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Abstract In this work, we study the problem of maintaining basic aggregate
statistics over a sliding-window data stream under the constraint of limited
memory. As in IoT scenarios the available memory is typically much less than
the window size, queries are answered from compact synopses that are main-
tained in an online fashion. For the efficient construction of such synopses, we
propose wavelet-based algorithms that provide deterministic guarantees and
produce near exact results for a variety of data distributions. Furthermore,
we show how accuracy can be further improved when workload information is
known. For this purpose, we propose a workload-aware streaming system that
trade-offs accuracy with synopsis’ construction throughput. The conducted
experiments indicate that with only a 15% penalty in throughput, the pro-
posed system produces fairly accurate results even for the most adversarial
distributions.

Keywords Stream Processing · Sliding-Window · Approximate Query
Processing · Wavelets · Workload-Aware Synopses · Range Queries

1 Introduction

A significant part of the digital information currently produced comes in
the form of data streams, i.e., continuous sequences of items of unbounded
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size. Since unbounded streams cannot be wholly stored in bounded memory,
streaming applications usually work in an on-line fashion. The requirement of
real-time processing of continuous data in high-volumes has triggered a flurry
of research activity in the area. Some typical applications include sensor net-
works [Carney et al. (2002); Madden and Franklin (2002); Yao et al. (2003)],
datacenter monitoring [Ganguly et al. (2007)], financial data trackers [Zhu and
Shasha (2002)], and real-time analysis of various transaction logs [Cortes et al.
(2000)].

Unlike conventional database query processing that allows several passes
over static data, streaming algorithms are generally restricted to allow only a
single pass. In order to achieve this, they often rely on building, in real-time,
concise synopses of the underlying streams. These synopses typically need
small space, update and query time (sub-linear to the input size), and can
be used to provide approximate, yet accurate answers. Due to the exploratory
nature of many data-analytics tasks, there exist a number of scenarios in which
we are interested in discovering statistical patterns rather than obtain answers
precise to the last decimal.

Furthermore, as for most applications there is more value in real-time in-
formation, recent data tend to be prioritized; statistics in fresh data items
should be represented with higher precision than in older ones. For this pur-
pose, various time-decay models have been proposed in the literature [Cohen
and Strauss (2003)]. The sliding-window model [Datar et al. (2002)] is one of
the most intuitive ones as it only considers the most recent data items seen so
far. Several algorithms have been proposed for maintaining different types of
statistics over sliding-windows while requiring time and space poly-logarithmic
to the window size [Datar et al. (2002); Gibbons and Tirthapura (2002); Qiao
et al. (2003); Xu et al. (2008).]

While a lot of work has been done for estimating basic aggregates in the
sliding-window setting, the problem has not attracted much attention when
using wavelets. Wavelet decomposition [Stollnitz et al. (1996)] provides a very
effective data reduction tool, with applications in data mining [Li et al. (2002)],
selectivity estimation [Matias et al. (1998)], approximate and aggregate query
processing of massive relational tables [Vitter and Wang (1999); Chakrabarti
et al. (2001)] and data streams [Gilbert et al. (2001); Cormode et al. (2006)].
In simple terms, a wavelet synopsis is extracted by applying the wavelet de-
composition on an input collection and then summarizing it by retaining only
a selected subset of the produced wavelet coefficients. The original data can
be approximately reconstructed based on this compact synopsis. Previous re-
search has established that reliable and efficient approximate query processing
can then be performed solely over such concise synopses [Chakrabarti et al.
(2001)].

In this work, we investigate the capacity of wavelets to efficiently approx-
imate basic aggregates over a data stream under the sliding-window model.
We focus on queries such as COUNT, SUM and AVG, since more complex
queries in sliding-windows [Papapetrou et al. (2012)] usually need to compute
such basic aggregates under the hood. In order to provide theoretical guar-
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antees, traditional techniques for the problem, like exponential histograms
[Datar et al. (2002)] and deterministic waves [Gibbons and Tirthapura (2002)]
are restricted to work only on streams of positive numbers. Moreover, they
can only support a very specific type of queries: range queries where the end
of the range is always the end of the active window. In this work, we opt for
a more generic and practical solution that is able to handle streams of arbi-
trary numerical values and supports more generic query types. To the best
of our knowledge, we are the first to investigate the use of wavelets for range
queries over sliding-window streams. We present efficient algorithms for an-
swering point and range queries in a single stream and experimentally evaluate
them against state-of-the-art techniques. In summary, we make the following
contributions:

– We investigate the efficiency of wavelets for summarizing a sliding-window
stream. While we consider workloads of both point and range queries, we
put particular emphasis on basic aggregates such as COUNT, SUM and
AVG. This is the most common query type in the sliding-window context
and the performance of wavelets in such queries has not been studied before.

– We propose SW2G: a new wavelet-based algorithm for answering range
queries over a single stream in the sliding-window model and provide deter-
ministic guarantees. The complexity of our algorithm is theoretically ana-
lyzed.

– We apply and validate our approach in a distributed setting, where multiple
streams compute individual synopses and a single coordinator merges them
in real-time to produce global answers.

– We discuss the required modifications in the proposed algorithm in order to
support out-of-order arrivals.

– We introduce a workload-aware streaming system, which exploits available
query workload information to significantly boost accuracy in adversarial
distributions, where SW2G fails to provide precise results.

– We experimentally evaluate our approach in both synthetic and real data
and show that it outperforms, in terms of accuracy, state-of-the-art tech-
niques such as exponential histograms and deterministic waves.

The remainder of this paper is organized as follows: Section 2 provides for-
mal definitions and theoretical background on the problem. Section 3 presents
a literature review for the applications of wavelets in approximate query pro-
cessing and for sliding-window techniques. In Section 4, we present the SW2G
algorithm for maintaining the synopsis in real-time and in Section 5 we show
how basic statistics are computed. Section 6 presents an extension for dis-
tributed environments and Section 7 discusses out-of-order arrivals. In Section
8, we propose a workload-aware system that improves on accuracy when work-
load information exists. Section 9 demonstrates the experimental evaluation
of our work and Section 10 concludes the paper.
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2 Preliminaries

In this Section, we formally define the problem we solve, the streaming model
we work on, and provide the theoretical background needed for understanding
the proposed ideas.

2.1 Definitions and Problem Statement

Our goal is to evaluate the ability of wavelets to accurately compute point
queries and basic range statistics (SUM, COUNT, AVG) in a sliding-window
data stream, where data elements are expected to arrive in the stream-order.
Such a stream is formally defined in Definition 1. Henceforth, we are going to
simply use the term stream in order to describe such a data sequence.

Definition 1 (Ordered Stream) An ordered data stream is an infinite se-
quence of tuples in the form: S = {(t1, v1) , (t2, v2) , ...} , t1 ≤ t2 ≤ ..., where ti
denotes the index of tuple i and vi its value.

The proposed algorithms support both count- and time-based streams. In
the case of time-based streams, the tuple index corresponds to the arrival time,
while in the count-based scenario it corresponds to the position in the stream.
Since count-based streams constitute a special case of time-based ones, we
abusively use the notion of time in both cases.

Both the sliding-window point and range queries we tackle are defined in
Definition 2. A point query can ask for the stream value at any time moment
lying within the active window. Similarly, a range query has always the current
time as the end of its interval, while the start of it can be any time within the
window.

Definition 2 Let S be a stream, t the current time and W the window size.

– A sliding-window point query P (tq) on S returns an estimation for
the value vq that arrived at time tq, tq ∈ [t−W, t].

– A sliding-window range query AGG (tq) on S returns an estimation
for an aggregate AGG ∈ {SUM,COUNT,AV G} computed over the time
range: [tq, t], where tq ∈ [t−W, t].

While we mainly consider range queries of the described form, in order to
demonstrate the general applicability of our approach, in Section 9, we also
investigate queries of the form [s, e], where t−W ≤ s ≤ e ≤ t.

2.2 Wavelets

Wavelet analysis is a major mathematical technique for hierarchically decom-
posing functions. The wavelet decomposition of a function consists of a coarse
overall approximation together with detail coefficients that influence the func-
tion at various scales [Stollnitz et al. (1996)]; it is computationally efficient and
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Table 1 Wavelet decomposition example
Resolution Averages Detail Coef.

3 [8, 6, 7, 7, 12, 12,−1,−3] –
2 [7, 7, 12,−2] [1, 0, 0, 1]
1 [7, 5] [0, 7]
0 [6] [1]

has excellent energy compaction and decorrelation properties, which can be
used to effectively generate compact representations that exploit the structure
of data.

Haar wavelets constitute the simplest possible orthogonal wavelet system.
Assume a one-dimensional data vector A containing N = 8 data values A =
[8, 6, 7, 7, 12, 12,−1,−3]. The Haar wavelet transform of A can be considered as
a sequence of pairwise averaging and differencing operations. We first average
the values in a pairwise fashion to get a new “lower-resolution” representation
of the data with the following average values: [7, 7, 12,−2]. The average of the
first two values (i.e., 8 and 6) is 7, the average of the next two values (i.e., 7 and
7) is 7, etc. It is obvious that, during this averaging process, some information
has been lost and thus the original data values cannot be restored. To be able
to restore the original data array, we need to store some detail coefficients that
capture the missing information. In Haar wavelets, the detail coefficients are
the half-difference of the corresponding data values. In our example, for the
first pair of values, the detail coefficient is 1 (since (8− 6) /2 = 1) and for
the second is 0 ((7− 7) /2 = 0). After applying the same process recursively,
we generate the full wavelet decomposition that comprises a single overall
average followed by three hierarchical levels of 1, 2, and 4 detail coefficients
respectively (see Table 1). In our example, the wavelet transform (also known
as the wavelet decomposition) of A is WA = [6, 1, 0, 7, 1, 0, 0, 1]. The complete
Haar wavelet decomposition WA of a data array A is a representation of equal
size as the original array. Each entry in WA is called a wavelet coefficient. The
main advantage of using WA instead of A is that, for vectors containing similar
values, most of the detail coefficients tend to have very small values. Therefore,
eliminating such small coefficients from the wavelet transform (i.e., treating
them as zeroes) introduces only small errors when reconstructing the original
array and thus results to a very effective form of lossy data compression. Given
a budget constraint B < N , the problem of wavelet thresholding is to select a
subset of at most B coefficients that minimize an aggregate error measure in
the reconstruction of data values.

The error-tree, introduced in [Matias et al. (1998)], is a hierarchical struc-
ture that illustrates the key properties of the Haar wavelet decomposition.
Figure 1 depicts the error-tree for our simple example data vector A. Each
internal node ci (i = 0, ..., 7) is associated with a wavelet coefficient value, and
each leaf di (i = 0, ..., 7) is associated with a value in the original data array.
Given an error-tree T and an internal node ck of T, we let leavesk denote
the set of leaves in the sub-tree rooted at ck. This notation is extended to
leftleavesk (rightleavesk) for the left (right) sub-tree of ck. We denote pathk as
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Fig. 1 An error tree that illustrates the hierarchical structure of the Haar wavelet decom-
position

the set of all nodes with non-zero coefficients in T which lie on the path from a
node ck (dk) to the root of the tree T. We also denote path[l,h] = pathl∪pathh.

Given the error-tree representation of a one-dimensional Haar wavelet
transform, we can reconstruct any data value di using only the nodes that
lie on pathi. That is

di =
∑

cj∈pathi

δij · cj , δij =

{
1 di ∈ leftleavesj
−1 otherwise

For example, in Figure 1, value d5 = 6 − 1 + 7 − 0 = 12. A range sum
d(l : h) can be computed using only nodes cj ∈ path[l,h], by d(l : h) =∑

cj∈path[l,h]
cj · xj , where:

xj =

{
(h− l + 1) j = 0(
|leftleavesj,l:h| − |rightleavesj,l:h|

)
otherwise

(1)

Here, leftleavesj,l:h = leftleavesj ∩ {dl, dl+1, .., dh} and
rightleavesj,l:h = rightleavesj ∩{dl, dl+1, .., dh}. That means that node cj con-
tributes to the range sum d (l : h) positively as many times as there are leaf
nodes of the left sub-tree of cj in the summation range, and negatively as
many times as there are leaf nodes of the right sub-tree of cj , while the value
of c0 contributes positively for each leaf node in the summation range. In our
example, d (3 : 6) = −1 · 0 + (−1) · 0 + (−2) · 1 + 4 · 6 + 1 · 7 + 1 = 30.

Thus, reconstructing a single data value involves summing at most logN+1
coefficients and reconstructing a range sum involves summing at most 2logN+
1 coefficients, regardless of the width of the range.

3 Related Work

Wavelets. In the seminal work of Chakrabarti et al. (2001), the authors show
how relational operators can be computed directly on wavelet synopses. For
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constructing a synopsis that optimizes the L2-error, the authors retain a set
of B wavelet coefficients, where B is a user-defined space budget.

While computationally efficient, a L2-optimal synopsis cannot provide strong
guarantees for individual queries. For this reason, a lot of prior work has
focused on designing algorithms which target maximum error metrics. The
construction of an optimal synopsis with respect to a non-Euclidean error
is a cumbersome and computationally intensive process. Many dynamic pro-
gramming algorithms [Garofalakis and Gibbons (2002); Garofalakis and Ku-
mar (2004); Guha (2005); Karras and Mamoulis (2007); Karras et al. (2007);
Muthukrishnan (2005)] have been proposed for this task. In order to allevi-
ate the complexity burden, greedy algorithms [Karras and Mamoulis (2005);
Matias and Portman (2003)] have also been proposed.

All approaches discussed thus far refer to batch jobs, where algorithms are
applied to static data. Gilbert et al. (2001, 2003) compute L2-optimal wavelets
on streams. As they find it more challenging, they put more emphasis on han-
dling the unordered cash register stream model. Cormode et al. (2006) present
a similar sketching technique, that improves on updates’ efficiency. Stream-
ing techniques have also been proposed for the optimization of the L∞ norm.
Guha and Harb (2005, 2008) present optimal algorithms for computing the op-
timal error in a streaming way for a broad category of non-Euclidean errors.
Nevertheless, as dynamic programming needs a recursive top-down procedure
in order to construct the final synopsis, these algorithms are not suitable for
the scenario of an unbounded stream where inactive elements are permanently
discarded. For L∞-minimization, a greedy streaming algorithm has proposed
by Karras and Mamoulis (2005). However, the algorithm of Karras et al. does
not support sliding-window queries.

Workload-aware wavelet synopses have also been widely studied for both
point and range queries [Muthukrishnan (2005); Matias and Portman (2003);
Guha et al. (2008)]. Nevertheless, to the best of our knowledge, there is no
other wavelet-based work that targets workload-aware techniques under the
sliding-window model.

The only wavelet-based algorithms that exist in the literature and consider
sliding-window streams are the ones of Liu et al. (2010) and Mytilinis et al.
(2019). Liu et al. (2010) mainly cover point queries and do not take into
account range queries such as COUNT and SUM, which are the most basic
and common queries in sliding-window streams. This paper builds upon the
work of Mytilinis et al. (2019). However, in our previous work, we do not
consider out-of-order arrivals and also we do not handle the workload-aware
case of the problem.

Sliding-Window Stream Queries. The bulk of existing work on the
sliding-window model has focused on algorithms for efficiently maintaining
simple statistics, such as COUNT and SUM. By efficiently, we mean sub-
linear space and time (typically, poly-logarithmic) in the window size W . Ex-
ponential histograms [Datar et al. (2002)] are a state-of-the-art deterministic
technique for maintaining ϵ-approximate counts and sums over sliding win-
dows, using O

(
1
ϵ log

2W
)

space. Deterministic waves [Gibbons and Tirthapura
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(2002)] solve the same basic aggregates problem with the same space com-
plexity as exponential histograms, but improve the worst-case update time
complexity to O (1). In the same work, Gibbons and Tirthapura (2002) also
present randomized waves to tackle COUNT-DISTINCT queries. Randomized
waves, as most randomized sketching techniques, are easily parallelizable and
composable (in distributed settings), but come with increased space require-
ments. Xu et al. (2008) describe a randomized, sampling-based synopsis, very
similar to randomized waves, for tracking sliding-window COUNT and SUM
queries with out-of-order arrivals. As in randomized waves, the space require-
ments are also quadratic in the inverse approximation error. To address the
high cost associated with randomized data structures, Busch and Tirthapura
(2007) propose a deterministic structure for handling out-of-order arrivals in
sliding windows. Similar to other deterministic structures, this structure does
not allow composition and focuses only on basic counts and sums. Finally,
Chan et al. (2012) investigate continuous monitoring of exponential-histogram
aggregates over distributed sliding windows. The main contribution of their
work lies in the efficient scheduling of the propagation of the local exponential-
histogram summaries to a coordinator, without violating prescribed accuracy
guarantees.

Work has also been done on sketching techniques that are suitable to an-
swer more complex queries like k-medians [Babcock et al. (2003)], heavy hit-
ters, inner products and self-joins [Papapetrou et al. (2012); Shah et al. (2017);
Rivetti et al. (2015)]. However, as the majority of these techniques employ un-
der the hood algorithms for computing basic aggregates, in this work we focus
only on point queries and basic aggregates like COUNT, SUM and AVG. We
develop wavelet-based algorithms that support these query types and evaluate
them against other state-of-the-art techniques.

4 Dynamic Synopsis Maintenance

In this Section, we present an efficient algorithm for the computation and
online maintenance of wavelet synopses. The construction process should be
constrained to a limited memory budget, that is usually much smaller than
the window size (B << W ). This is a realistic requirement in many real-life
applications. For example, embedded devices such as Arduinos1, that are often
met in IoT scenarios, possess memory in the order of KB. Thus, a space budget
B should be defined and cap the number of retained wavelet coefficients. The
theoretical analysis we provide is inline with previous research and synopses
poly-logarithmic in the window size are considered.

1 https://www.arduino.cc/
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Data Stream

{v1, level = 3} {v2, level = 2} {v3, level =1}front 
nodes 
array

(1,1) (1,2) (1,3) (1,4)(1,5) (1,6) (1,7)

(2,1) (2,2) (2,3)

(3,1)

Fig. 2 Error-tree for streaming data.

4.1 Streaming Error-Tree

Similarly to previous works, we operate on the streaming version of an error-
tree [Liu et al. (2010); Karras and Mamoulis (2005)]. Each pair of newly arrived
items is subjected to the wavelet transform and inserted into the error-tree.
During this construction process, at some time t, the number of stream data
that have arrived may be unequal to a power of two. Hence, the error-tree
has not formed a full binary tree as in the static case and unconnected sub-
trees of different heights may exist. That means that there can be at most one
such sub-tree rooted at each error-tree level (thus, ⌊logW ⌋ sub-trees). Figure
2 depicts an example, where there are three unconnected sub-trees of heights:
one, two and three respectively. In order to avoid information loss and be able
to continue the decomposition process, we need to keep track of all sub-trees
in the active window. For this purpose, the front nodes array structure is
used. For each sub-tree, that we want to track, we create a fnode (i.e., a new
element of the front nodes array) annotated with: (i) the timestamp of the
first supported item, (ii) the level of the sub-tree and (iii) the average value of
its data. We then set the created fnode to point to the sub-tree and append it
in the front nodes array, as shown in Figure 2.

Indexing Coefficients. In the streaming error-tree, a wavelet coefficient
ci is indexed by a tuple (li, oi), where li is the level of the coefficient in the
error-tree and oi its order in the specific level. Figure 2 illustrates the indexing
scheme for our example. Given two coefficients ci, cj , where ci is an ancestor
of cj , cj belongs to the left sub-tree of ci if: 2 · oj − 1 < (2 · oi − 1) · 2li−lj .

This work exploits the sliding-window and proposes an efficient represen-
tation that minimizes the space overhead for a coefficient. The key observation
is that we do not have to index an infinite stream but, at any given time, the
synopsis approximates a single window of size W . As the level of a coefficient
can be at most logW , for li we need at most loglogW bits. For reducing the
size of the oi values, which are infinite in an unbounded stream, we use a wrap
around counter o′i =

[
(oi − 1)modW

2li
+ 1

]
that uses log W

2li
bits for a coefficient

in level li. With this scheme and for a window of size 1 billion, a coefficient
needs at most 35 bits for storing both li and oi.
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4.2 Algorithm Outline

Algorithm 1 shows the outline of the streaming algorithm for the construction
of a wavelet synopsis. Each pair of newly arrived data is transformed into a
wavelet coefficient and inserted into the error-tree. The addition of a new coef-
ficient may trigger the creation of more coefficients in higher levels. In Figure
2, when two more items arrive, a new wavelet coefficient will be inserted in the
first level of the error-tree. As there is already one node in the first level, the
two coefficients will be averaged and differenced and create a new coefficient
in level two. The process will be recursively repeated and new wavelet coeffi-
cients are expected to be also added in levels three and four. In general, every
new item in the stream can fire up to ⌈logW ⌉ insert-updates in the wavelet
structure.

Algorithm 1: Streaming Algorithm for Constructing a Sliding-
Window Wavelet Synopsis

input: Stream S, Budget B, Window size W
1 currT ime = 0; wSynopsis = new WaveletSynopsis();
2 for data items in S do
3 currT ime = currT ime + 2; d1, d2 = read(S);
4 wSynopsis.deleteExpired(currentT ime, W );
5 wSynopsis.insert(currT ime,W ,d1, d2);
6 while wSynopsis.size > B do
7 wSynopsis.discardNext();

In line 4, we first check whether there are coefficients that lie outside the
active window and thus have expired. If such coefficients exist, we can safely
discard them releasing this way space without compromising accuracy (they
support a range we are no longer interested in).

Next, we insert the new elements. Depending on the data distribution, the
wavelet transform may produce some zero coefficients. These coefficients are
never inserted in the structure we maintain. If after the insert-step, the size
of the synopsis still exceeds B, we discard coefficients according to a greedy
criterion (will be later discussed) until the size of the synopsis respects the
available budget.

We now delve into the internals of each of the insert, deleteExpired and
discardNext functions.

Insert. The algorithm for the insertion of new coefficients in the synopsis
is presented in Algorithm 2. For each pair of arrived items d1, d2, we perform
averaging and differencing (line 7) and create a new wavelet coefficient ci. If
ci is non-zero, we add it to a min-heap (line 16) in order to specify its order of
deletion. In line 18, we check if ci is the only node at level l. If this is the case,
we create a new fnode (line 19) that points to ci, else we continue the process
at the next level of the error-tree, as explained in the example of Figure 2.
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Algorithm 2: Insert
input: Number of arrived items N , window size W , item d1,item d2

1 f = fnode with lowest level; tmp = null; l = 0

2 maxLevel = log
(

W
logW

)
3 while N > 0 and N mod 2 = 0 do
4 N = N / 2; l = l + 1
5 if l > maxLevel then break
6 if tmp = null then
7 avg = (d1 + d2) / 2; v = (d1 - d2) / 2
8 minCf = maxCf = v
9 else

10 avg = (avg + tmp) / 2; v = tmp - avg
11 minCf = min (prevFnode.minCf, tmpMin, v)
12 maxCf = max (prevFnode.maxCf, tmpMax, v)
13 ci = new WaveletCoef(li = l, oi = N, value = v)
14 ci.maxCoefInSubtree = maxCf
15 ci.minCoefInSubtree = minCf
16 if ci ̸= 0 then put ci in min-heap
17 delete fnode below f
18 if no fnode in level l then
19 f = new Fnode(level = l, value = avg)
20 f.minCf = minCf; f.maxCf = maxCf
21 if l < maxLevel then frontNodesArray.add(f)
22 else topLevelFnodes.add(f)
23 else
24 tmp = f.value
25 tmpMin = f.minCf; tmpMax = f.maxCf;
26 if f.pointer = null then f.pointer = ci
27 f = fnode at next level

According to the proposed algorithm, all fnodes that support a part of the
active window are retained in the synopsis. This is the reason why fnodes are
not inserted into the min-heap. As we will explain in Section 5, this design
choice improves the approximation quality of range queries.

Moreover, in line 5 of the algorithm, we notice that a cap is enforced on
the maximum level of a sub-tree; the wavelet decomposition is not allowed
to continue further than maxLevel levels. This decision permits the existence
of more than one fnodes with maxLevel levels. We store these fnodes in a
separate structure called topLevelFnodes (line 22). We claim that a limit on the
maximum level of the error-tree offers two advantages: i) lower bounded update
times, and ii) allows for the more accurate computation of range queries.

The first claim can be trivially verified. From the while condition of Algo-
rithm 2, we can see that an insert operation can trigger up to logW updates.
For a maxLevel < logW , we directly restrict the number of updates at every
time unit. The impact of maxLevel in the accuracy of range queries will be
discussed in Section 5, where the query answering mechanism is described.

Now, we are going to investigate what is an appropriate value for maxLevel.
A small value offers the advantages we just mentioned. Nevertheless, as all
fnodes are retained in the synopsis, a cap on the maximum level increases
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the space we need to dedicate to the front nodes array. Thus, we need to set
a value such that we enjoy the benefits of a short tree without significantly
increasing space complexity. The value we select is ⌈log

(
W

logW

)
⌉. The following

Lemma shows that with this choice we only require poly-logarithmic space in
the window size for storing the front nodes array.

Lemma 1 Consider a wavelet error-tree T built over W data points. Setting
the constraint that each sub-tree of T cannot have more than ⌈log

(
W

logW

)
⌉

levels, results in storing at most O (logW ) fnodes.

Proof. Let k denote the maximum permitted size for a sub-tree. Thus, within
a window of size W there can be up to ⌈W

k ⌉ such sub-trees, and thus ⌈W
k ⌉

fnodes. As the given budget B is usually poly-logarithmic in W , we want to
store at most O (logW ) fnodes. So, it should hold: W

k ≤ c · logW, c ≥ 1 ⇒ k ≥
W

c·logW . Thus, the minimum sub-tree size we can tolerate without violating
the constraint of O (logW ) fnodes is the first power of 2 that is larger than

W
c·logW and has M = ⌈log

(
W

c·logW

)
⌉ levels. However, the construction process

of a wavelet tree is such that we may have more than ⌈W
k ⌉ sub-trees in the

window. As it is known that Σn−1
i=0 2i = 2n − 1, we can substitute a sub-tree

of size k with up to M − 1 sub-trees of levels l = 1, ..,M − 1. This way, there
are at most ⌈W

k ⌉ − 1 +M − 1 = ⌈W
k ⌉+ ⌈log

(
W

c·logW

)
⌉ − 2 sub-trees and thus

fnodes in the window. As we want to save space, we set c = 1 and in the worst
case we have logW + log

(
W

logW

)
= O(logW ) fnodes.

The cost for inserting new elements in the wavelet synopsis is given by
Lemma 2.

Lemma 2 (Insertion Time) Considering a synopsis size of B = O (logW ),
an arriving pair of data items leads to a worst case insertion time of
O
(
log W

logW · loglogW
)

and Θ
(
log W

logW

)
in the average case.

Proof. The cost of an insert-update consists of the cost of creating new coeffi-
cients and the cost of re-configuring the binary heap. The proof for the worst-
time case is straightforward: As we discussed, an insert-update can lead to the
creation of L new wavelet coefficients, where L is the size of the tree. Since
our algorithm permits only sub-trees of height up to ⌈log

(
W

logW

)
⌉, it follows

that this is also the maximum number of operations that an insert-update can
cause. Moreover, since the synopsis should occupy only poly-logarithmic space,
we assume a min-heap of size B = O (logW ). Thus, the worst-case insertion in
the heap is O (loglogW ). It follows that the total needed worst-case time for up-
dating the synopsis when two new data items arrive is O

(
log W

logW · loglogW
)

.
We now compute Θ complexity. The insertion in a binary heap needs Θ (1)

time on average. The question is how many wavelet coefficients are created with
every new arrival in the average case. Without loss of generality, we assume
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a tree of size N , where N is a power of two. Each arriving item can trigger
the creation of 1 ≤ i ≤ logN coefficients. Since there are N items within the
window, we first compute how many of them create 1 coefficient, how many 2,
etc. Let a (j) denote the number of coefficients within a window that lead to
the creation of paths of length logN−j. We observe that only the last element
can create a path of length logN , i.e., a (0) = 1. The same holds for a path of
length logN − 1. There are two paths in the window that have length at least
logN−1. However, the one of them has length logN and thus, a (1) = 1. With
similar reasoning, we observe that the following recursion holds: a (0) = 1 and
a (j) =

∑j−1
i=0 a (i). As the first two elements of the a (j) sequence add up to

2, it is easy to derive that:

a (j) =

{
1 j = 0

2j−1 j ̸= 0

Since it is known that
∑n−1

i=0 2i = 2n − 1, we observe that:

logN−1∑
j=0

a (j)

N
=

1 +
∑logN−1

j=0 2j

N
=

1 + 2logN − 1

N
= 1

and thus the term a(j)
N can represent the probability of creating a path of

length logN − j. Let the random variable X express the number of updates a
newly arriving data pair yields. The expected value of X can be expressed as:

E(X) =

logN−1∑
j=0

a (j)

N
· (logN − j) =

logN

N
+

logN

N

logN−1∑
j=1

2j−1 − 1

N

logN−1∑
j=1

j · 2j−1 =

logN

N

1 +

logN−1∑
j=1

2j−1

− 1

N

logN−1∑
j=1

j · 2j−1 (2)

We use again the fact that
∑n−1

i=0 2i = 2n − 1 in order to compute the first
term. For k = j− 1, we have:

∑logN−1
j=1 2j−1 =

∑logN−1−1
k=0 2k = 2logN−1 − 1 =

N
2 − 1 and the first term of Equation 2 is equal to logN

2 . For the second term,
it is easily proven that when n is a finite number, it holds:∑n

j=1 j · xj−1 = 1− xn

(1−x)2
+ nxn

1−x . For x = 2 and n = logN − 1, we get that:

logN−1∑
j=1

j · 2j−1 = 1− 2logN−1 − (logN − 1) · 2logN−1 = 1− NlogN

2
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Thus, Equation 2 becomes:

E(X) =
logN

2
− 1

N

(
1− NlogN

2

)
= logN − 1

N

Thus, the total update time for every arrived pair in the stream is Θ (1) ·
Θ
(
logN − 1

N

)
. As for the sub-trees there is the constraint that the maximum

size N is the first power of 2 that is greater than W
logW , the complexity becomes:

Θ
(
log W

logW − 1
N

)
= Θ

(
log W

logW

)
.

Delete Expired. We first check if all fnodes still support the active win-
dow. As an fnode f supports 2f.level data points beginning from f .start, we
have to discard all fnodes with: f .start + 2f.level < currT ime−W . If a fnode
is deleted, so is the whole sub-tree underneath it.

We then scan all the remaining elements to check if there are coefficients
that also need to be removed. The criterion for removing a coefficient ci is:
oi · 2li − 1 < currT ime − W . As we require B = O (logW ), the cost of this
scan operation is also O (logW ).

Discard Next. When budget is exceeded, we need to discard some coeffi-
cients. The heuristic for selecting coefficients to discard depends on the error
metric we need to optimize. If L2-norm is the targeted metric, we should al-
ways keep the B largest coefficients in normalized value. If the minimization
of L∞ is required, we select each time the coefficient ck with the minimum
maximum potential absolute error MAk [Karras and Mamoulis (2005)]. The
MAk value is defined as: maxdj∈leavesk{|errj − δjk · ck|}, where errj is the
signed error for item j, and shows the maximum error that the removal of ck
would produce. In either case, for efficiently identifying the node that should
be discarded and assist the greedy selection, the synopsis is organized as a
min-heap structure. In this work, the L∞ norm is used and the min-heap is
implemented as a binary heap. Lemma 3 gives the cost of deletions either due
to expiration or budget excess.

Lemma 3 (Deletion Time) The time spent in delete operations every time
the synopsis is updated is O (logW ) in both worst and average case.

Proof. Delete operations occur due to either window sliding or a manual co-
efficient removal in order to respect the budget constraint. We observe that
in the permanent state of the algorithm (more than B data items have al-
ready arrived) the synopsis size increases by at most two elements with every
new arrival. Thus, there are at most two deletions that we need to make.
As the deleteExpired function can delete at most one coefficient, the discard-
Next function is called at most twice. The manual removal of a coefficient
results in the extraction of the minimum element of a binary heap. Consid-
ering B = O (logW ), this operation has a worst-case complexity O (loglogW )
and average time Θ (1). As for identifying an expired coefficient we need to
scan the whole synopsis, a O (logW ) operation is needed for both the worst
and average case.
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4.3 Error Guarantees

Regardless of which error-metric is optimized, the constructed synopsis should
be able to provide queries with deterministic guarantees. As shown in [Karras
and Mamoulis (2005)], providing guarantees for point queries demands each
node to maintain the maximum and minimum signed errors of its left and
right sub-trees.

This work also provides deterministic guarantees for range queries. As men-
tioned in Section 2, the value of a SUM query over a range [t1, t2] can be ex-
actly reconstructed, by only using the coefficients cj ∈ path[t1,t2], according to
Equation 1. Here, we observe that under the sliding-window model, the sum
can be computed solely based on the coefficients cj ∈ patht1 , i.e., the ones
that belong to the left path of the queried interval. As it is explained in detail
in Section 5, in the sliding-window model, we expect some sub-trees to be
fully-contained in the query-range and one last sub-tree to partially overlap
with it. Let us consider that [t1, t2] is the range of overlap with the last sub-
tree. Thus, by definition, patht2 is the rightmost path of a full binary tree. As
such, every coefficient cj in patht2\patht1 is expected to have xj = 0 and does
not contribute to the sum, either it is contained in the synopsis or not. Thus,
SUM[t1,t2] =

∑
cj∈patht1

cjxj .
For providing error guarantees, we need to bound this sum. No matter if

we have deleted a coefficient cj or not, the xj value is always known since it
only depends on the coefficient’s position in the error-tree and the query range.
So, if we had some bounds for the deleted (and thus, unknown) coefficients cj ,
such that lj ≤ cj ≤ hj , it would hold:

– xj ≥ 0 ⇒ ljxj ≤ cjxj ≤ hjxj

– xj < 0 ⇒ hjxj ≤ cjxj ≤ ljxj

By summing up these inequalities for all deleted coefficients cj , we obtain
deterministic guarantees for the SUM[t1,t2]. The idea for bounding cj values
is to keep track of the minimum and maximum coefficients in each sub-tree.
In Algorithm 2, we annotate with blue color all required modifications for
tracking minimum/maximum coefficients in each sub-tree.

5 Query Answering

Point queries P (tq) are answered as explained in Section 2, i.e., P (tq) =
Σcj∈pathqδqj · cj + f.value, where f is the corresponding fnode of the sub-
tree where tq belongs. We are now going to focus on the query answering
mechanism for range queries.

Figure 3 depicts a range query AGG (tq). The range of interest [tq, tnow]
is highlighted with grey color. We observe that there are sub-trees which are
fully-contained in the range and a last sub-tree Tp that partially overlaps with
it. Let us denote ts the moment in time that separates Tp with the leftmost
fully-contained sub-tree.
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Data Stream

{v1, level = 3} {v2, level = 2} {v3, level =1}front 
nodes 
array

Query Range

ts

tq

tnow

TP

Fig. 3 Range query answering

For the part of the query that corresponds to fully-contained sub-trees
we can provide an exact answer. Thus, AGG (tq) = AGGapprox⊕AGGexact =
AGG[tq,ts]⊕AGGt>ts , where ⊕ is a function that combines partial aggregates.
This function is a simple addition for the case of COUNT and SUM queries,
while for AVG Lemma 4 holds.

Lemma 4 Let avg (·) and n (·) denote the averaging and counting functions
respectively. The average value of region X =

∪
xi, i = 1, 2, .., k with xi∩xj = ∅

can be computed as:

AV G (X) = ⊕ (avg (x1) , ..., avg (xk)) =
∑ n (xi) · avg (xi)

n (X)

We first show how to compute the exact part of the aggregate and then
discuss how to approximate the range that intersects with the last sub-tree Tp.
Recall that each fnode fi keeps information about the level of its sub-tree Ti

and the average value of the corresponding data elements. Thus, an aggregate
of Ti can be computed solely based on fi. Considering that a data item arrives
at each time unit, a COUNT query can be computed as 2fi.level, the answer
to an AVG query is fi.value and the SUM can be derived by fi.value ·2fi.level.
So, AGGt>ts = ⊕

(
AGGTi

, ..., AGGTj

)
, where {Ti, ..., Tj} are all the sub-trees

that are fully-contained in the range query AGG (tq).
For approximating AGG[tq,ts] we use the wavelet coefficients that lie in

pathtq . We remind that for coefficients cj in pathts\pathtq we expect xj = 0.
As there is exactly one item that arrives at each time unit, we know that
there are ts − tq + 1 items in the range. A SUM query can be approximated
as: SUM[tq,ts] =

∑
cj∈pathtq

cjxj + fp.value · (ts − tq + 1) and an AVG query

can then be easily answered as:
SUM[tq,ts]
(ts−tq+1) . Guarantees for the approximate

AGG[tq,ts] are provided as follows: we traverse pathtq in a bottom-up fashion.
For each position j of the error-tree, we check if coefficient cj exists in the
synopsis. If it does, we compute its contribution cjxj . If it does not, we buffer
the xj value that corresponds to the missing coefficient until we find the next
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coefficient that exists in the synopsis. Then, we use the minimum and max-
imum coefficients stored in this node, in order to bound the contribution of
the missing coefficients.

Thus far, we have assumed that an item arrives at each time unit. How-
ever, in reality, streams may be bursty and arrival rates do not follow a regular
pattern. In order to handle the general case and be able to answer all COUNT,
SUM and AVG queries, we maintain two distinct wavelet structures. The first
one keeps track of a bit-stream {(t, b) , b ∈ {0, 1}} that indicates whether a
tuple has appeared at time t. The second one approximates the value distri-
bution of the actual input stream. Let BW denote the wavelet synopsis of
the bit-stream and VW the synopsis of the value-stream. The procedure for
updating BW,VW is presented in Algorithm 3. Every time t a data item (t, v)
appears, we insert it in VW exactly as explained in Section 4. Moreover, we
insert the tuple (t, 1) in BW and note the time when the update takes place
(line 11). When the stream is inactive and no data arrives, we keep the sys-
tem idle. The next time a tuple arrives after an inactivity period, we insert
t− lastT imeActive− 1 zero values to both BW and VW (line 6). This mech-
anism ensures that a direct mapping between the time and wavelet domains
always exists. Let us also note that keeping two structures does not constitute
a deficiency of the proposed approach. Exponential histograms and waves do
the same in order to support both COUNT and SUM queries.

Algorithm 3: BW-VW updates
1 Initialize BW,VW ;
2 lastT imeActive = 0;
3 for every time tick t do
4 (t, v) = listenToStream();
5 if (t, v) ̸= null then
6 for t∗ in [lastT imeActive+ 1, t) do
7 BW.insert((t∗, 0));
8 VW.insert((t∗, 0));
9 BW.insert((t, 1));

10 VW.insert((t, v));
11 lastT imeActive = t;

At this point, we need to discuss the performance of the update mechanism.
Inserting a single data item into the structure is really efficient (sub-millisecond
latency). However, as we must maintain the mapping between the time- and
wavelet-domains, we also need to pad the stream with zero values. Inserting a
zero-value at a time would signify low latencies but would keep the CPU always
busy. On the other hand, a batch insertion of zeroes can lead to a high update
cost, if the stream remains inactive for a large period of time. We advocate
that by following the batch-update style, we decrease CPU utilization without
severely harming update latency.

The design of our algorithm targets streams where data points are expected
to arrive at each time tick. Assuming that the user knows some rough charac-
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teristics of the underlying stream, she can define the duration of a time tick
based on the expected arrival rate. For example, if we expect items to arrive
once every minute, we are not going to define time ticks in the millisecond-
level, as this would always lead to batch updates. Therefore, the arrival of a
data item can occasionally trigger a batch update but we do not expect it to
happen often.
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Fig. 4 Update latency for various frequencies of inactivity gaps.

In order to validate this claim, we conduct the following experiment: we
track the SUM of a data stream over a window of 1M data points. Each data
item arrives at the next time tick with probability 1 − p, while an inactivity
gap appears with probability p. The length of an inactivity gap is uniformly
distributed in [10− 10K] time ticks. We consider three distinct cases: (i) p =
10%, (ii) p = 30% and (iii) p = 50%. The results are shown in Figure 4.
Inactivity periods affect indeed the performance of the system but even in the
worst case, where gaps appear really often (p = 50%), the average latency
(indicated by the x marker) is only near 1 msec.

We now discuss how this structure is used for query processing. Answering
COUNT queries on the stream is translated into SUM queries on the BW
structure. For instance, if we need to know the number of measurements that
a sensor produced between times t1 and t2, we have to add the 1-bits that
exist in the corresponding time range. SUM queries on the input stream are
answered by the VW structure. Since in the absence of arrived data we insert
zero-values to VW , we do not affect the result of additive operations. For AVG
and point queries, we have to “touch” both structures. For an AVG query, we
compute the sum from VW , the count from BW and divide the results.

Having described the query answering mechanism of the proposed algo-
rithm, we now discuss the impact of limiting the maximum level of a sub-tree.
We saw that an error is introduced only due to the range [tq, ts]. Intuitively, the
higher is the TP wavelet sub-tree, the larger this range can be. By keeping sub-
trees short, we increase the possibility to have more sub-trees fully-contained
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in the query-range and thus, increase the exact part of the answer AGGt>ts .
The following Lemma shows how the maximum level we allow for sub-trees
affects the relation between the [tq, ts] and [ts+1, tnow] ranges.

Lemma 5 Let Q a range query, E =[ts+1, tnow] ⊆ Q the sub-range of Q for
which our structure provides an exact result and A the sub-range of Q that we
need to approximate. It holds that: |A|

|E| ≥
1

2logW .

Proof. We distinguish two cases depending on whether A overlaps with a sub-
tree of height ⌈log W

logW ⌉ or not. Let us initially assume that A overlaps with
a sub-tree of size 2k, with k < ⌈log W

logW ⌉. The maximum length of the range
we need to approximate is |A| = 2k−1. By the wavelet construction, it is
guaranteed that there can be up to k − 1 trees in E of sizes 2, 4, .., 2k−1 and
thus |E| ≤

∑k−1
i=2 2i = 2k. It follows: |A|

|E| ≥
1
2 . We now consider the case where

A overlaps with a sub-tree of size M , where M is the first power of 2 which is
greater than W

logW . In that case, it holds that |E| ≤ W and |A| = M
2 , and so

we have |A|
|E| ≥

M
2W ≥

W
logW

2W = 1
2logW .

Lemma 5 implies that for range queries of length near to W , the proposed
method may have to approximate only the 1

2logW of the query. The larger the
window size, the larger the portion of the query we can exactly compute. For
windows larger than 1 million items, we have to approximate less than 3% of
the queried range. This is a direct consequence of limiting the maximum level
a sub-tree can have. According to the proof, the corresponding ratio in classic
wavelets is 1

2 in the best case.
As factor 1

2logW bounds the range we have to approximate but does not con-
tain information on data values distribution, it favors mostly COUNT queries
but no theoretical guarantees can be given for SUM and AVG. However, the
experiments of Section 9 show that the proposed approach is very robust and
that for queries of length W high quality results are achieved for all examined
datasets, both real and synthetic.

Other methods, such as exponential histograms (EH), provide theoreti-
cal guarantees by tracking query results over time. Instead of approximating
the data distribution of the stream, as this work does, they approximate the
distribution of a query over time. For example, in the case of a SUM query,
they maintain a structure that tracks the SUM at different time intervals. The
benefit of wavelet-based techniques compared to such approaches is flexibility
to handle more generic query types and underlying data distributions. EH-
like techniques are restricted to only handle streams of positive integers and
answer a single query. While due to Lemma 5, our method performs better
when applied to positive numbers, in Section 9, it is shown that it can also be
efficiently applied to streams of arbitrary numerical data.
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6 Distributed Wavelets For Streams

This paper also addresses the problem of tracking basic sliding-window aggre-
gates over the union of local streams in a large-scale distributed system. By
union, we mean a linear combination (e.g., average) of the remote streams. In
the described setting, the remote sites are not allowed to exchange informa-
tion with each other but communicate through the network with a centralized
coordinator node. Let us consider a linear function F applied on a set of N
distributed streams Si, i = 1, .., N . Our goal is to answer COUNT, SUM and
AVG queries on F , i.e., AGG (F (S1, .., SN )), while minimizing communica-
tion; collecting all streaming data is too costly in many real use-cases. There-
fore, similarly to Gilbert et al. (2007), each remote site computes a wavelet
synopsis (WS) on its local stream (S) and it is only the synopses that are sent
to the coordinator. This way, the communication cost is reduced.

The coordinator computes the requested aggregate directly in the wavelet
domain. As Haar wavelets are linear functions of the original streams and F
is also a linear function, if we apply F on the individual synopses WSi, we are
going to get a wavelet synopsis of F (S1, .., SN ). Thus, WS (F (S1, .., SN )) =
F (WS1, ..,WSN ) and we can approximate the query AGG (F (S1, .., SN )) as
AGG (F (WS1, ..,WSN )).

s21     s22  s23    s24   s25    s26  s27  s28s11     s12  s13    s14   s15    s16  s17 s18

c1i c2i

F(c1i,c2i)

F(s11,s21) F(s12,s22)            …                           F(s18, s28)

Stream1 Stream2

Coordinator

Fig. 5 Composition of individual wavelet synopses.

Figure 5 illustrates an example. Sites 1, 2 monitor their local streams s1i, s2i
and construct the corresponding wavelet synopses. At the coordinator node,
we want to track the stream F (s1i, s2i). Instead of collecting the s1i, s2i val-
ues, applying F on them, computing the wavelet transform and constructing
the synopsis, we observe that for each coefficient with index i, it holds that
cmi = F (c1i, c2i), where cmi is the corresponding coefficient in the error-tree
of the coordinator. Thus, it suffices to aggregate the coefficients by index and
compute the F function. The following Lemma shows that the maximum error
guarantees in the wavelet synopsis of the coordinator also follow the F func-
tion. Therefore, we are able to provide deterministic guarantees to queries on
the union of the streams.
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Lemma 6 Let S1, S2, .., SN be N streams and ϵ1k, ϵ2k, .., ϵNk the corresponding
maximum absolute errors for the reconstruction of the data value at t = k. The
corresponding error in the stream F (S1, .., SN ), where F is a linear function,
is F (ϵ1k, ϵ2k, .., ϵNk).

Proof. Since the reconstruction error of stream Si for t = k is ϵik, it holds:
|
∑

δkjcij − dik| ≤ ϵik, where cij are the wavelet coefficients of Si that have
been retained in the synopsis. Let F = a1x1 + .. + aNxN . By applying F on
the above inequalities we get: −aiϵik ≤

∑
δkjcijai − aidik ≤ aiϵik. Summing

up for all streams yields:

|
∑

δkjF (c1j , .., cNj)− F (d1k, .., d2k) | ≤ F (ϵ1k, .., ϵNk)

7 Out-of-Order Arrivals

While so far we have considered time-based streams where items arrive in
order, this is not a real restriction of the algorithm. In favor of completeness,
in this Section it is described how the scheme can be generalized to handle
out-of-order arrivals. In Algorithm 3, we saw that in case arrivals are in order
but a discontinuity in time exists, i.e., the next arrived value has a timestamp
t = tnow+k, k > 1, we pad the stream with zero-values. This way it is ensured
that the wavelet transform is performed over a continuous time domain and
the error-tree contains a path for each possible time t.

It is now described how we handle the case where a tuple (tp, v) with
tp < tnow arrives. The only restriction we have is: tp ≥ tnow − W , i.e., the
tuple should lie within the active window. We first have to find the sub-tree
where this tuple belongs. This can be accomplished by a linear scan over the
fnodes. It is reminded that each fnode f maintains the start point f.start
of its coverage in time as well as its level f.level. Thus, the range it spans
in time is [f.start, f.start + 2f.level]. Then, for the f.level levels of the sub-
tree, we compute the contribution of value v to the wavelet nodes in pathtp .
The contribution of v to a wavelet node ci with index (li, oi) is δij

v
2li

, where
δij = 1 if tp ∈ leftleavesci and −1 otherwise. Each of the newly computed
coefficients ((li, oi), δij

v
2li

) has to be inserted into the synopsis. If a coefficient
((li, oi), vold) already exists for the index (li, oi), then we just update its value
and the quantities that help us provide error guarantees (e.g., MA-value).
If the node that corresponds to index (li, oi) has been deleted, the newly
computed node is directly inserted into the synopsis. Nevertheless, in the latter
case, the new coefficient misses some information (maximum/minimum errors
and coefficients in sub-tree) for providing error-guarantees. For dealing with
this issue, we can find its first available ancestor cj in the error-tree and inherit
that information from there. However, as the ancestor cj covers a larger part
of the time domain than ci does, the max/min values it maintains are derived
not only from the sub-tree rooted at ci but from other sub-trees too. Hence,
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the error-guarantees will still hold but are expected to be loosened compared
to the in-order case.

8 Workload Aware Synopses

Lemma 5 provides an intuition on why the proposed scheme works well in a
variety of cases but also indicates some of its weaknesses: it does not provide
theoretical guarantees and it is not expected to present a good behavior when
the query range is significantly smaller than W . In this Section, we are going
to demonstrate how we can boost performance in these cases too, assuming
we have knowledge of the workload.

Front nodes array F2={v1, level = 5} F1={v2, level = 3}

qi tnowtj

Fig. 6 Example demonstrating the pitfalls in workload-aware sliding-window synopses: If
qi is a query of interest, eventually all coefficients in paths tj > tnow − qi will be requested.
Hence, we have to delete coefficients that we know they will be important in the future.

We consider workload to be a set of fixed queries in the form Q = {q1, q2, ..., qk}
which are known a priori and can be asked at any time. Each qi represents a
range query [tnow − qi, tnow] and thus it should be 0 ≤ qi < W . The problem of
constructing an optimal wavelet synopsis with respect to a set of range queries
has been extensively studied [Guha et al. (2008)]. Guha et al. propose both
DP and heuristic algorithms not only for prefix queries2, which is our case,
but also for the more general case of hierarchical range queries. However, they
examine the static version of the problem where data is fixed and does not
change over time. The real-time requirements we have, and the sliding-window
model render the approach of Guha et al. (2008) inapplicable to our case.

In Section 4 we observed that in order to compute a range sum over
[tj , tnow] we only need the coefficients ci ∈ pathtj . Then, the answer is de-
rived by the fnodes of the sub-trees that are fully contained in the query and
the term

∑
ci∈pathtj

cixi, where tj belongs to the last sub-tree, that partially

2 In prefix range queries, the start (or end) of a range is always the same for all queries
of the workload
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overlaps the query range. If we knew the coefficients ci ∈ pathqj for all qj ∈ Q
then the provided answers would always be exact.

Workload Index

WaveletStore
   (disk-based)

Front Nodes Array

Sub-tree Buffer

In-memory Structures

Cache

cs1 subtrees1

... ...

csj substreesj

cc1 subtreec1

... ...

cci subtreeci

q1 r1

q2 r2

... ...

qk rk

Fm ... F2 F1

Fig. 7 Architecture of the proposed system for workload-aware range queries in sliding-
window streams.

For understanding the extra difficulties the streaming case introduces, we
consider the example of Figure 6. Let us assume a budget of B = 5 coefficients
and a workload Q = {qi}. If we keep in the synopsis the whole pathqi , then at
tnow = t1 we will be able to provide an exact answer. Nevertheless, in order to
achieve this, we have discarded all the other coefficients in the active window.
Hence, since we always care for qi, in a later time (e.g., tnow = t1 + 9), the
coefficients of pathtj (annotated with green color) will be of interest but they
will have already been deleted.

In order to overcome this obstacle, this work introduces a system design
that violates the “one-pass” over the data feature but offers very interesting
trade-offs between accuracy and real-time responsiveness. Besides the limited
memory, many IoT devices are also equipped with a secondary storage (e.g.,
SD card3) with larger capacity but which is more “expensive” to access. Based
on this observation, the system of Figure 7 is proposed. According to the
presented design, we do not keep in-memory the whole wavelet synopsis as
before, but only the front nodes array and some helping structures that are
going to be explained. Moreover, there is an analysis that shows that the
helping structures we maintain do not incur a memory overhead larger than
O(logW ) and thus, the memory constraints still hold.

The main idea of the system is the following: as data items arrive, the
Haar wavelet transform is dynamically computed. However, as soon as a
new coefficient is created, it is persisted into the WaveletStore: a disk-based

3 https://www.arduino.cc/en/reference/SD
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storage device. This way we can retrieve in the future coefficients that have
been discarded. Please also note that as write operations are performed asyn-
chronously, the ingestion of data into the disk does not delay the construction
of the synopsis. In order to answer a query, we perform a lookup in the Work-
load Index. This is a structure that contains the materialized results for the
queries of interest. For having fresh data in the Workload Index, we need to
continuously update it. An update consists of computing the answer for each
query qi ∈ Q. As usually, the computation of a query qi consists of two parts:
(i) one fully contained in range and (ii) a sub-tree that partially overlaps with
it. For the part of the query that is fully contained in the range, we derive the
answer by using the front nodes array. But for the last sub-tree, we can now
retrieve the coefficients cj ∈ pathqi from the WaveletStore. A naive solution
would require O

(
⌈log W

logW ⌉
)

GET operations, i.e., as many as the coefficients
in a maximal path. Nevertheless, such an approach would result in excessive
accesses of the considerably more expensive secondary storage and would de-
feat the purpose of the fast, in-memory approximate query processing.

In the following, we present how we can limit disk accesses and create a
fast system that can accurately answer workload-aware range queries under
the sliding-window model.

8.1 Disk Access Patterns

The data organization on disk plays a crucial role on the system’s perfor-
mance. In this Section, we discuss how data should be stored and retrieved in
order to obtain better response times compared to the naive solution where a
logarithmic number of GET requests is required for each query. In the follow-
ing discussion, we assume the WaveletStore to be any disk-based lightweight
key-value store.

8.1.1 Path-based Organization

The first approach for limiting the number of issued GET requests per query
is to store in a single value all the coefficients that have been created at a
specific time. Let us denote P (t) the set of coefficients that are created at t.
Thus, at each time t, we persist a key-value of the form:

(key, value) = (t, P (t))

As all |P (t)| coefficients must have been created before they are persisted
on disk, a buffer of size |P (t)| should exist. According to Section 4, the ar-
rival of two data items can trigger the creation of up to O

(
⌈log W

logW ⌉
)

new

coefficients, and thus the memory overhead of this approach is O
(
⌈log W

logW ⌉
)

.
For the query answering, consider the example of Figure 8. The construc-

tion process of the error-tree implies that all coefficients that are surrounded
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Front nodes array F2={v1, level = 5} F1={v2, level = 3}

qi tnowtj tk

A

B

C

Fig. 8 Example of the path-based data organization.

by curve A have been created at tnow − qi, and thus are stored in a single
key-value (tnow − qi, P (tnow − qi)). Similarly, the coefficients surrounded by B
have been created at tj and by C at tk. For computing qi, we need to fetch
from disk P (tnow − qi), P (tj), P (tk) and filter in memory the coefficients that
belong to pathqi . This way, for the example of Figure 8, we perform 3 GET
requests instead of the 5 that the naive approach requires. Lemma 7 places
the bounds for the improvements this approach can bring.

Lemma 7 For reconstructing the exact answer, the path-based organization
needs 1 GET in the best case and has the same behavior as the naive approach
in the worst case.

Proof. The worst case is observed when the start of the query range is near to
the leftmost path of a sub-tree. In that case, each coefficient of the path has
been created at a different time and thus, O

(
⌈log W

logW ⌉
)

GETs are required.
The best case is observed, if we query the rightmost path of a sub-tree. The
rightmost path is wholly created at a single time moment and can be fetched
with a single request.

8.1.2 Subtree-based Organization

Similarly to Section 2, the subtree-based organization partitions the error-tree
into sub-trees of fixed size s4. For persisting a sub-tree into the WaveletStore,
we use as key the index of its root coefficient and as a value the sub-tree itself.
Hence, we have key-values of the form:

(key, value) = ((r(S).level, r(S).order), S)

where S denotes a sub-tree and r(S) its root coefficient. This approach is
more time-efficient as it achieves better locality and retrieves more “useful” co-
efficients with a single GET request. However, this is accomplished at the cost

4 The size of a partition is of the form s = 2k − 1, k > 0
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Front nodes array {v1, level = 4} {v2, level = 2} {v3, level = 1}
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r 1
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r 2

qi

Fig. 9 Example of the subtree-based data organization.

of a higher memory overhead. Figure 9 depicts an example where partitions
of size 7 are annotated. We observe that this partitioning scheme divides the
error-tree into layers and at any time there can be at most one semi-completed
partition at each layer. Partitions that are not yet fully completed should be
buffered in memory. Buffering sub-trees until they are flushed to disk is re-
sponsibility of the Sub-tree Buffer component which is illustrated in Figure
7.

Since we can have at most one semi-completed partition at each sub-tree
layer, the memory overhead the Sub-tree Buffer incurs is:

O(s ·#Layers) = O(s · ⌈log W

logW
⌉/⌊log(s)⌋)

A question that naturally arises is what is a proper value for s. The con-
ducted experiments in Section 9 indicate that the larger the value of s the
higher is the memory consumption and the better is the query response time.
Moreover, the experiments suggest that the optimal s-value is dependent on
the window size W . Setting s equal to a sub-linear function of the window
size, such as logW , leads to log2W space complexity and thus, the constraint
for poly-logarithmic memory is not violated.

For answering queries under this model, we traverse pathqi in a top-down
manner and fetch from disk the sub-trees that intersect with the path. As
some sub-trees of interest may reside in the Sub-tree Buffer and have not been
persisted on disk yet, we also check if the query-path intersects with any of
the sub-trees contained in memory.

The improvements on disk-accesses that can be achieved with the subtree-
based approach are presented in Lemma 8.

Lemma 8 The subtree-based organization can reconstruct the exact answer
without any disk access in the best case and with at most ⌈log( W

logW )⌉/⌊log(s)⌋
GET requests in the worst case.

Proof. The best case occurs when the query asks for one of the s rightmost
paths of the sub-tree. In that case, it can be answered solely based on the
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Sub-tree Buffer and no disk access is needed. In the worst case, the query
asks for a path of a maximum height sub-tree (⌈log W

logW ⌉) that does not have
any overlap with the Sub-tree Buffer. Thus, there are ⌈log( W

logW )⌉/⌊log(s)⌋
partitions/sub-trees that need to be fetched from the secondary storage.

8.2 Maximizing Throughput

Selecting a good data placement in the secondary storage helps improving per-
formance but there are still too many disk accesses that need to be made. The
experiments of Section 9 show that even with the subtree-based organization
the throughput of maintaining the wavelet structure is 8× lower than the one
achieved by the algorithm of Section 4 that works completely in-memory. For
speeding-up construction, two key-ideas are used: (i) AQP and (ii) caching.

8.2.1 AQP

So far, the presented algorithms traverse the whole pathqi and compute an
exact answer. However, this is too costly as very frequent disk accesses take
place. Thus, it is suggested to fetch only the g topmost partitions that intersect
with pathqi . Retrieving from disk only a part of the path (g · s coefficients)
leads to an approximate answer but favors performance. Intuitively, loading
the topmost coefficients of a path yields better quality results, since these
coefficients contribute to a larger part of the query range. Error guarantees are
provided in exactly the same way as described in Section 4.3. The evaluation
of Section 9 shows that there are very interesting speed-accuracy trade-offs to
explore by experimenting with different g values.

8.2.2 Caching

For further boosting the synopsis’ construction throughput, a small cache is
also used, as shown in Figure 7. Similarly to Sub-tree Buffer, the cache is
allowed to contain at most a logarithmic number of sub-trees/partitions.

By observing Figure 9, we notice that each partition that intersects with
pathqi for a given query qi, is going to be present in many consecutive GET
requests. That means that each partition will be fetched from disk multiple
times. Retrieving over and over the same data incurs a significant overhead that
we can mitigate with caching. Having available memory space for c partitions,
the idea is to cache the c partitions that are requested by the workload and will
be “active” for the longest period of time. The time a partition stays active
depends on its layer; a partition of size s in layer L has a time coverage of
length: (s + 1)L. In the simple example of Figure 9, by considering a cache
capable of storing a single partition, we can avoid 63 GET requests. For many
distributions, retrieving from disk even only the topmost partition for a query
can lead to very accurate results. This fact in combination with the caching
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mechanism create a fast and accurate system where the secondary storage is
merely accessed for retrieving data values.

9 Experimental Evaluation

In this Section, the experimental evaluation of the proposed streaming algo-
rithms is presented. Algorithms are compared in terms of accuracy and mem-
ory consumption. As accuracy we measure the real observed relative error,
i.e.,

Real Error = |precise answer − approximate answer|
precise answer · 100%

For the disk-based approach of Section 8, the goal is to explore the speed-
accuracy trade-off that the secondary storage incurs. Thus, only for this case,
synopsis construction throughput experiments are also considered.

Algorithms. Henceforth, SW2G (Sliding Window Wavelets with Guar-
antees) denotes the in-memory, approximate algorithm that is presented in
Section 4. SW2G is compared to the following techniques: (i) Exponential
Histograms (EH) [Datar et al. (2002)], (ii) Deterministic Waves (DW ) [Gib-
bons and Tirthapura (2002)] and (iii) the classic wavelet structure (WVLT) as
discussed by Liu et al. (2010) for sliding-windows. EH and DW are determinis-
tic structures that provide theoretically ϵ-approximate results in COUNT and
SUM queries for positive integers. However, it is proven [Datar et al. (2002)]
that for general SUM queries that also include negative numbers, providing
theoretical guarantees requires Ω (W ) bits and these methods cease to work.
As the guarantees of the proposed method of this work are computed while
constructing the synopsis and are not theoretical, we demonstrate the results
of the proposed approach even for the case of arbitrary data values.

All single-stream algorithms are implemented in Java 8, except for the
exponential histograms where the Scala implementation of Algebird (2019) is
used. For the distributed algorithms, the Apache Flink 1.6 stream processing
framework is employed. The Flink implementation for distributed exponential
histograms is based on the Java code of Papapetrou et al. (2012). For the
workload-aware case, where a disk-based secondary storage is required, a port
of the LevelDB5 key-value store in Java has been used.

Queries. The considered workloads are mainly range queries (COUNT,
SUM, AVG) in the form described in Section 2. This is the most common query
type in the sliding-window context. Moreover, the performance of wavelets in
sliding-window aggregates has not been studied before. In order to demon-
strate the generality of the proposed approach, in Section 9.5, aggregates over
arbitrary ranges are also considered as well as point queries.

Datasets. For the assessment of the proposed algorithms, both synthetic
and real data is used. Synthetic data is used for experimenting with vari-
ous data distributions. The generated data values lie in the range [0− 1000]

5 https://github.com/dain/leveldb
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Fig. 10 Relative error in streams of positive integers (query length = W ).

and follow a uniform, normal or highly biased (s = 2) zipf distribution. As
real data, we use the sensor measurements provided by NOAA (2019). From
the various attributes contained in NOAA, the temperature (noaaTemp) and
wind-speed (noaaSpeed) time-series are selected. NOAA time-series consist of
both positive and negative numerical data.

Platform. All single-stream algorithms are executed on top of a server
with 8 Intel(R) Xeon(R) CPU E5405 @ 2.00GHz processors and 8 GB of main
memory. For the experiments on distributed streams, a cluster of 4 machines
with the same processing and memory capabilities is used.

9.1 Positive Integers

In the first experiment, SW2G is evaluated over a single stream of positive
integers. As this is the only case where EH and DW can be applied, a direct
comparison among the various methods can be performed.

Figure 10 presents accuracy results for various data distributions and win-
dow sizes. We consider streams of 400 millions data points and window sizes
in the range of [10k, 100M ]. At random times, we query each structure for the
COUNT, SUM or AVG of the stream elements over the last W time units.
In the case of the noaaTemp dataset, a more complex query is computed: we
filter the stream on the fly and compute the average temperature only for
tuples having a temperature larger than 86F . In favor of a fair comparison,
algorithms are tuned to use approximately the same amount of memory. In
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Fig. 11 Memory consumption in streams of positive integers (query length = W ).

EH and DW, the tuning knob of memory consumption is the guaranteed error
ϵ and for the wavelet-based techniques, the available budget B.

EH and DW respect the theoretical guarantees and both achieve an average
error near 4% for all datasets. The vanilla wavelet method, while performing
well in uniform distributions, it presents considerably large errors for the other
two datasets. Particularly for noaaTemp, as WVLT can reach up to a 60%
relative error, it cannot provide an acceptable solution to the problem. By
being near precise in all demonstrated cases, SW2G appears to be the best
alternative for approximating the examined datasets.

Please recall that in sliding window range queries, an error is introduced
only due to the overlap of the query range with the last bucket of the active
window. Techniques like EH and DW control the size of the last bucket in a way
that provides theoretical guarantees. By putting a constraint on the maximum
level of a sub-tree, SW2G also controls the size of the last bucket. WVLT is
not designed with range queries in mind; the whole window can be covered
by a single tree of size W . Thus, WVLT presents an unstable behavior where
quality highly depends on the current state and structure of the error-tree.

The overlap with the last bucket is also the cause for the high quality results
of SW2G compared to EH and DW. Both these techniques assume that half of
the last bucket’s items lie in the range of interest. On the other hand, wavelet-
based techniques can more accurately approximate the number of items that
should be considered. By combining the powerful wavelet structure and the
idea of limiting the maximum size of an error-tree, SW2G manages to present
the best results in all cases.
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Figure 11 illustrates the corresponding memory consumption. We observe
that as window size increases, we need to consume more memory in order to
preserve error guarantees. We see that DW is the most expensive among the
evaluated methods. Moreover, we observe that COUNT queries use slightly less
memory than SUM ones and AVG queries need the largest amount of memory
since we have to maintain two structures for each algorithm: one that keeps
track of counts and one for sums. However, in all cases, memory consumption is
negligible. In the case of W = 100M , the footprint of the exact solution is 400
MB, while all approximation techniques need only around a single kilobyte.
Especially in the case of SW2G, 1 Kb is enough for achieving a relative error
lower than 1% in all demonstrated cases.
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Fig. 12 Memory for ϵ = 0.01

Figure 12 illustrates the memory EH and DW need in order to achieve
the same performance as SW2G when W = 10M . For this purpose, we set
ϵ = 0.01 for both EH and DW and issue SUM queries to all datasets. In the
case of noaaTemp, we notice that DW needs 7× and EH 4× the memory that
SW2G requires.

As window size does not affect accuracy, in all subsequent experiments we
set W to 10M .

9.2 Out-of-order Arrivals

Here, we assess the impact that out-of-order tuples have on accuracy. We con-
sider again streams of positive integers and evaluate accuracy for a variety of
data-value distributions. Specifically, we track the SUM-statistic and measure
the relative error when there is a varying percentage of out-of-order tuples.
As in reality late arrivals occur due to network glitches or delays, we do not
expect them to be too frequent. In our experiment, we consider three degrees
of lateness: (i) 1%, (ii) 10% and (iii) 30% of tuples are expected to appear
out-of-order.

Results are presented in Table 2. As we can see, our structure efficiently
handles out-of-order arrivals and the temporal ordering of the stream does not
seem to have a significant impact on the quality of results.
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Table 2 Relative error(%) for SUM queries with a varying degree of out-of-order tuples

Data-Value Percentage of late tuples
Distribution 1% 10% 30%

Uniform 2.5 2.3 2.4
Zipf(s = 2) 2.1 3.6 3.4

Normal(µ = 100, σ = 20) 1.6 2.2 2.5

9.3 Streams of Generic Numerical Data

In the case of positive numbers, we demonstrated that the proposed approach
outperforms existing techniques. In this Section, the applicability and effi-
ciency of SW2G are examined in more general cases, where the stream also
includes negative values. We experiment with SUM queries in real and syn-
thetic data. Uniform and zipf synthetic distributions are used, where each data
point di is drawn from range [0, 1000] and is converted to the corresponding
negative value −di with a probability of 1

2 . Since EH and DW do not work for
negative numbers, they are not considered for these experiments.
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Fig. 13 Relative error in streams of arbitrary numerical data.

First, queries of length W and W/8 are computed on the noaaTemp and
noaaSpeed datasets. As the value distribution of the NOAA datasets does
not present a great variance, it can be easily approximated by wavelets. As
such, both SW2G and WVLT achieved relative errors less than 1% in both
workloads.

In order to stress wavelet algorithms, the described synthetic distributions
are used. As each subsequent data point can vary from −1000 to 1000 large
discontinuities appear and the distribution becomes hard to approximate.

Figure 13 illustrates relative error with respect to the consumed amount
of memory. We observe that for both distributions and query lengths, SW2G
converges better than WVLT as memory increases. In the case where the query
is applied over the whole window, a budget size of W/10 is enough to achieve
an error less than 10% both for the uniform and the zipfian data.
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9.4 Evaluating Workload Aware Synopses

In this Section we evaluate the described system of Section 8 and explore
the trade-offs it can achieve between construction throughput and accuracy.
For all the experiments of this Section, we consider a workload of a single
query, i.e., Q = {qi}. The query qi is randomly selected in the range [1,W ].
As it is shown, even a single query is enough to showcase the implications of
the secondary storage as well as the worst- and best-case performance of the
proposed system.
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Fig. 14 Experiments on disk placement parameters.

9.4.1 Disk Organization Parameters

First, we assess the proposed methods for organizing data in the secondary
storage. As here we want to investigate the pure impact of disk, for the ex-
periments of this Section, we compute an exact answer by fetching the whole
pathqi and the caching mechanism is turned off.

Figure 14-(a) illustrates the throughput of constructing a synopsis when
the subtree-based organization is used and for various partition sizes. In the
Figure, we denote with Sk a partition that contains k wavelet nodes. The
results suggest that in general larger partitions achieve better throughput.
We observe that the smallest partition S7 is always outperformed and in the
case of a window W = 1M , performance results strictly follow the order of
partition sizes; the run for the largest partition S63 is the fastest one, the
run for S31 comes second, etc. However, we also notice that performance-
wise, the optimal partition size is dependent on the window. For windows
smaller than W = 1M , further increasing the partition size does not have
an impact on throughput. For the remainder of this Section, partitions of
15 wavelet coefficients are considered. Larger partitions may achieve better
running-time results but consume more memory. As we want the Sub-tree
Buffer to be of poly-logarithmic space in the window size, partitions have
been selected in a way to achieve a good trade-off between running-time and
memory consumption.
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Fig. 15 Impact of # GETs/query on throughput and relative error.

Figure 14-(a) presents a comparative analysis among the various data or-
ganizations on disk. The subtree-based organization is 1.5× as fast as the
path-based and 2× as fast as the naive one for all evaluated window sizes.
Nevertheless, we notice that as the window size increases, throughput drops.
When the secondary storage is involved, computing the exact answer for a
window W = 1M is 7.5× more expensive, with respect to throughput, than
using the in-memory SW2G.

9.4.2 Exploring the Time-Accuracy Trade-off

In Figure 13, we noticed that under some circumstances SW2G does not behave
well. More specifically, when the stream contains negative numbers, the budget
space is small and the query range is much smaller than W , the relative error
increases considerably.

In this Section, it is demonstrated how the proposed system comes to the
rescue when workload information exists. Based on the above observations,
first, we create adversarial conditions for SW2G and test its running-time and
accuracy for various distributions. The results for SW2G are shown in Table 3.
Figure15 shows the corresponding results when the proposed workload-aware
system is employed.

For all examined distributions, Figure 15-(c) shows that even a single GET
query to the secondary storage can ensure a relative error lower than 30%; that
is a 90% improvement compared to SW2G. When two GETs are issued per
query, the corresponding error drops to lower than 10%, while three GETs
provide an almost exact result.
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Table 3 Running-time and accuracy performance of SW2G for various distributions

Metric Uniform Zipf Normal
Throughput (ops/sec) 400K 385K 345K

Relative Error % 60 390 159

Figure 15-(a) presents the corresponding throughput results when caches
are disabled. The first GET request to the disk has a cost of 40% performance
degradation compared to SW2G. However, the situation is much better when
caches are enabled. In that case, the cost in throughput is less than 15%. Thus,
for all distributions, the proposed system can achieve an error lower than 30%
with minimal performance overheads.

9.5 General Range and Point Queries

SW2G and WVLT are also evaluated in other query types such as aggregates
over arbitrary ranges and point queries.

Table 4 shows the results for a workload of random AVG queries where
the limits of the queried ranges are selected at random. For this experiment,
a 200Kb-sized synopsis is used. Moreover, all datasets contain both positive
and negative values.

Table 4 Relative error for AVG queries with random ranges

Dataset SW2G WVLT % Gain
uniform 27 126 78
zipf 53 61 13

noaaTemp 0.12 1.04 88
noaaSpeed 0.75 5.4 86

Depending on the data distribution, the performance of both algorithms
varies. However, SW2G consistently outperforms WVLT, demonstrating this
way the contribution of this work to the wavelet structure for tackling range
queries.

Figure 16 demonstrates the results for point queries. The applied workload
in this case is the following: Every W time units, we ask for the value of
every item in the range [t−W, t], where t is the current time. Both algorithms
achieve the same accuracy in all examined cases. Thus, while optimizing for
range queries, the performance of the proposed algorithm in point queries is
not compromised. As noticed in Figure 16a, the distribution of the noaaSpeed
dataset needs more space than W/100 in order to be accurately represented.
However, error drops as space budget is increased. Having available W/10 of
memory leads to an error less than 20% for the 70% of the workload.
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Fig. 16 CDF of relative error in point queries.

9.6 Distributed Streams

This Section examines the behavior of SW2G in a distributed environment of
multiple streams. In this scenario, we track range queries in the average of the
streams. Each stream maintains a local synopsis; a coordinator node collects
wavelet coefficients from all streams and composes a global synopsis which is
used to answer queries. SW2G is compared with the distributed version of EH
which is described in Papapetrou et al. (2012). For distributed exponential
histograms we set an error of ϵ = 0.1 both for the coordinator and all remote
streams.
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Fig. 17 Relative error and communication cost in distributed streams.

Figure 17 shows the real relative error and the communication cost for
synthetic data of uniform and normal distributions. Results are presented for
2 up to 16 streams. For each setup we plot the average error of the issued
workload and the total bytes sent over the network each time the streams emit
their local synopses. Although EH are configured with ϵ = 0.1 and according
to Papapetrou et al. (2012) are expected to have an error up to 2ϵ+ ϵ2 = 21%,
they present a maximum error of only 2%. SW2G performs even better and
is almost exact in all cases. Furthermore, the guarantees it provides do not
exceed 9%. As expected, communication increases linearly to the number of
streams for both techniques.
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10 Conclusion

In this paper we investigate the usability of wavelets for approximating streams
under the sliding-window model. As wavelets have been extensively studied for
point queries, we design algorithms carefully optimized for the case of range
queries. Traditional techniques such as exponential histograms and determin-
istic waves are restricted to track a single type of query and only work with
streams of positive numbers. With the use of wavelets we opt for a more generic
solution where the same structure can be used to answer both aggregates and
point queries over arbitrary ranges and data. Moreover, we propose a system
that can take advantage of secondary-storage and provide interesting trade-
offs between accuracy and running-time performance. The experimental eval-
uation indicates that with a minimal penalty in performance, we can obtain
near accurate results for a variety of data distributions and query workloads.

References

Algebird (2019) Abstract algebra for scala. https://twitter.github.io/algebird/
Babcock B, Datar M, Motwani R, O’Callaghan L (2003) Maintaining variance and k-medians

over data stream windows. In: Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, ACM, pp 234–243

Busch C, Tirthapura S (2007) A deterministic algorithm for summarizing asynchronous
streams over a sliding window. In: Annual Symposium on Theoretical Aspects of Com-
puter Science, Springer, pp 465–476

Carney D, Çetintemel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul
N, Zdonik S (2002) Monitoring streams: a new class of data management applications.
In: Proceedings of the 28th international conference on Very Large Data Bases, VLDB
Endowment, pp 215–226

Chakrabarti K, Garofalakis M, Rastogi R, Shim K (2001) Approximate query processing
using wavelets. The VLDB Journal—The International Journal on Very Large Data
Bases 10(2-3):199–223

Chan HL, Lam TW, Lee LK, Ting HF (2012) Continuous monitoring of distributed data
streams over a time-based sliding window. Algorithmica 62(3-4):1088–1111

Cohen E, Strauss M (2003) Maintaining time-decaying stream aggregates. In: Proceedings
of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, ACM, pp 223–233

Cormode G, Garofalakis M, Sacharidis D (2006) Fast approximate wavelet tracking on
streams. In: International Conference on Extending Database Technology, Springer, pp
4–22

Cortes C, Fisher K, Pregibon D, Rogers A (2000) Hancock: a language for extracting sig-
natures from data streams. In: Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp 9–17

Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding
windows. SIAM journal on computing 31(6):1794–1813

Ganguly S, Garofalakis M, Rastogi R, Sabnani K (2007) Streaming algorithms for ro-
bust, real-time detection of ddos attacks. In: Distributed Computing Systems, 2007.
ICDCS’07. 27th International Conference on, IEEE, pp 4–4

Garofalakis M, Gibbons PB (2002) Wavelet synopses with error guarantees. In: Proceedings
of the 2002 ACM SIGMOD international conference on Management of data, ACM, pp
476–487

Garofalakis M, Kumar A (2004) Deterministic wavelet thresholding for maximum-error met-
rics. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, ACM, pp 166–176



38 Ioannis Mytilinis et al.

Gibbons PB, Tirthapura S (2002) Distributed streams algorithms for sliding windows. In:
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and ar-
chitectures, ACM, pp 63–72

Gilbert AC, Kotidis Y, Muthukrishnan S, Strauss M (2001) Surfing wavelets on streams:
One-pass summaries for approximate aggregate queries. In: Vldb, vol 1, pp 79–88

Gilbert AC, Kotidis Y, Muthukrishnan S, Strauss MJ (2003) One-pass wavelet decomposi-
tions of data streams. IEEE Transactions on Knowledge & Data Engineering (3):541–554

Gilbert AC, Kotidis I, Muthukrishnan S, Strauss MJ (2007) Method and apparatus for using
wavelets to produce data summaries. US Patent 7,296,014

Guha S (2005) Space efficiency in synopsis construction algorithms. In: Proceedings of the
31st international conference on Very large data bases, VLDB Endowment, pp 409–420

Guha S, Harb B (2005) Wavelet synopsis for data streams: minimizing non-euclidean error.
In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, ACM, pp 88–97

Guha S, Harb B (2008) Approximation algorithms for wavelet transform coding of data
streams. IEEE Transactions on Information Theory 54(2):811–830

Guha S, Park H, Shim K (2008) Wavelet synopsis for hierarchical range queries with
workloads. The VLDB Journal—The International Journal on Very Large Data Bases
17(5):1079–1099

Karras P, Mamoulis N (2005) One-pass wavelet synopses for maximum-error metrics. In:
Proceedings of the 31st international conference on Very large data bases, VLDB En-
dowment, pp 421–432

Karras P, Mamoulis N (2007) The haar+ tree: a refined synopsis data structure. In: Data
Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, IEEE, pp 436–
445

Karras P, Sacharidis D, Mamoulis N (2007) Exploiting duality in summarization with deter-
ministic guarantees. In: Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, pp 380–389

Li T, Li Q, Zhu S, Ogihara M (2002) A survey on wavelet applications in data mining. ACM
SIGKDD Explorations Newsletter 4(2):49–68

Liu KH, Teng WG, Chen MS (2010) Dynamic wavelet synopses management over sliding
windows in sensor networks. IEEE Transactions on Knowledge and Data Engineering
22(2):193–206

Madden S, Franklin MJ (2002) Fjording the stream: An architecture for queries over stream-
ing sensor data. In: Data Engineering, 2002. Proceedings. 18th International Conference
on, IEEE, pp 555–566

Matias Y, Portman L (2003) Workload-based wavelet synopses. Tech. rep., Technical report,
Department of Computer Science, Tel Aviv University

Matias Y, Vitter JS, Wang M (1998) Wavelet-based histograms for selectivity estimation.
In: ACM SIGMoD Record, ACM, vol 27, pp 448–459

Muthukrishnan S (2005) Subquadratic algorithms for workload-aware haar wavelet synopses.
In: International Conference on Foundations of Software Technology and Theoretical
Computer Science, Springer, pp 285–296

Mytilinis I, Tsoumakos D, Koziris N (2019) Maintaining wavelet synopses for sliding-window
aggregates. In: Proceedings of the 31st International Conference on Scientific and Sta-
tistical Database Management, ACM, pp 73–84

NOAA (2019) National oceanic and atmospheric administration.
https://www1.ncdc.noaa.gov/pub/data/noaa/

Papapetrou O, Garofalakis M, Deligiannakis A (2012) Sketch-based querying of distributed
sliding-window data streams. Proceedings of the VLDB Endowment 5(10):992–1003

Qiao L, Agrawal D, El Abbadi A (2003) Supporting sliding window queries for continuous
data streams. In: Scientific and Statistical Database Management, 2003. 15th Interna-
tional Conference on, IEEE, pp 85–94

Rivetti N, Busnel Y, Mostefaoui A (2015) Efficiently summarizing distributed data streams
over sliding windows. PhD thesis, LINA-University of Nantes; Centre de Recherche en
Économie et Statistique; Inria Rennes Bretagne Atlantique

Shah Z, Mahmood AN, Tari Z, Zomaya AY (2017) A technique for efficient query estimation
over distributed data streams. IEEE Transactions on Parallel & Distributed Systems



Workload-Aware Wavelet Synopses for Sliding Window Aggregates 39

(10):2770–2783
Stollnitz EJ, DeRose TD, Salesin DH (1996) Wavelets for computer graphics: theory and

applications. Morgan Kaufmann
Vitter JS, Wang M (1999) Approximate computation of multidimensional aggregates of

sparse data using wavelets. In: Acm Sigmod Record, ACM, vol 28, pp 193–204
Xu B, Tirthapura S, Busch C (2008) Sketching asynchronous data streams over sliding

windows. Distributed Computing 20(5):359–374
Yao Y, Gehrke J, et al. (2003) Query processing in sensor networks. In: Cidr, pp 233–244
Zhu Y, Shasha D (2002) Statstream: Statistical monitoring of thousands of data streams in

real time** work supported in part by us nsf grants iis-9988345 and n2010: 0115586. In:
VLDB’02: Proceedings of the 28th International Conference on Very Large Databases,
Elsevier, pp 358–369


