partners, co-ordinate the balancing
procedure and collect load information (upper part of Fig-
ure 1). When the appropriate nodes have been found and
reserved, it utilizes the data-store’s specific implementations
to exchange keys and fix routing table information between
balancing partners (lower part of Figure 1). The DBalancer
consists of the following modules:

Coordinator Module: It initiates or participates in bal-
ancing decisions. It takes as input and implements the user’s
load balancing algorithm. The balancing co-ordination is
performed by simple message exchanges, in which the node’s
load status, current state and desired action is disseminated
to other nodes. This module decides each node’s role in the
balancing procedure according to the collected messages and
load statuses. It also resolves all conflicts that may occur
because of concurrent load balancing attempts and makes
sure that the whole procedure is being carried out. When
the decisions are made, higher level commands are issued at
the mover and the overlay manager modules.

Prober Module: It locates remote nodes and exam-
ines their load. Remote nodes are found by contacting the
Overlay manager module, which contains information about
other data-store nodes. It exchanges simple messages con-
taining load statuses and maintains a list with the observed
nodes and their respective loads. This list is used by the
coordinator module when it wishes to locate remote under-
loaded nodes.

Mover module: it translates higher level load move-

ment commands into specific item exchanges or node mi-
grations. For instance, a higher level command instruct-
ing a movement of 10 load units from Node A to Node B
may be translated into the movement of all items between
[NAfrom..NAto] from Node A to Node B. Higher level node
migration commands are translated as follows: the remote
nodes first transfer their data to (often) neighboring nodes
and then they join next to the overloaded node and take a
part of its load. When the specific actions have been calcu-
lated, they are forwarded to the lower-level Data-store adap-
tor module which translates them into application specific
calls.

Overlay Manager Module: It abstracts lower-level data-
store specific routing information and operations. It con-
nects with the Data-store Adaptor module to get and set
routing table information. The Coordinator module con-
tacts this module when the load movement commands re-
quire overlay maintenance operations. For instance, dur-
ing node migrations the routing table entries need to be
refreshed. Moreover, this module also provides a list with
node addresses to the prober module which acts as a pool
for possible message receivers.

Data-store Adaptor module: It hides the complexities
of the underlying data-store implementations, by offering a
set of abstract operations to the higher level modules. For
each supported data-store, a set of different commands need
to be implemented or utilized. For instance, a node move-
ment operation in the Cassandra case results in a nodetool

move command, whereas a data movement operation in the
HBase case results in a set of HDFS data block movements
between different DataNodes.

3. ALGORITHM DESCRIPTIONS
In the following section we give a quick overview of the

suite of load balancing algorithms currently implemented on
top of the DBalancer. We briefly present the NIX, MIG, IB
and NIXMIG load balancing algorithms. For a thorough
description, theoretical and experimental evaluation under
skewed, dynamic and realistic workloads please refer to [15].

3.1 NIX and MIG
Balancing is performed by transferring items from over-

loaded peers to less loaded ones. We distinguish two cases:
NIX: In this case, balancing is performed between neigh-

boring nodes, i.e., nodes with adjacent key ranges. The over-
loaded node transfers its largest keys to its forward neighbor
or its smallest keys to its backward neighbor. The over-
loaded node’s Coordinator contacts and reserves the other
node, whereas the Mover module calculates the exact range
of items to be transfered. The data-store Adaptor performs
the specific keyvalue-dependent operations. A major disad-
vantage of NIX is that possibly many iterative such opera-
tions are needed in order to balance load inside large regions
of loaded peers.

MIG: In this approach, an overloaded node utilizes the
Prober module until it locates an available distant under-
loaded node. When this happens, the overloaded node’s
Coordinator instructs the distant nodes to depart from their
place, join in the overloaded area and take a portion of its
keys. While this operation seems more efficient, a large num-
ber of message exchanges is required for the remote node lo-
cation (since the heavy Prober usage) and the overlay struc-
ture maintenance caused by the Overlay manager.

Figure 2: Demo web interface.

3.2 Item Balancing
In the work of Karger and Ruhl [14] (Item Balancing,

hence IB) a work-stealing technique is applied: peers utilize
the Prober to randomly contact distant nodes and compare
their loads. The Coordinator’s logic is as follows: if the load
of the less loaded node is smaller than a fraction of 0 < ε < 1

4
of the more loaded node’s load (i.e., lj ≤ ε ≤ li where lj is
the less loaded node and li the more loaded node) then a
migration (MIG) or an neighboring item exchange (NIX) is
performed.

3.3 NIXMIG
The goal of NIXMIG is to balance load by adaptively

choosing to utilize either NIX or MIG. NIXMIG is using
only local knowledge and identifies conditions where MIG
is necessary to speed up the balancing process but is not
excessively utilized.

NIXMIG is performed in three phases. In the first phase
(Exam phase), the overloaded node examines the load sta-
tus of a number of neighboring nodes and, if necessary, an
additional number of distant nodes is contacted. The node
examination is performed in a wave-like manner towards one
direction of the structure, where each node contacts its suc-
cessor. When the first phase is successful, then the algorithm
proceeds to the NIX phase and portions of keys are itera-
tively transferred from one neighbor to another. Finally, the
algorithm proceeds to the MIG phase, where the reserved
underloaded nodes of the remote wave offload their keys to
their neighbor and take a portion of the range of the final
node of the NIX wave.

4. DEMONSTRATION DESCRIPTION
The demonstration will allow attendees to interact with

the DBalancer on two levels: cluster configuration and work-
load setup. A comprehensive real-time GUI will enable users
to enter the initialization parameters regarding cluster, al-
gorithm and workload types, launch the experiment and
watch in real time the system’s behavior, as we can ob-
serve in Figure 2. In http://youtu.be/B9HhN_kJntg and in
http://youtu.be/F3iu7fj-IPc we have uploaded some rep-

http://youtu.be/B9HhN_kJntg
http://youtu.be/F3iu7fj-IPc

resentative videos showing the DBalancer ’s balancing pro-
cedure under different algorithms. Both real-time and pre-
viously collected performance metrics will be available in
order to compare each setting’s performance and cost. The
interface consists of two parts described in detail:

Cluster Initialization: In this part, users can select to
deploy DBalancer on top of various types and sizes of Cas-
sandra clusters. Clusters ranging from 4 to 40 nodes will
be deployed on a private OpenStack IaaS Cloud [8]. Users
can also set the dataset size, by setting the NoSQL stor-
age per node between 100K and 1000K YCSB objects (1KB
each). Finally, users can select the load balancing algorithm
that will be used by the DBalancer between NIXMIG, NIX,
MIG, and IB. In order to avoid timely virtual cluster initial-
izations, a number of pre-cooked virtual cluster setups with
the respective datasets will be available.

Workload Selection: Users can select one of the follow-
ing different workloads: a highly skewed 10% pulse work-
load, a less skewed 40% pulse workload, a highly skewed
zipfian workload with θ = 2 and a less skewed one (θ = 1).
We also allow a dynamic pulse workload which suddenly
changes its skew in the middle of the execution. Finally,
users are able to set the query arrival rate between 100 que-
ries/sec up to 5K queries/sec. These workloads are created
by utilizing YCSB [10], Yahoo’s cloud serving benchmark
tool.

The metrics that are going to be used in order to evalu-
ate the scheme’s performance are the number of overloaded
peers, the number and type of balancing operations, the
number of exchanged messages and items, the time-span
that the method needs in order to minimize the overloaded
servers, as well as some of the standard statistic measures
that characterize the cluster as time advances: Average load,
network traffic, mean query latency and throughput, etc. All
these metrics will be available at real-time, with the use of
the Ganglia [19], the de-facto cluster monitoring tool, as we
can see in the back graph of Figure 2.

After each run, the participants will be able to browse
both final aggregated results of the aforementioned metrics,
along with graphs that show how these metrics were evolv-
ing during the balancing time. Moreover, videos that will
depict the fluctuation of each server’s load during time will
be compiled and presented to the user. With the previous
interface, users will have the opportunity to visually and
quantitatively identify each algorithm’s pros and cons, and
to observe NIXMIG’s adaptivity in various workloads and
network setups.

5. ACKNOWLEDGMENTS
This work has been funded by European Union and Na-

tional Resources under the Hellenic General Secretariat for
Research and Technology (GSRT) ”COOPERATION 2009”
National Action ”09SYN-72-881” MODISSENSE Project.

6. REFERENCES
[1] http://nosql-databases.org.

[2] http://www.pcworld.com/article/167435/

jacksons_death_a_blow_to_the_internet.html.

[3] http://wiki.apache.org/cassandra/Operations#

Load_balancing.

[4] https://github.com/voldemort/voldemort/wiki/

Voldemort-Rebalancing.

[5] http://riak.basho.com/.

[6] http://docs.mongodb.org/manual/core/

sharding-internals/

#sharding-balancing-internals.

[7] http://issues.apache.org/jira/secure/

attachment/12368261/RebalanceDesign6.pdf.

[8] http://www.openstack.org/.

[9] G. Ananthanarayanan et al. Scarlett: Coping with
Skewed Content Popularity in MapReduce Clusters. In
EuroSys, pages 287–300, 2011.

[10] B. Cooper et al. Benchmarking cloud serving systems
with YCSB. In SOCC, pages 143–154, 2010.

[11] G. DeCandia et al. Dynamo: Amazon’s Highly
Available Key-Value Store. In SOSP, pages 205–220,
2007.

[12] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
Crowds and Denial of Service Attacks:
Characterization and Implications for CDNs and Web
Sites. In WWW, pages 293–304. ACM, 2002.

[13] D. Karger et al. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In STOC, pages
654–663, 1997.

[14] D. R. Karger and M. Ruhl. Simple Efficient
Load-Balancing Algorithms for Peer-to-Peer Systems.
Theory of Comp. Systems, 39:787–804, 2006.

[15] I. Konstantinou, D. Tsoumakos, and N. Koziris. Fast
and Cost-Effective Online Load-Balancing in
Distributed Range-Queriable Systems. IEEE Trans
Parallel Distrib Syst, 22(8):1350 –1364, August 2011.

[16] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
Skew-resistant Parallel Processing of
Feature-Extracting Scientific User-Defined Functions.
In ACM SoCC, pages 75–86, 2010.

[17] A. Lakshman and P. Malik. Cassandra: A
Decentralized Structured Storage System. SIGOPS,
44:35–40, April 2010.

[18] F. Lu, S. Parkin, and G. Morgan. Load Balancing for
Massively Multiplayer Online Games. In NetGames,
2006.

[19] M. Massie, B. Chun, and D. Culler. The Ganglia
Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing,
30(7):817–840, 2004.

[20] I. Stoica et al. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM,
pages 149–160, 2001.

[21] R. Sumbaly et al. Serving Large-Scale Batch
Computed Data with Project Voldemort. In FAST,
2012.

http://nosql-databases.org
http://www.pcworld.com/article/167435/jacksons_death_a_blow_to_the_internet.html
http://www.pcworld.com/article/167435/jacksons_death_a_blow_to_the_internet.html
http://wiki.apache.org/cassandra/Operations#Load_balancing
http://wiki.apache.org/cassandra/Operations#Load_balancing
https://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing
https://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing
http://riak.basho.com/
http://docs.mongodb.org/manual/core/sharding-internals/#sharding-balancing-internals
http://docs.mongodb.org/manual/core/sharding-internals/#sharding-balancing-internals
http://docs.mongodb.org/manual/core/sharding-internals/#sharding-balancing-internals
http://issues.apache.org/jira/secure/attachment/12368261/RebalanceDesign6.pdf
http://issues.apache.org/jira/secure/attachment/12368261/RebalanceDesign6.pdf
http://www.openstack.org/

	1 Introduction
	2 Architecture
	3 Algorithm descriptions
	3.1 NIX and MIG
	3.2 Item Balancing
	3.3 NIXMIG

	4 Demonstration Description
	5 Acknowledgments
	6 References

