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Abstract—Big Data applications receive an ever-increasing
amount of attention, thus becoming a dominant class of
applications that are deployed over virtualized environments.
Cloud environments entail a large amount of complexity
relative to I/O performance. The use of Big Data increases the
complexity of I/O management as well as its characterization
and prediction: As I/O operations become growingly dominant
in such applications, the intricacies of virtualization, different
storage backends and deployment setups significantly hinder
our ability to analyze and correctly predict I/O performance.

To that end, this work proposes an end-to-end modeling
technique to predict performance of I/O–intensive Big Data
applications running over cloud infrastructures. We develop a
model tuned over application and infrastructure dimensions:
Primitive I/O operations, data access patterns, storage back-
ends and deployment parameters. The trained model can be
used to predict both I/O but also general task performance. Our
evaluation results show that for jobs which are dominated by
I/O operations, such as I/O-bound MapReduce jobs, our model
is capable of predicting execution time with an accuracy close
to 90% that decreases as application processing becomes more
complex.

I. INTRODUCTION

The emergence of virtualization technologies has grad-
ually brought forth a paradigm shift from traditionally
managed software and service offerings towards Cloud-
based ones. Traditional business application models incur
high expenses and complexity: Customized and often large
amounts of hardware and software are required; on top of
that, configuration, management, update, security, etc, costs
complicate the task of designing, deploying and success-
fully maintaining a service available to multiple clients.
Migrating applications to the Cloud enables businesses to
significantly reduce time-to-market delays and operational
costs. Hardware and software management is undertaken
by the infrastructure vendor, who also provides a flexible,
pay-as-you-go pricing scheme: Business owners pay only
for what they need, adaptively scaling resources to meet
demand.

These features make Cloud infrastructures an ideal plat-
form for Big Data Applications (or BDAs). Big Data is
generally described through the well-known notion of the

four V’s: Volume, Velocity, Variety and Veracity. An ever-
growing interest in analytics and data-driven decision mak-
ing has made BDAs a number-one priority that allows busi-
nesses worldwide to define new initiatives and re-evaluate
their current strategies.

With the size and the corresponding demand for data ever-
increasing, the importance of I/O in BDAs is particularly
stressed. As I/O operations take up a considerable portion of
the application’s operations, they can easily dominate total
application performance. At a higher level, frequent (and
possibly concurrent) reading and writing of large files is
required, whether a real-time system or a batch processing
application is concerned. Moreover, deployment of BDAs
over virtualized environments is a common and popular
choice. This combination increases the complexity of I/O
management as well as its characterization/prediction.

Including the virtualization layer, there exists a large
amount of complexity (measured in intermediate infrastruc-
ture) between the application users and the storage devices
that hold the data. As Fig. 1 shows, an I/O request may have
to go through the VM’s main memory, some hypervisor-
dependent drivers, the VM host memory and the network
before it finally reaches the storage system, which, in turn,
may have its own caches. Due to this level of complexity,
monitoring and subsequent characterization of isolated phys-
ical components (such as storage devices, networks, etc) is
not sufficient; results might be too complex to analyze or
combine for a definitive I/O modeling, especially given the
numerous choices of different setups, vendors and hardware
involved. Rather, an end-to-end approach is required to more
accurately depict overall I/O performance.

In this work we embark on describing such an approach:
An I/O profiling scheme and its subsequent modeling for
Cloud-based BDAs. We believe that such a study will offer
valuable information related to which application workloads
and storage characteristics affect BDA I/O performance,
and thus the end-to-end application behavior. In our work,
I/O performance is measured and modeled according to the
following dimensions:
1) I/O Operations: We measure primitive read and write
operations.
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Figure 1: I/O path in a virtualized environment.

2) Data and Access: We utilize “raw data” (bytestreams)
between several MB to several GB of no particular format.
Data is accessed through well-known distributions: Uniform,
sequential and skewed with varying degrees of skewness.
3) Storage backends: We utilize both local storage as well
as distributed object stores for the VM storage device.
4) BDA Deployments: We consider BDAs deployed both
over a single as well as multiple VMs.

The aforementioned dimensions are carefully chosen so
as to capture important, modern architectural considerations
in the cloud but also abstract away the complexity that
the plethora of available software and hardware offerings
bring into I/O characterization. This paper makes a twofold
contribution:
• First, it proposes a profiling methodology for the I/O path

in virtualized environments. Understanding the complex-
ity of Cloud I/O, we model it in an end-to-end fashion.

• Second, we evaluate the usefulness of this model, not
exclusively over I/O but on the total application perfor-
mance as well. Implementation results from an academic
public cloud deployment over multiple sample analytics
jobs and platforms are thoroughly described.

Our results show a varying degree of precision that directly
depends on the overhead that the application platform and
the application’s pure processing part (non-I/O) impose on
performance. For tasks that are dominated by I/O operations,
our model is remarkably accurate.

II. PROBLEM OVERVIEW

Formally, we define the problem in its general form as:

Problem 1. Given a multi-dimensional input space I, which
contains a set of application and system characteristics, find
a function f : I −→ M which maps the BDA and system
characteristics to an application performance space M.

We consider I to be I = S × A, where S is the space of
storage and A the space of application characteristics. As we
treat the I/O path as a black box, we do not examine fine-
grained storage characteristics but consider S to be a set of
different storage architectures. Space A can be divided to the
following subspaces: Workload subspace (W), data subspace

(D) and resource subspace (R). Thus, A = W×D×R. The
dimensions of each of these subspaces are presented in detail
in Section III.

The output space M may contain any metric that charac-
terizes application performance. Such metrics can be related
to performance, availability, etc. Nevertheless, in this paper,
we consider only performance metrics and more specifically
the throughput of I/O operations (MB/s) as it is perceived
by the application user.

III. APPLICATION MODELING

For each of the application characteristics subspaces: W,
D and R, we define the measures we are interested in for
our modeling.
A. Resources

Subspace R includes all the hardware/software resources
a BDA may use. Such resources are the number of VMs
an application needs, the number of VCPUs, the amount of
RAM VMs have, etc.

With respect to the number of VMs an application utilizes,
we make the following distinction: An application can be
either single-VM or distributed. A single-VM application
may accept requests from zero to many clients but there is
only one virtual machine which interacts with the storage.

In contrast, in a distributed application, there exist multi-
ple VMs involved in the I/O procedure. And in this case, the
application can accept requests from zero to many clients,
but there are many VMs of the same application which issue
concurrent I/O requests to the storage system.
B. Workload

Workloads with different characteristics may lead to dif-
ferent I/O performance. As the possible workload features
that affect performance are numerous, we define the fol-
lowing measures of the W subspace: the type and locality
of operations, the data access pattern and the degree of
concurrency.

Since we aim at I/O performance evaluation, we are
interested in primitive read and write operations. These
operations may demand network access (remote read/write)
or not (local read/write). Moreover, these operations may
access data following different patterns. In order to examine
the caching effects of main memory on the overall I/O per-
formance, we consider two basic access patterns: sequential
and x-y skewed, with variable values for x and y.

The fourth defined workload dimension is concurrency.
We consider two types of concurrency:

• Client concurrency: A BDA may have many clients
issuing I/O requests in parallel.

• VM concurrency: The number of nodes in the cluster
of a distributed BDA.

C. Data
In the current work and in order to acquire performance

profiles, we apply different workloads on raw data. By raw
data, we refer to a collection of bytes which does not obey



to a specific structure. Therefore, dimensions such as data
structure, mutability, etc., are not taken into account. The
only measure of space D we consider is the size of data
read or written. Since our modeling mainly targets BDAs,
we decide for the data size to pick values from the order of
MB to several GB.

IV. STORAGE

Storage system related information is included in the input
space I. The storage system may be as simple as a single
hard disk drive or an arbitrarily complex system. Cloud data
centers employ a great variety of storage architectures. For
example, Amazon offers local disk images, Elastic Block
Store (EBS) [1] and S3 [2] storage options. As storage
systems with different architectures may present different
performance characteristics, in order to demonstrate the gen-
eral applicability of the proposed methodology, we consider
two completely different systems from an architectural point
of view: local and distributed. In the first case, storage is
directly attached to the virtual machine container, while in
the second case, it is a distributed pool of storage nodes,
available to more than one VM containers. However, our
methodology can be applied to any other storage architecture
chosen to be profiled.

In the local storage setup, VMs perform I/O operations on
the local disk subsystem of their host. Thus, all the VMs of
a single container compete for the same disk or disk array.

In a distributed storage architecture, VMs do not interact
with the local disk of their container but they act as clients to
a distributed storage cluster. For each I/O request issued by
a VM at least one storage node of the distributed cluster is
responsible to serve the request. The nodes of a distributed
storage cluster can be from simple block devices to complete
servers with large main memory and computing capabilities.

V. METHODOLOGY

Having described in detail the input space I, we present
the proposed methodology for predicting the values of
function f , which maps the input space I to the output space
M (f : I −→ M ). Our methodology can be summarized
in the process presented in Algorithm 1. In a nutshell, we
first select a subspace P of the application characteristics
space A (P ⊆ A). Then, for each storage architecture,
we measure performance for points pεP . Let Prof (P, S)
denotes the profiled performance for all storage architectures
under evaluation and for all points in the application char-
acteristics subspace P . For all storage architectures sεS, we
use Prof (P, s) to train a CART [3] model f̂s (described in
detail in Section VI) that predicts the corresponding values
of function f .

What remains to be defined is which points of A should
be included in subspace P. For each dimension of the
application-characteristics space, we select a range of values.
For dimensions of A which contain a finite set of values,
such as the type of operation {read,write}, we consider all

Algorithm 1 Methodology for predicting the values of f

1: Determine a subspace P of A
2: for all storage ∈ S do
3: for all p ∈ P do
4: mp = Prof (p, storage) {Measure performance

for p and storage}
5: end for
6: Use m =

⋃
mp,pεP to create a CART model f̂storage

that predicts f (storage,A)
7: end for
8: return f̂S {where f̂S is the set of created models.}

possible values. For dimensions that contain many or pos-
sibly infinite values, such as #VMε {1, 2, ...}, we conduct
preliminary exploratory tests and consider a subset of values,
such that the choice of any other point along this dimension
does not cause a significant performance variation. Table
I summarizes the selected ranges of values in the current
profiling process.

Table I: The selected values that form the subspace P of the
profiling process.

Dimension Values
#VMs [1− 16]
type of operation read, write
locality of operations local, remote
access pattern sequential, [50− 50, 90− 10]
concurrent clients [0− 4]
data size [64MB − 4GB]

For the implementation of the profiling process, a profiling
tool is developed. Our profiling tool consists of a deployment
tool and a synthetic workload generator. Given an input
file with the description of dimensions and the correspond-
ing value ranges for each dimension, the deployment tool
deploys on the cloud the requested VMs, configured with
storage s, and on top of them, accordingly configured,
the synthetic workload generator. The synthetic workload
generator generates load for all pεP and measures the
achieved performance Prof (p, s) for each point.

VI. MODELING

When the profiling process terminates, performance
Prof (P, s) is known for all available storage architectures
sεS. The profiling results are then used to generate a
performance prediction model f̂s for each storage system.

Profiling indicated that performance presents a non-linear
behavior, not easily predicted by simple models like linear
regression. Furthermore, in many cases, the behavior of per-
formance is not even monotonic. As a more generic model
is required and for the ease of being appropriately tuned,
we use, as a modeling tool, Classification and Regression
Trees(CART) [3]. CART are a special case of a broad
predictive models family called decision trees. In these tree



structures, the internal nodes of the tree contain conditions
which involve the input parameters and the leaves of the tree
contain the values of the function being modeled.

In order to illustrate the appliance of CART to our
problem we give an example. Consider the case we are
interested in predicting the performance of local read, of
a single-VM application, for various access patterns and file
sizes(in MB), when the local storage is employed. Fig. 2
depicts the generated decision tree. For example, if we have
a random access pattern and a data size ≥ 192 MB, then
according to the model, we expect a throughput of 33 MB/s.
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Figure 2: CART model for a single-VM application which
runs on top of the local storage. The application performs
local reads with various access patterns (d) and sizes (s).

VII. EXPERIMENTS

The experiments were carried out in the ∼okeanos aca-
demic public cloud [4]. The deployed VMs run Ubuntu
12.04 LTS, with 2 GB of main memory, 2 VCPUs and 10
GB disk image each. As storage options, ∼okeanos offers
two alternatives: Standard and Archipelago.

The Standard storage option is based on the DRBD [5]
system and is the local storage architecture we use. In the
DRBD model, each VM container has a locally attached disk
subsystem, which is responsible to serve all the I/O requests
of the hosted VMs. Nevertheless, DRBD is designed to
offer high availability. Availability is achieved by imple-
menting a network RAID-1 mechanism. Read operations
access directly the local storage system. However, in write
operations, data is replicated through the network to one
more physical machine. In the ∼okeanos infrastructure, the
network employed to the DRBD setup is 1Gb Ethernet.

Archipelago is a fully distributed storage system and is
based on a RADOS [6] cluster, hosted on dedicated storage
servers. RADOS is a distributed object store, which consists
of a large collection of storage nodes, called OSDs and a
small group of monitors responsible for managing OSDs.
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Figure 3: Grep for different patterns, file sizes and storage
architectures.

When a client inserts data to a RADOS cluster, data is first
chunked to objects of default size 4 MB, and is distributed to
the OSDs according to the CRUSH algorithm [7]. RADOS
objects have a default replication factor of two in favor of
availability and fault tolerance.

In the Archipelago storage system, there is a 10 Gb
Ethernet link between the OSDs and 3×1 Gb Ethernet links
between each VM container and the storage cluster.

For testing our model, we conduct experiments on some
I/O-intensive applications. We make the following distinc-
tions among I/O-intensive applications: An application may
be single-VM or distributed and it may also be interactive
or perform batch processing.

As single-VM batch applications, we consider the grep
utility of UNIX and as single-VM interactive application
a select operation on a MySQL table. The MySQL select
workload scans the whole table and does not use any
index. As distributed batch jobs, we consider some Hadoop
examples and as distributed interactive applications some
HBase workloads.

Fig. 3a, 3b present the execution time for the grep
application when different file sizes and storage architectures
are used. The grep application reads sequentially the input
file and returns as output the lines of the file which match a
given regular expression. We experiment with two different
patterns as regular expressions: one which demands a few
computations(exact match of the string foo) and a more
compute-intensive one(find all strings containing foo). For
the less compute-intensive case we predict execution time
with an average accuracy of 90% in both storage setups.
However, when more computations are involved, accuracy
drops to 30% for the local setup and to 40% for the
distributed one. These results validate our model, since even
with the noise of a few computations, our model achieves
an accuracy of 90%.

The other single-VM application used in our experiments
is a MySQL query that fetches sequentially all the rows
of a table. As Fig. 4a, 4b show, the accuracy of our
model is in the order of 60% and 80% for the local and
the distributed storage respectively. As the computational
overhead of MySQL is higher than that of grep, a drop in
accuracy is observed. However, since both applications have
similar workloads, the trend does not change and the local
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Figure 4: MySQL table scan for different table sizes and
storage architectures.

storage outperforms twice the distributed.
For the distributed applications, we set up Hadoop 1.2.1

with the default configuration. In Fig. 5a, 5b we predict
the completion time of a Word Count job. The information
our model needs to predict a MapReduce job completion
time is the cluster size, the number of reducers and the size
of input/output data for both map and reduce phases. We
experiment with three different cluster sizes(4, 8, 16 nodes),
2 reducers and 2 GB input/output for both map and reduce
phases. As MapReduce jobs, we use the Identity MapReduce
and the Word Count example.

The Identity MapReduce copies a file from one HDFS
path to another one. The Word Count job creates an occur-
rence frequency histogram for the words of a document.
For the Identity MapReduce job, we predict completion
time with a 70% accuracy for the local and 74% for the
distributed. Even if there is no user-defined computation,
the framework imposes extra overheads(parse key-values,
compute partitions, sort keys, etc.) that cannot be predicted
without profiling Hadoop [8]. However, we observe in both
Figures that since I/O is the main bottleneck in the specific
job, changes in the cluster size are captured by the model
and prediction errors are kept constant.
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Figure 5: MapReduce job completion time when VMs are
configured with different storage architectures.

For the Word Count example, where user-defined com-
putation is included in both map and reduce phases, the
prediction error is higher. Nevertheless, we observe that the
accuracy of our prediction is ameliorated as the nodes of the
Hadoop cluster are increased. For the local storage setup we
have 31% accuracy in a 4-node cluster and 60% accuracy in
a 16-node cluster. As the cluster size increases, the degree
of parallelism in the map phase is increasing as well and

map computation is spread across the cluster. As a result,
the map phase overhead is decreasing.

The distributed interactive application we use in order
to test performance for non-sequential patterns is HBase.
We set up an 8-node cluster using HBase 0.94.20 with the
default configuration and we load a 2 GB sized table, with
YCSB [9] data as each row to have an 8-byte key and
1 KB value. The imposed workload is 1 MB-sized scans,
performed concurrently from 2 or 4 clients and following
different row-access distributions.

In Fig. 6 we see that we achieve an accuracy of about
60% when 2 clients issue requests simultaneously and 50%
when 4 clients are used. The observed error is due to HBase
specific overheads. HBase tuning leads to significantly dif-
ferent performance results. However, such a study is out of
the scope of this paper.

Considering the HBase experiment, we make one more
observation. Although the prediction error is high enough
our prediction follows the trend that the application run
exhibits. Thus, and in this case, even if we cannot make
safe predictions, we can predict the relative deviation among
different workloads and storage architectures.

VIII. RELATED WORK

I/O behavior modeling and prediction have been well-
studied. In [10] and [11] modeling for disk drives and disk
arrays is performed. Both approaches make a hierarchical
decomposition of the I/O path and examine the impact of
each component separately. However, this is quite impracti-
cal for large-scale, complex virtualized environments.

Other well known approaches to disk array modeling are
the ones presented in [12] and [13]. While [12] models the
disk array and [13] treats it as a black box, they both define
workload dimensions and they sample performance for a
predetermined set of points of the input space. Then a model
is used to fit the measured numbers. Reference [13] also
shows that CART provide better accuracy than other meth-
ods for disk array modeling. Nevertheless, as these models
target only at disk arrays, the workload dimensions defined
are not adequate to capture BDA workload characteristics.

Although these approaches seem to work satisfactorily
enough for disk I/O prediction, it is hard to work when
a long and complex I/O subsystem path is employed. To
this direction, the self-scaling benchmark is presented in
[14]. This benchmark measures I/O performance as it is
seen by an end user issuing reads and writes. An end-to-end
approach is also used in [15]. However, the system proposed
there does not refer to the Cloud but to a large scale parallel
multicore system and it does not predict I/O related metrics
but CPU execution time.

In [16], the authors use IOR [17] in order to compare
the I/O performance of HPC applications on two cloud
platforms- Amazon and Magellan. In the case of Amazon,
recognizing the need for evaluating different storage archi-
tectures, they also benchmark I/O performance on local,
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Figure 6: clients perform scans according different access distributions on a 8-node HBase cluster configured with different
storage setups.

ephemeral devices and EBS volumes. However, their study
is limited only to HPC-specific applications.

I/O characterization in virtualized environments is also
carried out in [18] and [19]. Understanding I/O performance
reveals opportunities for server consolidation and designing
efficient cloud storage infrastructures. However, [18] is an
experimental study for specific applications and does not
include modeling of I/O behavior.

An alternative approach to the problem of I/O character-
ization in the cloud is presented in [20]. I/O traces from
production servers are collected and used as a training set
for a machine learning tool. During the learning process, I/O
workload types are identified automatically and as output,
a I/O workload generator is produced. This generator can
simulate real application workloads and thus it can be used
for storage systems evaluation.
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X. CONCLUSIONS

In this paper we have argued towards an end-to-end mod-
eling of I/O performance for Big Data applications running
over the cloud. To achieve that we followed a three-step
process: First, we identified some important BDA factors
that affect I/O performance. Then, in order to measure
performance we created a synthetic workload generator,
based on primitive I/O operations. Finally, CART modeling
was applied to fit the results of the profiling process.

Our experiments show that the created model captures
with high accuracy I/O performance. A maximum accuracy
of 90% for batch tasks and 60% for interactive applications
has been observed. This shows that, for applications with low
computational overhead, our model is sufficient to predict
the total execution time. However, as more computation is
involved, the prediction of the model proves to be over-
optimistic. In this case, our model cannot safely predict exe-
cution time but it can accurately place the lower bound that
the employed storage architecture imposes on application
execution time.
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