
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Scaling the Construction of Wavelet Synopses
for Maximum Error Metrics

Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

Abstract—Modern analytics involve computations over enormous numbers of data records. The volume of data and the stringent
response-time requirements place increasing emphasis on the efficiency of approximate query processing. A major challenge over the
past years has been the construction of synopses that provide a deterministic quality guarantee, often expressed in terms of a
maximum error metric. By approximating sharp discontinuities, wavelet decomposition has proved to be a very effective tool for data
reduction. However, existing wavelet thresholding schemes that minimize maximum error metrics are constrained with impractical
complexities for large datasets. Furthermore, they cannot efficiently handle the multi-dimensional version of the problem. In order to
provide a practical solution, we develop parallel algorithms that take advantage of key-properties of the wavelet decomposition and
allocate tasks to multiple workers. To that end, we present (i) a general framework for the parallelization of existing dynamic
programming algorithms, (ii) a parallel version of one such DP algorithm, and (iii) two highly efficient distributed greedy algorithms that
can deal with data of arbitrary dimensionality. Our extensive experiments on both real and synthetic datasets over Hadoop show that
the proposed algorithms achieve linear scalability and superior running-time performance compared to their centralized counterparts.

Index Terms—Approximate Query Processing, Wavelet Synopses, Hadoop, Distributed Runtimes, Maximum Error Metrics

F

1 INTRODUCTION

T HE technological and societal developments of our era have
resulted in an unprecedented production and processing of

enormous data volumes, referred to with the term ‘Big Data’.
Businesses, government organizations and digital infrastructures
alike contribute to this Big Data reality. This abundance of datasets
has in turn given rise to data-driven approaches in both academia
and industry. Yet, there exist cases where existing data processing
tools have become the bottleneck. When huge heterogeneous data
is the case, even the fastest database systems can take hours or
even days to answer the simplest of queries [1]. As data-driven
discovery is often an interactive and iterative process [2], such
response times are unacceptable to most users and applications. In
order to meet the demands of interactive analytics, both commer-
cial and open source systems continuously strive to provide lower
response times through various techniques such as parallelism,
indexing, materialization and query optimization.

Traditionally, most of these approaches try to better utilize
available memory. However, keeping all useful data in main
memory may not be an affordable or realistic option in the Big
Data era. Even caching only a working-set of some GB does not
do the trick. As analytics usually include streaming and iterative
processes, loading different parts of the dataset each time incurs
significant delays that may be not acceptable.

Approximate query processing has emerged as a viable al-
ternative for dealing with the huge amount of data and the
increasingly stringent response-time requirements [1]. Due to the
exploratory nature of many data analytics applications, there exists

• Ioannis Mytilinis and Nectarios Koziris are with the Departmentof Elec-
trical and Computer Engineering, National Technical University of Athens
(NTUA), Greece.
E-mail: {gmytil, nkoziris}@cslab.ece.ntua.gr.

• Dimitrios Tsoumakos is with the Ionian University, Greece.
Email: dtsouma@ionio.gr

a number of scenarios in which an exact answer is not required.
Users are often willing to forgo accuracy in favor of achieving
better response times. In one such example, visualizing available
tradeoffs between accuracy and execution-time helps users to fine-
tune the execution of queries [3]. Moreover, approximate answers
obtained from appropriate synopses of the data may be the only
option when the base data is remote or unavailable [4].

To that end, several approximation techniques have been
developed, including: sampling [1], [5], [6], histograms [7], [8],
[9], wavelets [10], [11], [12], [13], [14] and sketches [15], [16].
Wavelet decomposition [17] provides a very effective data re-
duction tool, with applications in data mining [18], selectivity
estimation [19], approximate and aggregate query processing of
massive relational tables [10], [20] and data streams [21], [22].
In simple terms, a wavelet synopsis is extracted by applying
the wavelet decomposition on an input collection (considered
as a sequence of values) and then summarizing it by retaining
only a select subset of the produced wavelet coefficients. The
original data can be approximately reconstructed based on this
compact synopsis. Previous research has established that reliable
and efficient approximate query processing can then be performed
solely over such concise wavelet synopses [10].

Wavelet thresholding is the problem of determining the coef-
ficients to be retained in the synopsis given an available space
budget B. A conventional approach to this problem features a
linear-time deterministic thresholding scheme that minimizes the
overall mean squared error [17]. Still, the synopses produced by
this method exhibit significant drawbacks [11], such as the high
variance in the quality of data approximation, the tendency for
severe bias in favor of certain regions of the data and the lack
of comprehensible error guarantees for individual approximate
answers. On the other hand, synopses that minimize maximum
error metrics on individual data values prove more robust in
accurate data reconstruction [11], [23].

However, the existing algorithms that minimize maximum

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

error metrics are strictly centralized and are usually based on
dynamic programming (DP) approaches, that demand a lot of
communication, memory and processing power. As such, they
cannot be executed over modern analytics platforms and fail to
scale to big datasets. In [12], GreedyAbs, a heuristic-based solution
is proposed. This algorithm is more time-efficient than the DP-
based algorithms but at the cost of loosened quality guarantees.
Yet, it cannot scale to Big Data either, as it follows a sequential
path of execution that prevents a data-parallel approach.

Moreover, most approaches handle only one-dimensional data
and cease to work or come at a prohibitive complexity when
more dimensions are involved. Nevertheless, multidimensional
datasets are a common case in real-world applications and such
a limitation makes the use of wavelets impractical.

In this work, we present a general framework for parallelizing
the existing DP algorithms to run over scalable, high-throughput
modern platforms. Our framework covers both the cases of one-
and multi-dimensional datasets. However, as DP algorithms are
very costly, we also propose two heuristic-based algorithms that
improve on the running-time at the cost of loosened error guar-
antees. To our knowledge, this is the first effort to offer scalable
solutions to the wavelet thresholding for maximum error metrics
problem and thus, we enhance the usability of wavelets in modern
applications. In summary, we make the following contributions:
• First, considering one-dimensional datasets, we present a gen-
eral framework for scaling the existing DP algorithms for
the problem. Our approach is based on a novel error tree
decomposition that allows the parallel processing of DP table
rows. In order to demonstrate the benefits of our framework, we
apply it on the state-of-the-art IndirectHaar [13] algorithm and
create DIndirectHaar: a distributed and scalable DP algorithm.
• We extend IndirectHaar to run over datasets of multiple
dimensions and show that our framework for parallelizing DP
algorithms can be applied in that case too.
• We propose DGreedyAbs, a distributed, heuristic-based al-

gorithm and study its computational complexity. DGreedyAbs
follows three key ideas: 1) hierarchical decomposition of the
error tree , 2) multiple executions of the centralized algorithm,
and 3) merging and filtering of intermediate results. According
to our experiments, DGreedyAbs is more than 2× faster than
DIndirectHaar. However, as DGreedyAbs initiates multiple
distributed jobs, we improve on its running-time, and present
BUDGreedyAbs: A distributed heuristic algorithm that requires
a single job for constructing the synopsis.
• We extend GreedyAbs to handle multidimensional datasets and

provide a complete theoretical analysis for the complexity of
the new algorithm.
• We implement all the proposed algorithms on top of the
Hadoop processing framework and perform an extensive ex-
perimental evaluation using both synthetic and real datasets.
Previous approaches to the problem used datasets of up to 262K
datapoints. To put emphasis on the merits of our approach, we
experiment with datasets of up to 268M datapoints.

The remainder of this paper is organized as follows: Section 2
presents the basic theoretical background for the wavelet decom-
position. In Section 3, we give an overview of the related work.
Section 4 proposes a novel framework for the parallelization of
the DP algorithms and Section 5 presents the proposed greedy
algorithms. Section 6 describes the required modifications in
order to handle multi-dimensional data. Finally in Section 7,
we experimentally evaluate our algorithms and in Section 8, we

TABLE 1: Wavelet decomposition example
Resolution Averages Detail Coef.

3 [5,5,0,26,1,3,14,2] –
2 [5,13,2,8] [0,−13,−1,6]
1 [9,5] [−4,−3]
0 [7] [2]

present the conclusions.

2 WAVELET PRELIMINARIES

Wavelet analysis is a major mathematical technique for hierarchi-
cally decomposing functions in an efficient way. The wavelet de-
composition of a function consists of a coarse overall approxima-
tion together with detail coefficients that influence the function at
various scales [17]. The wavelet decomposition is computationally
efficient (linear time) and has excellent energy compaction and
decorrelation properties, which can be used to effectively generate
compact representations that exploit the structure of data.

2.1 One-Dimensional Haar Wavelets

Haar wavelets constitute the simplest possible orthogonal wavelet
system. Assume a one-dimensional data vector A containing N = 8
data values A = [5,5,0,26,1,3,14,2]. The Haar wavelet transform
of A can be computed as follows: We first average the values in
a pairwise fashion to get a new “lower-resolution” representation
of the data with the following average values: [5,13,2,8]. The
average of the first two values (i.e., 5 and 5) is 5, the average
of the next two values (i.e., 0 and 26) is 13, etc. It is obvious
that, during this averaging process, some information has been
lost and thus the original data values cannot be restored. To be
able to restore the original data array, we need to store some
detail coefficients that capture the missing information. In Haar
wavelets, the detail coefficients are the differences of the (second
of the) averaged values from the computed pairwise average.
In our example, for the first pair of averaged values, the detail
coefficient is 0 (since 5− 5 = 0) and for the second is −13
(13−26 =−13). After applying the same process recursively, we
generate the full wavelet decomposition that comprises a single
overall average followed by three hierarchical levels of 1, 2, and 4
detail coefficients respectively (see Table 1). In our example, the
wavelet transform (also known as the wavelet decomposition) of
A is WA = [7,2,−4,−3,0,−13,−1,6]. Each entry in WA is called
a wavelet coefficient. The main advantage of using WA instead of
A is that, for vectors containing similar values, most of the detail
coefficients tend to have very small values. Therefore, eliminating
such small coefficients from the wavelet transform (i.e., treating
them as zeros) introduces only small errors when reconstructing
the original array and thus results to a very effective form of lossy
data compression.

2.2 Error Trees

7

2

-4 -3

0 -13 -1 6

5 5 0 26 1 3 14 2

c0

c1

c2 c3

c4 c5
c6 c7

d0 d1 d2 d3 d4 d5 d6 d7

l = 0

l = 1

l = 2

l = 3

+

+

++

+
+

+ +

-

- -

-
-

- -

Fig. 1: An error tree that illustrates the hierarchical structure of
the Haar wavelet decomposition

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

The error tree, introduced in [19], is a hierarchical structure
that illustrates the key properties of the Haar wavelet decom-
position. Fig. 1 depicts the error tree for our simple example
data vector A. Each internal node ci (i = 0, ...,7) is associated
with a wavelet coefficient value, and each leaf di (i = 0, ...,7) is
associated with a value in the original data array. Given an error
tree T and an internal node ck of T, we let leavesk denote the set
of data nodes in the subtree rooted at ck. This notation is extended
to le f tleavesk (rightleavesk) for the left (right) subtree of ck. We
denote pathk as the set of all nodes with nonzero coefficients in T
which lie on the path from a node ck (dk) to the root of the tree T.

Given the error tree representation of a one-dimensional Haar
wavelet transform, we can reconstruct any data value di using only
the nodes that lie on pathi. That is di = Σc j∈pathi δi j · c j, where the
factor δi j = 1 if di ∈ le f tleaves j or j = 0 and δi j =−1 otherwise.

2.3 Multidimensional Haar Wavelets
The Haar wavelet decomposition can be extended to multiple
dimensions using two distinct methods, namely the standard and
nonstandard decomposition [10]. Each of these transforms results
from a natural generalization of the one-dimensional decomposi-
tion. Considering a D-dimensional array A of size N, where N is
the number of datapoints, the wavelet transform produces a D-
dimensional array WA of the same shape with A. To simplify the
exposition to the basic ideas of multidimensional wavelets, we
assume all dimensions of the input array to be of equal size.

The work presented in this paper is based on the nonstan-
dard decomposition. Abstractly, the nonstandard decomposition
alternates between dimensions during successive steps of pairwise
averaging and differencing: given an ordering for the data dimen-
sions (1,2, ...,D), we perform one step of pairwise averaging and
differencing for each one-dimensional row of array cells along
dimension k, ∀k ∈ [1,D]. The results of earlier averaging and
differencing steps are treated as data values for larger values
of k. One way of conceptualizing this procedure is to think of
a 2D hyper-box being shifted across the data array, performing
pairwise averaging and differencing. We then gather the average
value of each individual 2D hyper-box and we form a new array
of lower resolution. The process is then repeated recursively on
the new array. An example of this process for a two-dimensional
4× 4 data array is illustrated in Fig. 2. We demonstrate the
process for the lower left quadrant of the array. Initially, we
have the values: 1, 4, 9 and 6. By pairwise averaging and
differencing along the first dimension we get: (1+ 4)/2 = 2.5,
(1− 4)/2 = −1.5 and (9 + 6)/2 = 7.5, (9− 6)/2 = 1.5. The
quadrant is now transformed to the values: 2.5, −1.5, 7.5, 1.5. We
repeat the same process along the second dimension and we have:
(2.5+7.5)/2 = 5, (2.5−7.5)/2 =−2.5 and (−1.5+1.5)/2 = 0,
(−1.5− 1.5)/2 = −1.5 and the quadrant is transformed to the
values: 5, 0, −2.5, −1.5 as shown in Fig. 2. We apply the
same process on the other three quadrants of the array in order
to complete the first level of the wavelet decomposition. In the
next step, we gather the computed averages of each hyperbox
(highlighted with grey color) and this way we form an array of
lower resolution as shown in the 3rd step of Fig. 2. We then
repeat the same procedure for the next level of resolution. More
information about the wavelet transform can be found in [10].

Error tree structures are also defined for multidimensional
Haar wavelets and can be constructed (once again in linear time)
in a manner similar to the one-dimensional case. Nevertheless,
the semantics and structure are somewhat more complex. Fig. 3

3	 7	 6	 2	

7	 3	 5	 1	

9	 6	 8	 6	

1	 4	 9	 5	

1.	Data	Array	A	

0	 2	 -0.5	 0	

5	 0	 3.5	 2	

-2.5	 -1.5	 0	 0.5	

5	 0	 7	 1.5	

2.	Avg	and	Diff	on	
each	2d	hyperbox	

5	 3.5	

5	 7	

0.875	 -0.875	

5.125	 -0.125	

4.	Avg	and	Diff	

2d	hyperbox	
3.	Lower-resolution.	
Avg	and	diff	on	
computed	averages	

Di
m
	2
	

Dim	1	
	

9	 6	

1	 4	

7.5	 1.5	

2.5	 -1.5	

-2.5	 -1.5	

5	 0	

Avg	&	Diff	
Along	
Dim1	

Avg	&	Diff	
Along	
Dim2	

Fig. 2: Example of two-dimensional Haar wavelet decomposition

illustrates the error tree structure for the two-dimensional decom-
position presented above, annotated with the sign-information for
each coefficient. A major difference is that in a D-dimensional
error tree, each node t (except for the root) contains a set of 2D−1
wavelet coefficients cti that have the same support region but
different signs and magnitudes for their contribution. Furthermore,
each node t in a D-dimensional error tree has 2D children corre-
sponding to the quadrants of the support region of all coefficients
in node t. The sign of each coefficient’s contribution (sign(j, i)) to
the j-th child of node t is determined by the coefficient’s position
in the 2D-hyperbox. Coefficients located in the same position
of different 2D-hyperboxes will be assigned the same internal
index. Thus, internal indexing determines the sign of contribution
of a coefficient cti to each child of node t. For example, we
observe in Fig. 3 the sign-information for the first coefficient of
each node (internal index 0). Every coefficient with internal index
equal to zero contributes positively to the first and third child and
negatively to the second and fourth.

5.125"

30.125,"0.875,"30.875"

0"

1"

4" 5" 6" 7"

""""""0,""32.5,"""31.5"""""""1.5,"""0,"""0.5" """"""0,"""0,"""2" """"""2,"""30.5,"""0"

Level"0"

Level"1"

+"
0)""+""3""+""3"
1)""+""+""3""3"
2)""+""3""3""+"

0" 1" 2"

0" 1"2" 01" 2" 01" 2" 0 1" 2"

Fig. 3: Two-dimensional error tree. Each node contains 22−1 = 3
coefficients and has 22 = 4 children. The numbers in red color
indicate the coefficients’ indexing within a node.

2.4 Wavelet Thresholding
The complete Haar wavelet decomposition WA of a data array A is
a representation of equal size as the original array. Given a budget
constraint B < N, the problem of wavelet thresholding is to select
a subset of at most B coefficients that minimize an aggregate error
measure in the reconstruction of data values. The non-selected co-
efficients are implicitly set to zero. The resulting wavelet synopsis
ŴA can be used as a compressed approximate representation of
the original data. For assessing the quality of a wavelet synopsis,
many aggregate error-measures have been proposed [24]. Among
the most popular metrics are the mean squared error (L2), the
maximum absolute error and the maximum relative error. A
preliminary approach to the thresholding problem is based on
two basic observations about a coefficient’s contribution in the
reconstruction of the original data values. The first observation is
that coefficients of larger values are more important, since their

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

absence causes a larger absolute error in the reconstructed values.
Second, a coefficient’s significance is larger if its level in the error
tree is higher, as it participates in more reconstruction paths of the
error tree. Putting both together, the significance c∗i of a coefficient
is defined by c∗i = |ci|/

√
2level(ci), where level (ci) denotes the level

of resolution at which the coefficient resides (0 corresponds to the
“coarsest” resolution level).

Accordingly, the conventional thresholding scheme is to re-
tain the B wavelet coefficients with the greatest significance.
It has been shown [17] that this approach minimizes the L2
error. Nevertheless, the L2 error minimization does not provide
maximum error guarantees for individual approximate answers.
As a result, the approximation error of individual values can be
arbitrarily large, resulting into high variance in the quality of data
approximation and severe bias in favor of certain regions of the
data. This problem is particularly striking whenever a series of
omitted coefficients lies along the same path of the error tree.
Maximum error metrics are more robust [11], [23], since they set
a maximum error guarantee on individual values. The problem of
minimizing maximum error metrics can be formulated as follows:

Problem 1. Given a data array A of size N and a budget B,
construct a representation ŴA of A that minimizes a maximum
error metric, while it retains at most B non-zero coefficients.

In this work, we focus on designing algorithms for Problem
1 that can specifically scale in Big Data scenarios. The existing
algorithms for the problem either need to load the whole dataset
in memory or operate on a small working set and make very
frequent disk accesses to update it. The increasing sizes of data
to be processed render centralized approaches unusable in terms
of performance and scalability. In this work, we instead propose a
novel problem decomposition to smaller local sub-problems that
can be more easily handled. Following that, we utilize partial
and parallel computed solutions to derive the final one. We first
describe our algorithms in detail for the one-dimensional case and
in Section 6 we discuss the required modifications for handling
multidimensional datasets.

3 RELATED WORK

In this Section, we make a literature review and present related
research. In [23], a probabilistic DP algorithm is proposed. The
running-time of the algorithm is O

(
Nδ 2Blog(δB)

)
. However, as

there is always a possibility of a “bad” sequence of coin flips, this
approach can lead to a poor quality synopsis. As an improvement,
a deterministic DP approach is proposed in [11]. Unfortunately,
the optimal solution provided has a high time complexity of
O
(
N2BlogB

)
. These solutions are very expensive in terms of time

and space and such requirements render them impracticable for
the purpose of quick and space-efficient data summarization.

In order to decrease space complexity, Guha introduces a
generally applicable, space efficient technique [25] for all these
DP-based approaches, that needs linear space for the synopsis
construction but at the cost of a O

(
N2
)

running time.
A more recent and sophisticated approach is presented in [14].

Karras and Mamoulis devise Haar+: a modified error tree, whose
structure gives more flexibility on choosing which coefficients
to keep. For the thresholding, a DP algorithm with running-time
complexity O

((
∆

δ

2
)

NB
)

is presented.
A different approach is proposed in [13]. The authors design

a solution that tackles Problem 1 by running multiple times a

DP algorithm for the dual problem [13], [26], [27]. The resulting
complexity is O((E

δ
)2N(logε∗+ logN)), where E is the minimum

maximum error that can be achieved with B− 1 coefficients and
ε∗ is the real maximum error. This algorithm is considered to
be the current state-of-the-art for the problem, as it provides
the optimal data reconstruction for the given budget and has
the best running-time complexity among the corresponding DP
algorithms. However, problems like excessive demand for main
memory capacity have not yet been resolved.

Similar DP algorithms have been also proposed for the mini-
mization of general distributive errors like the Lp norm [28], [29].
The framework we propose at this work for the parallelization of
DP algorithms for Problem 1 can be seamlessly used to speedup
the execution of these algorithms too.

In order to decrease running-time, greedy algorithms have
been proposed [12], [30] for the minimization of the maximum
absolute and relative error with worst-case running-time complex-
ities of O

(
Nlog2N

)
and O

(
Nlog3N

)
respectively. These algo-

rithms present almost linear behavior in practice and require less
memory capacity than most of the DP-based ones. Nevertheless,
since they run in a centralized fashion, as data scales close
to the memory constraints of the machine, their performance
significantly deteriorates. Moreover, they have inherent difficulties
in their parallelization and thus, the decomposition to local sub-
problems is not an easy task to accomplish.

A first attempt to tackle this problem, i.e., parallelizing the
greedy algorithms of [12], [30], is presented in [31]. In this work,
a more time-efficient algorithm than DGreedyAbs [31] is presented
for creating wavelet synopses that target maximum-error metrics.
The proposed algorithms of this paper not only improve on the
running-time but also handle data of arbitrary dimensionality
while the work of [31] is limited to one dimension.

The work in [32] considers a distributed setting for the wavelet
decomposition, implemented on top of Hadoop, but it only targets
L2 error minimization, which is a considerably easier task.

Although there is a lot of research for the one-dimensional
case, few attempts have been made to approach the multi-
dimensional version of the problem. In [10], algorithms for
multi-dimensional wavelet decomposition and thresholding are
presented. However, only conventional thresholding is studied and
there is no proposed algorithm for maximum-error metrics.

In [11] the authors present deterministic, exact and approx-
imate DP-based algorithms for the problem. The most time-
efficient algorithm is a (1 + ε)−approximation algorithm with
running time: O(logRZ

ε
22D+3DNlog2NBlogB) for a D-dimensional

dataset. Despite the optimal quality, the running-time of these
algorithms is prohibitive for real-world scenarios even for small
data dimensionalities (i.e., D ∈ [2,5], where wavelet-based data
reduction is typically employed1).

A multidimensional extension of the DP algorithm that targets
the Haar+ tree is presented in [33]. The algorithm has a running-

time complexity of O
(

22D
(

∆

δ

2D
)

NB
)

, which is prohibitively

large for processing real-life big datasets.
For dealing with multi-dimensional datasets, the authors of

[30] propose mapping all data to one dimension by using a space
filling curve. The drawback of this approach is that it destroys data
locality and thus can lead to sub-optimal quality results.

1. Due to the “dimensionality curse”, wavelets and other space-partitioning
schemes become ineffective above 5-6 dimensions.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

job i+1

job i

h

h

Fig. 4: Partitioning for parallelizing DP algorithms for Problem 1

In [34], an algorithm of O(N) time complexity is proposed for
solving the dual problem. Once again, a space-bounded synopsis
can be constructed by employing the technique in [13]. However,
the algorithm of [34] is presented in a centralized setting and there
is no evidence of its performance on large scale datasets.

A similar algorithm is also presented in [35] for image com-
pression and thus only covers two-dimensional datasets. However,
the algorithm is still applicable on small datasets.

Wavelets opt for a hierarchical decomposition of a data distri-
bution. Hierarchical decomposition is a powerful concept in data
analysis that permits the approximation of a dataset at different
accuracy levels. Data Canopy [36] makes use of similar ideas
to break statistics down to basic aggregates that can be used as
building blocks for subsequent computations.

4 SCALING DP ALGORITHMS

Since the majority of the proposed algorithms for Problem 1 are
based on DP, in this Section we present a general framework
that can be used for their parallelization and efficient execution
over modern distributed platforms. To achieve that, we exploit the
structure of the error tree as well as the local properties of these
algorithms and propose a locality-preserving partitioning scheme.

In DP-based algorithms, each row of the DP-matrix M is
assigned to a node of the error tree. The contents of such a row
differ between algorithms. Despite the different structure of the
rows of M, all these algorithms follow a bottom-up fashion, where
the rows corresponding to the leaves of the error tree are computed
first. The row for each internal node is computed by combining the
already computed rows of its children according to an optimality
criterion. To compute the values for a single cell of a row j, many
cells of the children-rows are examined and, eventually the one
that optimizes a defined metric is selected.

The left and right subtree of a node c j can be computed
independently of each other. Based on this observation, the idea is
to apply a partitioning scheme that hierarchically decomposes the
error tree to independent subtrees of a fixed height h, h < logN.
This partitioning scheme is presented in Fig. 4 and results to
d logN

h e layers of subtrees.
For the parallelization of the existing DP algorithms for

Problem 1, we use Algorithm 1. The idea is to first run the DP
algorithm in parallel over the subtrees of the bottommost layer.
When the processing is over, the computed rows for the roots of
these subtrees are sent over to the next layer in order to repeat the
same process towards the root. More specifically, if the local root
is the node c j, the emitted key-value is (j,M [j]). The workers of
the next stage collect the emitted key-values and repeat the same
process. Naturally, proper partitioning should be applied between
different stages in order to preserve the subtree locality in the next
layer.

As a distributed approach, it is clear that this idea incurs a
communication overhead. For every subtree of the error tree, the

Algorithm 1 Parallel execution of a DP algorithm for Problem1
Require: Data size N, subtree height h

1: Partition the error tree to subtrees of fixed height h.
2: i = 1
3: while i≤ b logN+1

h+1 c do
4: if i > 1 then Combine M-rows from layer i−1
5: for all Tj ∈ Layeri in parallel do
6: Run DP on Tj
7: Send the computed row of node j to the next layer
8: i = i+1
9: Run DP on topmost subtree.

row of M that corresponds to the local root is transferred over to
the workers of the next stage. The following Lemma quantifies the
cost of this overhead.

Lemma 1. The overall communication cost of Algorithm 1 is:

O
(

N ·max{|M [j] |}
2h

)
(1)

After the completion of Algorithm 1, it is only the optimal
approximation error that is computed and not the synopsis itself.
To compute the synopsis, all DP algorithms require one additional
step: a top-down recursive procedure on the error tree in order to
select the appropriate coefficients. Starting from the root this time,
we re-enter the sub-problem of the topmost subtree and select the
coefficients to retain. When the processing of the topmost subtree
is over, we know which coefficients are retained from this subtree
and also the leaves of the subtree are aware of which cells of the
M-rows of their children are the best choice in order to obtain
the optimal synopsis. Thus, each leaf-node of the topmost subtree
sends a message to its children to inform them about the optimal
choice they can make. With this message, the children recursively
re-enter the sub-problems of the next layer of subtrees.

For demonstrating the merits of our approach, in this work
we apply our methodology on IndirectHaar [13] creating DIndi-
rectHaar; a distributed version of the centralized algorithm. Our
experiments in Section 7 show that DIndirectHaar scales linearly
over both data and cluster size.

At this point, we also want to discuss the choice of Indi-
rectHaar. An exact solution for Problem 1 demands tabulation
over all possible space allocations for each node of the error tree.
This burden renders the majority of DP-algorithms impractical
in terms of memory consumption. IndirectHaar exploits the dual
error-bound problem which is easier to be solved and employs
a binary search procedure to derive a solution for the initial
problem. Thus, in the case of IndirectHaar, the DP algorithm
that is actually parallelized by our framework is MinHaarSpace
[13] and targets the dual of Problem 1. For achieving even better
results, IndirectHaar can also be applied on Haar+ trees [14].
However, as Haar+ trees have a slightly different structure and
work on triads of coefficients, for the ease of understanding, we
keep the presentation on the classic Haar error tree.

5 PARALLEL GREEDY APPROACHES

As the DP-based solutions incur high computational overhead,
there is often a need for a faster approach at the cost of approxi-
mation quality. This is exactly what the GreedyAbs [12] algorithm
achieves. However, as explained in Section 3, this algorithm is
not easily parallelizable and cannot scale for big datasets. In this
Section, we present two fully parallel greedy algorithms that both
are based on : (i) a partitioning scheme similar to the one presented
in Section 4, and (ii) merging and filtering of partial results.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

5.1 GreedyAbs

To assist in our discussion, we first give a description of the
GreedyAbs algorithm [12]. Let err j = d̂ j − d j be the signed
accumulated error for a data node d j in a synopsis ŴA, yielded
by the deletions of some coefficients. To assist the iterative step of
the greedy algorithm, for each coefficient ck not yet discarded, we
introduce the maximum potential absolute error MAk that ck will
contribute on the running synopsis, if discarded:

MAk = maxd j∈leavesk{|err j−δ jk · ck|} (2)

Computing MAk normally requires information about all err j
values in leavesk. A naive method to compute MAk is to access all
leavesk, where err j are explicitly maintained. The disadvantages
of this approach are the explicit maintenance of all err j values
at each step and the cost required to update MAk values after the
removal of a coefficient.

A more efficient solution for updating MAk is reached by
exploiting the fact that the removal of a coefficient equally affects
the signed costs of all data values in its left or right sub-tree. For
example, in Fig. 1, the removal of coefficient c2 =−4 increases the
signed errors of data nodes d0, d1, and decreases the signed errors
of d2, d3 by 4. Accordingly, the maximum and minimum signed
errors in the left (right) sub-tree of a removed coefficient ci are
decreased (increased) by ci. The maximum absolute error incurred
by the removal necessarily occurs at one of these four positions of
existing error extremum. Hence, the computation of MAk requires
that only four quantities be maintained at each internal node of
the tree. These are the maximum and minimum signed errors
for the le f tleavesk and rightleavesk, and are denoted by maxl

k,
minl

k, maxr
k, and minr

k, respectively. It follows that Equation 2 is
equivalent to:

MAk = max{|maxl
k− ck|, |minl

k− ck|,
|maxr

k + ck|, |minr
k + ck|} (3)

In the complete wavelet decomposition, these four quantities are
all 0, since err j = 0,∀d j. Thus, MAk = |ck|,∀k and the greedy
algorithm removes the smallest |ck| first. In order to efficiently de-
cide which coefficient to choose next, all coefficients are organized
in a min-heap structure based on their MAk. After the removal of
a coefficient ck, err j for all leavesk changes, so the information
of all descendants and ancestors of ck must be updated. All the
error quantities of the descendants in the left (right) sub-tree of
ck are decreased (increased) by ck. During this process, a new
MAi is computed for each descendant ci of ck. In accordance, the
changes in error quantities are propagated upwards to ancestors ci
of ck and MAi values are updated as necessary. While updating
error quantities and MA values, the position of ck’s descendants
and affected ancestors are dynamically updated in the heap. This
procedure of removing nodes is repeated until only B nodes are
left on the tree.

Another important thing to note is that the maximum absolute
error does not change monotonically when a coefficient is re-
moved. In other words, after deleting a coefficient ck the maximum
absolute error of its affected data values may decrease. As a result,
choosing exactly B coefficients may not be the best solution given
a space budget B. For this reason, we keep removing coefficients
after the limit of B has been reached, until no coefficient remains
in the tree. From all B + 1 coefficient sets (B coefficients left, B-1
coefficients left, etc.) produced at the last B steps of the algorithm,
the one with the minimum max abs is kept.

Root	
Sub-‐tree	 Croot	

Ti	 Tj	
Base	 	
sub-‐trees	

Ci/4	

c2i	 c4j	

Fig. 5: Partitioning for parallelizing GreedyAbs. The red line illus-
trates an example of communication between two base subtrees.
The blue-filled nodes show a possible Croot set.

5.2 DGreedyAbs: Scaling the Greedy Algorithm

GreedyAbs presents an inherent drawback for its parallelization.
At each step, it needs global knowledge of the whole error tree.
To solve the problem in parallel, we consider a partitioning similar
to the one we used for the parallelization of the DP algorithms.
In the proposed scheme, the error tree is partitioned into one root
subtree and multiple base subtrees, as shown in Fig. 5.

At each iteration of GreedyAbs, the node ck with the smallest
MA is selected to be discarded. After its deletion, all the other
nodes that lie either in pathk or Tk may update their MA values.
Ideally, we would like to take decisions at each base subtree inde-
pendently of each other. For the parallelization of the algorithm,
the main difficulty is that the base subtrees communicate with each
other through the root subtree. For example, consider a scenario,
like the one depicted in Fig. 5, where node c2i is selected to be
removed from the base subtree Ti and, at the same time, node c4 j
is selected from Tj. The removal of c2i may dictate that node ci/4
should be discarded at the next step. On the other hand, discarding
c4 j can make ci/4 a really important coefficient for subtree Tj and
thus its deletion could produce a big maximum error. It is clear
that such situations lead to conflicts that prohibit a straight-forward
parallel implementation.

In order to proceed towards a correct parallel computation,
we need to offer more isolation to the base subtrees. The idea
behind our solution is the following: Let us assume that we
somehow know which nodes of the root subtree are retained in
the final synopsis and call this set of nodes Croot . Having selected
a Croot , we can remove the remaining root subtree and there are
B− |Croot | nodes that still need to be selected for the synopsis.
Consider now a base subtree Tj. The deletion of nodes ci ∈

root subtree\Croot incurs an incoming error to Tj. For example,
in the error tree of Fig. 1, if we delete nodes {c0,c2}, there is an
incoming error −7−4 =−11 to subtree T5. Thus, if the incoming
error to subtree Tj is ein, we set the signed accumulated errors
to: erri = ein,∀di ∈ Tj and run GreedyAbs on Tj. The output of
GreedyAbs(Tj) is an ordered list L j of Nz (Tj) coefficients, where
Nz (Tj) is the number of non-zero coefficients in the subtree. The
list is in reverse order of the one in which coefficients ci ∈ Tj were
deleted by GreedyAbs. More specifically, each element of the list
is a tuple (delOrd, id,err) that indicates the order with which the
coefficient with index id was deleted and the incurred maximum
absolute error err. This procedure of locally executing GreedyAbs
on a subtree, is carried out in parallel for all base subtrees.

When this stage of parallel GreedyAbs runs is over, we collect
and error-wise merge the outputs from all the base subtrees (i.e.,
∀Tj ∈ base subtrees merge L j), thus obtaining a global list where
the node deletion order of each subtree is preserved. The synopsis
needs to contain those coefficients that are the most important

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

for each subtree, i.e., the ones that were last emitted. Therefore,
by keeping the last B− |Croot | elements of the global list, let us
call them Cbase, we form the final synopsis: Croot ∪Cbase. This
procedure is presented in Algorithm 2.

Algorithm 2 distrGAbs
Require: error tree, space budget B, Croot set

1: for all Tj ∈ base subtrees in parallel do
2: erri = erri +ein,∀erri ∈ Tj // ein: incoming error from Croot
3: L j = GreedyAbs(Tj);emit L j
4: L = merge(L j lists)
5: store last Croot ∪ (B−|Croot |) elements of L as synopsis
6: return L [B−|Croot |−1] .error

So far, we have ignored the procedure that finds the appropriate
nodes to be retained from the root subtree, assuming it is provided
by an “oracle”. As we cannot compute a-priori which these nodes
are, we need to speculatively create the synopses for different Croot
sets and finally retain the one that produces the best approxima-
tion. Let R denote the size of the root subtree. Since we do not
know the number of nodes that should be retained from the root
subtree, we should consider at least min{R,B}+ 1 different Croot
sets, with each candidate Croot having different size: The empty
set, as we may keep none of these nodes, keep only 1 node, keep
2 nodes, etc., until we examine the case where min{R,B} nodes
are kept. In order to find min{R,B}+1 candidate Croot sets, we run
GreedyAbs on the root subtree. The intuition behind this choice is
that, since only the root subtree is considered known at this stage,
we should try to optimize the local problem and each time discard
the node that incurs the minimum error. GreedyAbs on the root
subtree runs in a centralized fashion. Since the root subtree can
be exponentially smaller than the original dataset, its processing
on a single machine is done without compromising performance.
The candidate Croot sets are generated by the genRootSets function
presented in Algorithm 3.

Algorithm 3 genRootSets
Require: root subtree,B

1: Lroot = GreedyAbs(root subtree)
2: C = {{}}; lastIndex = Lroot .size
3: for (i = lastIndex; i > lastIndex−B; i = i−1) do
4: Croot,i = {Lroot [i] , ..,Lroot [lastIndex]}; C =C∪{Croot,i}
5: return C

For example, we consider as root subtree the nodes
{c0,c1,c2,c3} of the error tree depicted in Fig. 1. The run of
GreedyAbs selects to discard the nodes according to the following
order: [c1,c3,c2,c0]. Thus, the candidate Croot sets are the fol-
lowing 5: Γ = [{c1,c3,c2,c0},{c3,c2,c0},{c2,c0},{c0},{}]. For
constructing the synopsis, we perform a search in the space of
possible solutions. We start by examining the achieved quality of
the corner cases, i.e., keeping in the synopsis 0 and min{R,B}
coefficients from the root subtree. If these extreme cases result in
errors eh,el with |eh−el |< ε→ 0, then the algorithm finishes and
we keep as a final synopsis the one that produced the min{eh,el}.
Otherwise, we replace the Croot that produced the max{eh,el}
with another Croot produced by Algorithm 3 and repeat the same
process. The selection of the next Croot does not come from a
random choice. When the distributed execution of the greedy
algorithm for a given Croot set is over, we know the maximum
absolute error that appeared in each base subtree. By knowing that

Root	
Sub-tree	

Base		
sub-trees	

c0	c1	
c|R|/2	 c|R|-1	…	

…	

(a)

Base		
sub-trees	

r1	
…	

…	

r2	 r|R|-1	 r|R|	

(b)

Fig. 6: Equivalent representations of an error tree.

information, we know which subtrees need further improvement.
Thus, we select Croot sets that contain coefficients which support
these subtrees. In our example, we begin by running GreedyAbs
on each base subtree for the Croot sets: {}, {c1,c3,c2,c0}. Let us
assume that they yield synopses with errors 10 and 5 respectively.
In that case, as {} produced the worst error, it is replaced by {c0}
and we now compare the quality of the synopses yielded by {c0}
and {c1,c3,c2,c0} Croot sets. The described procedure implies
that O(R) jobs may be demanded. However, our experiments in
Section 7 show that the number of jobs that the algorithm needs
in order to converge is constant in practice.

The running-time and communication complexity of
DGreedyAbs are provided by the following Lemma:

Lemma 2. Let us denote with R the size of the root-subtree,
S the size of a base-subtree and Nz(S) the number of non-zero
coefficients of a base-subtree. Then, the asymptotic running-time
complexity of a DGreedyAbs worker is O

(
Nz(S) log2Nz(S)

)
and

the communication cost is O(Rmax{B,Nz(S)}).

5.3 Speeding up the Distributed Greedy Solution

While the DGreedyAbs algorithm succeeds in offering a viable
solution to the problem, it suffers from a basic drawback: There
are multiple distributed jobs that may be required to create the
synopsis, and thus, the centralized algorithm needs to run multiple
times over the same data. Since we do not know in advance
which are the appropriate nodes to retain from the root-subtree,
we run GreedyAbs for many possible Croot sets, incurring extra
computational and communication overhead.

In order to alleviate this overhead, in this Section we propose
BUDGreedyAbs: a modified, bottom-up version of DGreedyAbs
that makes only one pass over the dataset and executes the
centralized greedy algorithm only once per subtree.

In order to avoid the multiple jobs, consider the following
strategy. Assume that the size of the root-subtree is less than B
and we a-priori decide to retain it all in the synopsis and then run
GreedyAbs to all workers in parallel. One could say that this is the
safest choice as we keep a maximal amount of information about
the part of the tree that creates dependencies among partitions.
However, this is not optimal. Some nodes of the root-subtree may
be of negligible importance and by keeping them, we sacrifice
budget space that could be allocated in a smarter way. The basic
idea behind BUDGreedyAbs is to start from the safest choice of
keeping all of the root-subtree and adaptively refining it.

We start with a Lemma that follows directly from the prop-
erties of the wavelet transform. The idea of Lemma 3 is also
presented graphically in Fig. 6.

Lemma 3. An error-tree partitioned to one root-subtree and many
base subtrees Si, i = 1, ..,R, is equivalent to R independent error-
trees S′i, i = 1, ..,R, where each S′i = Si with an extra coefficient ri

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

as root. The value of ri is defined as: ri = Σc j∈pathSi
δi j · c j and is

also equal to the average of all data values in base-subtree Si.

According to Lemma 3, instead of computing the full wavelet
transform of the error-tree, we can compute the transform up to the
height of the base-subtrees and also keep the local root-average of
each subtree. That is what BUDGreedyAbs does. It first computes
a wavelet structure as the one of Fig. 6b. Then, it triggers a parallel
execution of GreedyAbs at each base-subtree. The outputs are
merged in the same way as in Section 5.2 and a maximum error
is computed. As the yielded synopsis may contain some of the ri
coefficients, in order to better exploit the available space budget,
in a next step the algorithm examines opportunities for further
compression and computes the root-subtree solely based on these
ri coefficients contained in the synopsis.

As the first part of the algorithm is the same with DGreedyAbs,
we discuss the algorithmic details of merging and how more
accurate configurations for the root-subtree are explored. For
explaining these details, we give the following example:

Example. In Fig. 7 we present two base-subtrees S1,S2.
The lists L1,L2 show the most important coefficients from the
corresponding outputs of GreedyAbs. Thus, in subtree 1, the last
nine coefficients that the algorithm would delete are the ones in
the array L1 with ca8 discarded first. As we have said, in order
to create the final synopsis, we need to merge L1 and L2 from
left to right and examine the errors of the first B coefficients.
Let us assume B = 16. The first nine coefficients of the synopsis
would be ca1, ...,ca4 and cb1, ...,cb5. At this point, we check the
ri coefficients. Instead of keeping both of them and waste two
slots in the synopsis, we examine the possible merits of increasing
compression in the root-subtree. We calculate the wavelet trans-
form of the root-subtree considering as data values the ri, i = 1,2
coefficients. In our example of Fig. 7, the transform results in
the creation of c0 and c1. According to Lemma 3, keeping both
c0 and c1 is completely equivalent to keeping r1 and r2 both in
terms of appoximation quality and space overhead. Thus, we also
examine the chance of keeping only c0 or c1 or even none of
them. In order to preserve correctness, as GreedyAbs has run at
each subtree considering all ri nodes retained in the synopsis, the
posterior deletion of coefficients from the root-subtree should be
accompanied by some error updates. Let us assume that we first
examine the deletion of node c1. Some of the nodes in L1 and L2
should update their observed signed errors by −c1.

But which nodes need to be updated? The errors which are
reported by the coefficients in the red box, i.e., the ones in the
right side of r1 in Fig. 7, are calculated taking into account that
r1 is retained in the synopsis. Thus, a deletion of a node that
contributes to the r1 value must be reflected to the errors observed
by these nodes. On the other hand, the nodes in the left side of r1
consider r1 already discarded and as such, nothing more is needed
to be done on them.

Which nodes of the root-subtree should we consider to delete?
Do we have to try all R nodes in all possible combinations? We
treat this issue the same way as we did for DGreedyAbs. We run
GreedyAbs on the root-subtree and then execute Algorithm 3. The
output of Algorithm 3 represents the candidate combinations for
deletion. For each of them, we update the errors in Li lists and
merge them in a final list where the B first nodes are considered
for the synopsis. BUDGreedyAbs is presented in Algorithm 4.

Complexity Analysis. The complexity of the parallel workers
of BUDGreedyAbs is the same with that of GreedyAbs, i.e.,

cm	

cn	
cp	 cξ	

r1	

ca	

cb	cd	

r2	
c0	

c1	
r1	=	c0	+	c1	
r2	=	c0	-	c1	

ca8	ca7	ca6	ca5	ri	ca4	ca3	ca2	ca1	

cb8	cb7	cb6	rj	cb5	cb4	cb3	cb2	cb1	

L1:	

L2:	

Fig. 7: Example of merging solutions for BUDGreedyAbs.

0	

1	

4	 5	 6	 7	

Fig. 8: Thresholding in a 2-dimensional error tree.

O
(
Nlog2N

)
. However, in the next stage of BUDGreedyAbs, as

we have seen there are R merge operations that take place and
in the worst case, each of them needs to process B elements.
Furthermore, we also need to run GreedyAbs once on the root-
subtree. Thus, the complexity of the reduce workers that derive
the final synopsis is O

(
Rlog2R+RB

)
.

Algorithm 4 BUDGreedyAbs
Require: error tree, space budget B

1: for all Ti ∈ base subtrees in parallel do
2: Li = GreedyAbs(Ti); emit Li
3: L = merge(Li lists)
4: synopsis =first B elements of L; error = max abs(synopsis)
5: RA = {ri|L [j] = ri∧0≤ j < B} // ri: avg of data values in Ti
6: Root-subtree=WaveletTrans f orm(RA)
7: Γ = genRootSets(Root-subtree,B)
8: for all Croot ∈ Γ do
9: for all Li do

10: if Li [j] = ri then update errors at Li [k] ,k > j
11: L = merge(L j lists)
12: if max abs(first B elements of L)< error then
13: synopsis =first B elements of L
14: error = max abs(synopsis)
15: return synopsis

6 EXTENSION TO MULTIPLE DIMENSIONS

The algorithms discussed so far are applicable on one-dimensional
datasets. However, datasets with multiple dimensions involved are
a common case in real-life applications. In this Section, we discuss
the modifications required in order to extend both the centralized
GreedyAbs and MinHaarSpace [13] to deal with multiple dimen-
sions. The main difference is that now the distributed algorithms
of Sections 4, 5 run over a multidimensional error tree and instead
of using GreedyAbs and MinHaarSpace, they employ the modified
algorithms we are going to present in this Section.

As we mentioned in Section 2, the structure of a D-dimension-
al error tree (Fig. 3) is somewhat more complex. As opposed to
the one-dimensional case, each node of the tree contains many
coefficients and thus the terms node and coefficient should be
distinguished. During thresholding, it is not necessary to pick or

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

discard all coefficients of a node at the same time. In Fig. 8 we see
a snapshot where the black-filled coefficients are retained in the
synopsis, while the blank ones are discarded. For the navigation
in a multidimensional error tree, we follow the indexing presented
in Fig. 3. The first node at each level has index 2D·level . The rest
of the nodes of the same level maintain index values increased by
one each. For our example and the two-dimensional case, in level
1, the first node has index 22·1 = 4, the next node of this level has
index 5 and the remaining two have indices 6 and 7 respectively.
With that indexing scheme, we can easily navigate the error tree.
Dividing a node’s index by 2D leads us to the parent of the node.
For the identification of an individual coefficient within a node,
we apply internal indexing. The internal index of a coefficient
belongs in the interval: [0,2D− 1). The notation ci j denotes the
j-th coefficient in node i.

6.1 MDMSpace: D-dimensional MinHaarSpace

In order to explain the required modifications for extending
MinHaarSpace to multiple dimensions, we first present the idea
behind the one-dimensional version of the algorithm. As Min-
HaarSpace solves the dual of Problem 1, its goal is to construct
a synopsis of minimum size for a given error ε . An incoming
value at node ci of the error tree is a value reconstructed in the
path of ancestor coefficients from the root node up to ci. In a
wavelet decomposition, this is the average value in the interval
under the scope of ci. Similarly, an assigned value zi at node ci
is a coefficient value retained at that node 2. MinHaarSpace is
a DP algorithm that, following a bottom-up process, considers
all possible incoming values v at each node ci and for each v,
considers all possible assigned values zv

i . It then determines the
optimal one to assign at ci for v. For making the exploration of
both incoming values at ci and assigned values in the coefficients
feasible, the real-valued domains of v and zv

i are quantized into
multiples of a small resolution step δ .

In order to enumerate all possible incoming values v for a node
ci and all permitted values for zv

i , we need to find some bounds
for the corresponding value domains. For delimiting the domain
of incoming values the following lemma holds:

Lemma 4. Let vi be the real incoming value at node ci, i.e., the
one when no coefficient is discarded. Let v be an incoming value
to ci for which the error bound ε under the maximum absolute
error metric can be satisfied; then |vi− v| ≤ ε .

Lemma 4 holds also in the multidimensional case and im-
plies that the finite set of possible incoming values we have to
examine at node ci consists of the multiples of δ in the interval
Si = [vi− ε,vi + ε]; thus, |Si|= b 2ε

δ
c+1 = O

(
ε

δ

)
.

For delimiting the domain of assigned coefficients zv
i for a

given incoming value v there is Lemma 5 that holds in the one-
dimensional case:

Lemma 5. Let vi be the real incoming value to node ci, zi the real
assigned value at ci, v ∈ Si be a possible incoming value to ci for
which the maximum error bound ε can be satisfied, and zv

i be a
value that can be assigned at ci for incoming value v, satisfying
ε; then |zi− zv

i | ≤ ε−|vi− v|

2. MinHaarSpace uses unrestricted wavelets. The values for the coefficients
do not need to be the ones computed by the wavelet transform but any real
number as long as the error tree properties are preserved. In order to distinguish
the coefficient from the arbitrary value that is assigned, we use for the assigned
value the notation zi and zi, j for the 1- and D-dimensional cases respectively.

Proof. Let v, zv
i be the incoming and the assigned values at

node ci and vi, zi be the real incoming and real assigned values
respectively. Let also v∗2i be the incoming value for c2i. Then, the
incoming and real incoming values at node c2i are: v2i = vi+zi and
v∗2i = v+zv

i . As Lemma 4 should hold for node c2i, we should pick
a value for zv

i such that: |v∗2i− v2i| ≤ ε , i.e., |v+ zv
i − vi− zi| ≤ ε

which leads to |zi− zv
i | ≤ ε−|vi− v|.

Lemma 5 implies that the finite set of possible assigned
values we have to examine at node ci, for a given incoming
value v ∈ Si, consists of the multiples of δ in the interval
Sv

i = [zi− (ε−|vi− v|) ,zi +(ε−|vi− v|)].
By examining the Proof of Lemma 5, we observe some

differences that exist in the multidimensional case. As we have
said, a node ci of a D-dimensional error tree contains 2D − 1
coefficients zi, j that all contribute to its 2D children. Thus, for
an incoming value vi at node ci, the incoming value at its j-th
child is: vi +∑

2D−2
k=0

(
zi,ksign(k, j)

)
. Following a similar reasoning

to the proof above, we get the inequalities:

|
2D−2

∑
k=0

(
zi,k− zv

i,k
)

sign(k, j) | ≤ ε−|vi− v|,∀ j ∈ 0, ..,2D−2 (4)

A pairwise addition of the above inequalities leads to 2D−1 more
inequalities that place bounds to the candidate values of every
individual coefficient ci,k:

|zi,k− zv
i,k| ≤ ε−|vi− v|,∀k ∈ 0, ..,2D−2 (5)

For a given incoming value v at node ci, the possible as-
signed values for every coefficient ci,k,k = 0, ..,2D − 2 com-
prise the finite set of the multiples of δ in the interval: Sv

i,k =[
zi.k− (ε−|vi− v|) ,zi,k +(ε−|vi− v|)

]
that also satisfy Inequal-

ities 4. As |Sv
i,k| = O

(
ε

δ

)
, and each node contains 2D− 1 coeffi-

cients, the number of examined values for node ci is O
((

ε

δ

)2D−1
)

.
The MDMSpace procedure works in a bottom-up left-to-right

scan over the error tree. At each visited node ci it calculates an
array A of size |Si| from the precalculated arrays of its children
nodes. A holds an entry A[v] for each possible incoming value v at
ci. Such an entry contains: (i) the minimum number A[v].s= S(i,v)
of non-zero coefficients that need to be retained in the sub-
tree rooted at ci with incoming value v, so that the resulting
synopsis satisfies the error bound ε , (ii) the δ -optimal values
A[v].

(
zv

i,0, ..,z
v
i,2D−2

)
to assign at ci, for incoming value v, and

(iii) the actual minimized maximum error A[v].e obtained in the
scope of ci. S(i,v) is recursively expressed as:

S(i,v)= min
zi,k∈Sv

i,k

(
i2D+1−1

∑
j=i2D

S(j,v+
2D−2

∑
k=0

zi,ksign(j,k))+
2D−2

∑
k=0

(zi,k 6= 0)

)

S(0,0) = min
z0,0∈S0

0,0

(S(1,z0,0)+(z0,0 6= 0))

The above equations compute the smallest between (i) the mini-
mum required space if a non-zero coefficient value zi,k is assigned
at ci,k; and (ii) the required space if a zero value is assigned at
it. The latter case applies only if 0 ∈ Sv

i,k. Let Sv
i,k denote the set

of those assigned values at ci,k for incoming value v that require
the minimum space in order to achieve the error bound ε: The
δ -optimal value to select is the one among these candidates that
also minimizes, in a secondary priority, the obtained maximum
absolute error in the scope of ci. So, we also need the equations:

E(i,v) = min
zi,k∈Sv

i,k

(
i2D+1−1

max
j=i2D

E(j,v+
2D−2

∑
k=0

zi,ksign(j,k))

)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

E(0,0) = min
z0,0∈S0

0,0

(E(1,z0,0))

Complexity Analysis. The result array A on each node ci holds
|Si| entries, one for each possible incoming value, hence its size
is O

(
ε

δ

)
. Moreover, at each node ci and for each v ∈ Si, we loop

through all ∏
2D−2
k=0 |S

v
i,k|= O

((
ε

δ

)2D−1
)

possible assigned values.

Thus, the runtime of MDMSpace(0, ε) is O
((

ε

δ

)2D
N
)

.

6.2 MGreedyAbs: D-dimensional GreedyAbs
For extending the algorithms of Section 5 to multiple dimensions,
we first need to modify the centralized GreedyAbs algorithm.

As in the one-dimensional case, the greedy algorithm picks
each time the coefficient c jk with the lowest MA and discards it.
According to Equation 3, the computation of MAk for a node ck
demanded four values (maxl

k, minl
k, maxr

k, minr
k): the maximum and

minimum error for each of the two subtrees of ck. A node of a D-
dimensional error tree has 2D children. Thus, in order to compute
MA jk, we need to know the maximum and minimum error in each
of the 2D subtrees of c jk, thus 2D+1 values are required. We can
see that all the coefficients of a node support the same region of
the original data, and so they should observe the same errors in the
reconstruction of the corresponding data values. In that way, we do
not need to store at each coefficient the maximum and minimum
error observed in each subtree, but all the coefficients of a node
can share the same 2D+1 values. The equation for the computation
of MA jk is:

MA jk = max
0≤s≤2D−1

{|maxs
j− sign(s)c jk|, |mins

j− sign(s)c jk|} (6)

where s is the index of each subtree of node j and sign(s) is the
sign of the error caused in subtree s when deleting coefficient
c jk. Similarly to the one-dimensional case, when a coefficient
c jk is discarded, its maximum and minimum errors need to be
updated, as well as the MA-values of all coefficients in the
subtrees of node j and if needed the coefficients in the ancestors
of node j. Furthermore, this time we also need to update the
MA-values of the remaining coefficients in node j that are not
yet discarded. Algorithm 5 formally presents MGreedyAbs, the
modified algorithm for handling multi-dimensional data.

Complexity Analysis. The initial heap H can be constructed in
O(N) time. The algorithm performs O(N) discarding operations.
A dropped coefficient c jk at height h of the error tree has at
most 2Dh descendant nodes and each of them at most 2D − 1
non-deleted coefficients. Thus, each coefficient at height h has
at most 2Dh(2D − 1) non-deleted descendant coefficients which
must be updated. Moreover, at height h of the error tree, there are
2D(logN−h)(2D − 1) coefficients3. As all of them will eventually
be discarded, the total number of updates in descendants for all
coefficients is:

logN

∑
h=1

[2Dh(2D−1) ·2D(logN−h)(2D−1)] = (2D−1)2NlogN (7)

A discarded coefficient c jk has at most logN ancestor nodes with
at most 2D− 1 non-deleted coefficients each, and thus the total
number of updates in ancestors for all deleted coefficients is also
O((2D − 1)2NlogN). Furthermore, for each dropped coefficient
c jk, we need to update at most 2D − 2 coefficients in node j,
i.e., in the same node of the discarded coefficient. As there are
O(N) discarded nodes, the cost of updates in the same node is:

3. In this proof, it holds that logN = log2D N

Algorithm 5 MGreedyAbs
1: Input: WA vector of N Haar wavelet coefficients
2: H := create heap(WA)
3: while H not empty do
4: discard c jk := H.top // coefficient with smallest MA jk
5: for s = 0;s≤ 2D−1;s++ do
6: maxs

j = maxs
j− sign(s)c jk; minxs

j = minxs
j− sign(s)c jk

7: for i = 0; i≤ 2D−2; i++ do
8: if c ji not discarded then
9: recalculate MA ji;update c ji’s position in H

10: for each subtree s ∈
[
0,2D−1

]
of node j do

11: for each coefficient cmn ∈ s do
12: if cmn not discarded then
13: Update all error measures in cmn by c jk
14: recalculate MAmn;update cmn’s position in H
15: maxerr := max

0≤s≤2D−1

(
maxs

jk,maxs
jk

)
;

16: minerr := min
0≤s≤2D−1

(
mins

jk,mins
jk

)
; nodei = node j.parent

17: while nodei 6= NULL do
18: maxl

i := maxerr; minl
i := minerr

19: if any of {maxs
i ,mins

i},s ∈
[
0,2D−1

]
changed then

20: if ci not discarded then
21: recalculate MAi;update ci’s position in H
22: maxerr := max

0≤s≤2D−1

(
maxs

jk,maxs
jk

)
23: minerr := min

0≤s≤2D−1

(
mins

jk,mins
jk

)
24: nodei = nodei.parent
25: else break

O((2D − 2)N) in total. Thus, the total update operations of the
algorithm are: O(NlogN +N). Moreover, each update in a coeffi-
cient costs its re-positioning in H which is an O(logN) operation.
The complexity of the algorithm is thus: O(Nlog2N +NlogN),
that asymptotically remains to be O(Nlog2N) as in the one-
dimensional case.

6.3 Discussion
From an algorithmic perspective, the main difference in the
construction of one- and D-dimensional wavelet synopses is the
structure of the error tree. All the modifications on the proposed
algorithms aim at handling error trees in which each node can
have an arbitrary number of children.

We observe that the complexity of MDMSpace becomes pro-
hibitive even for low dimensionalities. A dimension of D = 4
can lead to billions of iterations for the algorithm. On the other
hand, the complexity analysis of the greedy algorithms shows that
an error tree of a D-dimensional dataset incurs a computational
overhead in the order of 22D. However, this is counterbalanced
to some extent by the fact that along with the change in dimen-
sionality, there is also a change in the basis of the logarithm in
the complexity formula. Our experiments in Section 7 show that
the synopsis construction for a 4-dimensional dataset is only 1.5
times slower than the synopsis construction for a one-dimensional
same-sized dataset when the greedy algorithms are employed.

As our experiments indicate, it is more difficult to yield
accurate wavelet synopses for datasets of high dimensionality.
Intuitively, the higher the number of dimensions, the higher is the
number of neighbors for a data-value in the input array. Depending
on the distribution, this can lead to an increased number of
discontinuities that should be captured by the synopsis.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

In Table 2, we summarize the algorithms presented throughout
the paper. IndirectHaar and DIndirectHaar can handle the mul-
tidimensional case only if they use MDMSpace instead of Min-
HaarSpace. Similarly, DGreedyAbs and BUDGreedyAbs should
use MGreedyAbs for handling multiple dimensions.

TABLE 2: Summary of presented algorithms

Algorithm Distributed Multidimensional
MinHaarSpace no no

MDMSpace (this work) no yes
IndirectHaar no yes

DIndirectHaar (this work) yes yes
GreedyAbs no no

MGreedyAbs (this work) no yes
DGreedyAbs (this work) yes yes

BUDGreedyAbs (this work) yes yes

7 EXPERIMENTAL EVALUATION

In the experimental Section we evaluate the proposed algorithms
in terms of (i) synopsis construction time and (ii) achieved error.
We show that our distributed solutions present linear scalability
and we are able to run experiments on bigger datasets than any
previous work. All algorithms are implemented in Java 1.8 and for
the distributed ones we use the MapReduce programming model.

Datasets. The experiments are conducted using both synthetic
and real datasets. As synthetic data, we use uniform and zipfian
distributions with data values that lie between [0, 1000]. For the
one-dimensional real-life datasets we utilize NYCT [37] and WD
[38]. NYCT describes taxi trips in the New York City and contains
records for the trip time in seconds. WD consists of observations
on wind direction (azimuth degrees) captured during hurricanes
in the USA. As multidimensional real-life datasets, we utilize
NOAA [39] and NYCT2D [37]. NYCT2D is a 2-dimensional
dataset of 1.5 billion records that contains trip distances and total
fares for the taxi rides. For NOAA, we consider the following
four dimensions: Wind Direction, Wind speed, Temperature and
Dew point. All datasets are partitioned in order to test scalability
over different sizes. The smallest partition comprises the first 1M
records, while each subsequent partition is 2D times the previous
one, where D is the dataset’s dimensionality. Our largest dataset
consists of 268M datapoints.

Platform setup. For our deployment platform, we use a
Hadoop 2.6.5 cluster of 9 machines, each featuring eight Intel
Xeon CPU E5405 @ 2.00GHz cores and 8 GB of main memory.
One machine is used as the master node and the remaining ones
as slaves. Each slave is allowed to run simultaneously up to 5 map
tasks and 1 reduce task. Each of these tasks is assigned 1 physical
core and 1 GB of main memory. For all the remaining properties,
we keep the default Hadoop configuration.

For experimenting with the centralized algorithms we use one
machine with the same specifications as the ones listed above.
Thus, centralized algorithms may have up to 8 GB of available
main memory for their execution.

7.1 Scalability
In this Section, we use synthetic data to assess the scalability with
respect to the available budget for the synopsis B, the number
of datapoints N and the number of tasks running in parallel. We
show that our algorithms can scale to data sizes that state-of-the-
art centralized approaches are incapable of. For this Section, we
use uniformly distributed values in the range of [0,1K].

Varying space budget. In this experiment we examine
the scalability with respect to the space budget B. We run
DGreedyAbs, BUDGreedyAbs and DIndirectHaar for one-dimen-
sional data of size N = 17M and we vary B from N/64 to
N/2. The results of Fig. 9a show that for DGreedyAbs, running-
time is not considerably affected by the size of the synopsis.
However, this is not true for DIndirectHaar and BUDGreedyAbs.
For DIndirectHaar, a larger B is more probable to lead in a
smaller error and decrease the ε

δ
factor of its complexity formula.

Thus, a larger budget may lead to faster execution of the algo-
rithm. For BUDGreedyAbs, as the complexity of the reducer is
O
(
Rlog2R+RB

)
, running-time can linearly increase with B. We

repeat the experiment, this time considering datasets of multiple
dimensions. Fig. 9b, 9c and 9d show the results for DGreedyAbs,
BUDGreedyAbs and DIndirectHaar respectively. As expected, for
all algorithms, the higher the dataset dimension is, the higher is the
running-time of the algorithm. For the greedy algorithms and for
budget sizes smaller than the partition size of the distributed job
(1M datapoints), we observe better running-times. This is due to an
optimization where each worker emits only the B most important
coefficients to the reduce stage. For Fig. 9d, we note that the
complexity of DIndirectHaar for a 4-dimensional dataset is too
high and the algorithm is not able to run.

Varying datasize and number of parallel tasks. Fig. 10
shows the scalability with respect to the number of datapoints
(N) and tasks running in parallel for DIndirectHaar, DGreedyAbs
and BUDGreedyAbs respectively. We set B = 1M for all the
experiments of this subsection and vary the datasize from 2M to
268M datapoints for all the algorithms and the number of parallel
map tasks from 10 to 40. We also compare both algorithms with
the corresponding centralized implementations in order to assess
the difference in performance. We note that the y-axis in Fig. 10a,
10b and 10c follows a logarithmic scale.

All the algorithms scale linearly with the dataset size. The
running-time is almost constant at first, when all data can be
processed fully in parallel, and is linearly growing as the cluster is
fully utilized and more tasks need to be serialized for execution.
Linear scalability is also observed with the number of parallel
running tasks. By halving the capacity of the cluster, running-time
is almost doubled for all the examined algorithms.

The centralized algorithms were not able to run for datasizes
greater than 17M datapoints, as their execution demands more
than the available main memory. Compared to the centralized
GreedyAbs, BUDGreedyAbs appears to be 20× faster for a dataset
of 17M datapoints when all of its map tasks can run fully in
parallel. In Fig. 10b, 10c we also observe that BUDGreedyAbs is
twice as fast as DGreedyAbs. This is because DGreedyAbs needed
to try two Croot sets in order to converge, while BUDGreedyAbs
always needs a single MapReduce job. As we notice in Fig. 10a,
even if DIndirectHaar scales linearly, it is slower than the greedy
algorithms, being 1.5× and 3× slower than DGreedyAbs and
BUDGreedyAbs respectively. Moreover, we see that the central-
ized IndirectHaar is faster than DIndirectHaar when the dataset
size is small or few parallel tasks are running. That is because the
centralized implementation loads the whole dataset in memory and
the required multiple jobs do not need to perform I/O operations.

Fig. 10d presents scalability results when two-dimensional
datasets of different sizes are used. Once again, all examined al-
gorithms scale linearly with the dataset size. The important obser-
vation here is that the running-time gain of the greedy algorithms
compared to DIndirectHaar increases along with the dimensional-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

1 2 3 4 5 6 7 8
B (in millions)

0

200

400

600

800

1000

1200
T

im
e

(s
ec

)

BUDGreedyAbs
DGreedyAbs
DIndirectHaar

(a) 1-dimensional data

0 1 2 3 4 5 6 7 8 9
B (in millions)

100

200

300

400

500

600

700

T
im

e
 (

se
c
)

1 dim
2 dim
4 dim

(b) DGreedyAbs

1 2 3 4 5 6 7 8 9
B (in millions)

100

200

300

400

500

600

700

T
im

e
 (

se
c
)

1 dim
2 dim
4 dim

(c) BUDGreedyAbs

1 2 3 4 5 6 7 8
B (in millions)

1000

2000

3000

4000

5000

T
im

e
 (

se
c
)

1 dim
2 dim

(d) DIndirectHaar

Fig. 9: Scalability with the space budget B.

0 50 100 150 200 250
N (in millions)

100

1000

10000

T
im

e
(s

ec
)

IndirectHaar
DIndirectHaar-10map
DIndirectHaar-20map
DIndirectHaar-40map

(a) DIndirectHaar

50 100 150 200 250
N (in millions)

100

1000

10000

T
im

e
(s

ec
)

GreedyAbs
DGreedyAbs-10map
DGreedyAbs-20map
DGreedyAbs-40map

(b) DGreedyAbs

50 100 150 200 250
N (in millions)

100

1000

10000

T
im

e
(s

ec
)

GreedyAbs
BUDGreedyAbs-10map
BUDGreedyAbs-20map
BUDGreedyAbs-40map

(c) BUDGreedyAbs

50 100 150 200 250
N (in millions)

20 k

40 k

60 k

80 k

T
im

e
(s

ec
)

DGreedyAbs-2D
BUDGreedyAbs-2D
DIndirectHaar-2D

(d) 2-dimensional datasets

Fig. 10: Scalability with the dataset size (N) and number of parallel tasks

ity. For the 2-dimensional datasets, the greedy algorithms present
almost the same performance with the 1-dimensional case while
DIndirectHaar becomes considerably slower.

The main results of this Section are that: (i) all distributed
algorithms scale linearly with the datasize, (ii) greedy algorithms
are much faster than the state-of-the-art DP, (ii) dimensionality
positively affects running-time and (iv) the higher the dimension-
ality, the higher is the benefit of using a greedy algorithm.

7.2 Data Dimensionality and Maximum Absolute Error
In this Section, we investigate how dimensionality affects maxi-
mum absolute error and what tradeoffs DIndirectHaar offers for
its high running-time. For this experiment, we consider synthetic
datasets of 1, 2 and 4 dimensions and B = N

16 . All datasets follow
a zipfian-1.5 distribution, with a size of N = 17M datapoints. The
choice of distribution is inline with previous research [28], as it has
been shown that wavelets can better capture skewed distributions.

In Fig. 11, we notice that the achieved accuracy is negatively
affected by an increase in dimensionality. The higher the dimen-
sionality, the higher is the observed error. This is probably an
effect of the enhanced locality in high-dimensional spaces. Fur-
thermore, DIndirectHaar compensates for its high computational
complexity with an error 30% smaller than the one achieved by the
greedy algorithms for both high dimensional datasets. However,
once again it was not able to run for the 4-dimensional dataset.

7.3 Comparison for Real Datasets
In this Section, we compare DGreedyAbs, BUDGreedyAbs and
DIndirectHaar with each other, as well as with their centralized
counterparts using real-life one-dimensional datasets. Further-
more, we compare them against CON [31]: an algorithm that con-
structs a conventional synopsis (i.e., L2-optimal). As CON is less
compute-intensive, we want to investigate the tradeoffs in running-
time and produced maximum error. For the approximation quality
experiments, we do not include IndirectHaar, as it theoretically
achieves the same results as DIndirectHaar.

1 2 4
Dimensionality

0

100

200

300

400

M
ax

im
u

m
 A

b
so

lu
te

 E
rr

o
r DGreedyAbs

BUDGreedyAbs
DIndirectHaar

Fig. 11: Maximum Absolute Error for Zipfian data and B = N/16.

0 10 20 30 40 50 60

N (in millions)

500

1000

1500

2000

2500

3000

M
ax

 A
b
so

lu
te

 E
rr

o
r

BUDGreedyAbs
GreedyAbs
DGreedyAbs
DIndirectHaar
CON

(a) NYCT-Max Abs Error

0 10 20 30 40 50 60

N (in millions)

0

1000

2000

3000

T
im

e
(s

ec
)

BUDGreedyAbs
DIndirectHaar
DGreedyAbs
GreedyAbs
IndirectHaar
CON

(b) NYCT-Running-time

2 4 6 8 10 12 14 16

N (in millions)

150

200

250

300

350

400

M
ax

 A
b

so
lu

te
 E

rr
o

r

DGreedyAbs
GreedyAbs
BUDGreedyAbs
DIndirectHaar
CON

(c) WD-Max Abs Error

2 4 6 8 10 12 14 16

N (in millions)

0

200

400

600

800

1000

1200

1400

T
im

e
(s

ec
)

BUDGreedyAbs
DIndirectHaar
DGreedyAbs
GreedyAbs
IndirectHaar
CON

(d) WD-Running-time

Fig. 12: 1-D real datasets. B = N/8

NYCT dataset. In Fig. 12a, we present the approximation
quality results for the NYCT dataset and B = N

8 . The construction
of an accurate synopsis for this dataset is a difficult task to
accomplish as it contains values of high magnitude and variance.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

Two important observations are that: (i) scalability does not come
with a cost; the distributed greedy algorithms achieve the same
error with GreedyAbs and (ii) all algorithms targeting maximum
error metrics outperform CON from 2 to 5 times.

Fig. 12b presents the running-time results for the same dataset.
With the maximum absolute error over 550 for all datasizes, the
multiplicative factor

(
E
δ

)2
of the complexity formula of DIndi-

rectHaar is equal to 121. As such, for this dataset, the execution
of the DP algorithms is very compute-intensive. We observe that
for datasizes smaller than 60M datapoints, BUDGreedyAbs is the
most time-efficient algorithm among the ones that target maximum
error metrics. In Section 7.1, we said that the available budget
affects the running-time performance of BUDGreedyAbs. Since
we have set B = N/8, an increase in the number of datapoints
implies an increase in the synopsis’ size which in turn increases
the running-time of the algorithm. At this point, we observe
a trade-off between DGreedyAbs and BUDGreedyAbs. On the
one hand, DGreedyAbs needs multiple passes over the data in
the map phase of the job, while BUDGreedyAbs needs only
one. On the other hand, DGreedyAbs has a lightweight reducer,
while the one of BUDGreedyAbs is compute-intensive and can
become a bottleneck. Thus, when datasize is large, we suggest
BUDGreedyAbs for datasets that can be easily approximated with
a small available budget and DGreedyAbs when a higher budget is
demanded. As the conventional synopsis is easier to be computed,
we observe CON to be much faster than all the other algorithms.

WD dataset. Fig. 12c shows the approximation quality and
running-time results for the WD dataset and B = N

8 . The conclu-
sions are similar to the ones for the NYCT dataset. In Fig. 12d we
see that IndirectHaar outperforms DIndirectHaar for datasizes up
to 8M datapoints. When data fits in main memory, IndirectHaar
avoids the I/O overhead of the multiple MapReduce jobs, that
DIndirectHaar requires. Still, the most efficient algorithm, that
targets the minimization of maximum error metrics, is BUD-
GreedyAbs as it outperforms GreedyAbs by a factor of 6.7 and
DGreedyAbs by a factor of 2 for a 17M dataset.

We now extend our evaluation to multidimensional real
datasets. For the multidimensional experiments, we use the
NYCT2D and NOAA datasets. Furthermore, in order to demon-
strate the merits of wavelet thresholding in exploratory analysis
tasks, we also present a query-time evaluation for the constructed
synopses. For answering queries on wavelet synopses, we have
implemented the work of [10]. As proposed there, instead of
applying the wavelet transform directly on the data, we first
construct a datacube of joint frequencies. After the synopsis is
constructed, it can be loaded in main memory and provide in-
memory query answering.

Fig. 13a presents the results of the construction time com-
parison when B = N/16. For both datasets, BUDGreedyAbs is
the most time-efficient algorithm. DP algorithms are able to
run only for the NYCT2D dataset, where IndirectHaar is 12×
and DIndirectHaar 7× slower than BUDGreedyAbs. Despite the
dimensionality of these datasets, we observe that all algorithms
achieve lower running-times than the ones achieved in Fig. 12b.
This may seem counter-intuitive, but the explanation lies behind
the distribution of the wavelet transform. The transforms of NOAA
and NYCT2D are sparse enough and the data that the thresholding
algorithms actually process are fewer than the original dataset.

Regarding quality guarantees, all greedy algorithms produced
a maximum absolute error of 1.8 and 0.9 for the NYCT2D
and NOAA datasets respectively. As the errors are already small

NYCT-2D NOAA-4D
Dataset

0

200

400

600

800

1000

1200

1400

C
o

n
st

ru
ct

io
n

 T
im

e
(s

ec
)

BUDGreedyAbs
DGreedyAbs
MGreedyAbs
DIndirectHaar
IndirectHaar

(a) Synopsis Construction Time

NYCT-2D NOAA-4DDataset

0

200

400

600

Q
u
er

y
 T

im
e

(s
ec

) CSV
Parquet
Wavelets

(b) Query time

Fig. 13: Synopsis Construction and Query Time for real-life
datasets.

enough, the DP algorithms could not yield an interesting tradeoff
for the high-running time they present.

Fig. 13b shows the results of the query time experiment. We
consider queries of the form select {sum,count,avg} from T
where p1 ∧ ...∧ pk, where pi is an inequality predicate. For each
dataset, we run a workload of 10 random queries of that form
and present the average query time. We compare query time on
wavelet synopses against SparkSQL [40] queries on raw csv and
Parquet [41] files. The csv text files do not fit in the aggregate
memory of the cluster we have configured and thus they produce
the worst query latencies. As Parquet enables lossless compression
mechanisms, the corresponding Parquet files fit in our cluster’s
memory and improve a lot on the observed query time. However,
our wavelet synopses with B = N/16 can fit in a single machine’s
main memory and thus present the best query times.

The main conclusions from the comparisons in this Section
are that: (i) The proposed distributed approaches scale to datasizes
that the traditional centralized algorithms are unable to process.
(ii) The most time-efficient algorithms are BUDGreedyAbs and
DGreedyAbs and each of these algorithms can be the most ap-
propriate choice in a different use-case; when B is not too large,
the BUDGreedyAbs algorithm is suggested. (iii) DIndirectHaar
produces results of better quality but it presents the worse running-
time and ends up to be impracticable in higher dimensions.

8 CONCLUSIONS

In this paper, we have examined the problem of wavelet threshold-
ing aiming at the minimization of maximum error metrics. Having
established that the existing approaches do not scale for big
datasets, we focus on designing algorithms with linear scalability
over scale-out infrastructures. We first present a novel technique
that allows the parallel execution of all the existing DP algorithms
for the problem and show that it works for both one- and multi-
dimensional datasets. Our results indicate that we can scale DP
algorithms to data sizes that their centralized counterparts are
incapable of processing. Moreover, in order to further improve
on the running-time for the synopsis construction, we propose
DGreedyAbs and BUDGreedyAbs, which are new heuristic-based
algorithms based on GreedyAbs. These greedy algorithms are
more time-efficient than the state-of-the-art DP algorithm and we
also show that the performance gain they offer increases along
with the dimensionality.

REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: queries with bounded errors and bounded response times on
very large data,” in Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, 2013, pp. 29–42.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[2] B. Mozafari, “Verdict: A system for stochastic query planning.” in CIDR,
2015.

[3] I. Trummer and C. Koch, “An incremental anytime algorithm for multi-
objective query optimization,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 2015, pp.
1941–1953.

[4] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan, “Improving
responsiveness for wide-area data access,” in IEEE Data Engineering
Bulletin. Citeseer, 1997.

[5] P. B. Gibbons and Y. Matias, “New sampling-based summary statistics
for improving approximate query answers,” in ACM SIGMOD Record,
vol. 27, no. 2. ACM, 1998, pp. 331–342.

[6] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “Join
synopses for approximate query answering,” in ACM SIGMOD Record,
vol. 28, no. 2. ACM, 1999, pp. 275–286.

[7] Y. E. Ioannidis and V. Poosala, “Histogram-based approximation of set-
valued query-answers,” in VLDB, vol. 99, 1999, pp. 174–185.

[8] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast incremental maintenance
of approximate histograms,” in VLDB, vol. 97, 1997, pp. 466–475.

[9] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
and T. Suel, “Optimal histograms with quality guarantees,” in VLDB,
vol. 98, 1998, pp. 275–286.

[10] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate
query processing using wavelets,” The VLDB Journal–The International
Journal on Very Large Data Bases, vol. 10, no. 2-3, pp. 199–223, 2001.

[11] M. Garofalakis and A. Kumar, “Deterministic wavelet thresholding
for maximum-error metrics,” in Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. ACM, 2004, pp. 166–176.

[12] P. Karras and N. Mamoulis, “One-pass wavelet synopses for maximum-
error metrics,” in Proceedings of the 31st international conference on
Very large data bases. VLDB Endowment, 2005, pp. 421–432.

[13] P. Karras, D. Sacharidis, and N. Mamoulis, “Exploiting duality in
summarization with deterministic guarantees,” in Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2007, pp. 380–389.

[14] P. Karras and N. Mamoulis, “The haar+ tree: a refined synopsis data
structure,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd Interna-
tional Conference on. IEEE, 2007, pp. 436–445.

[15] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing
wavelets on streams: One-pass summaries for approximate aggregate
queries,” in VLDB, vol. 1, 2001, pp. 79–88.

[16] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” in Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing. ACM, 1996, pp.
20–29.

[17] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for computer
graphics: theory and applications. Morgan Kaufmann, 1996.

[18] T. Li, Q. Li, S. Zhu, and M. Ogihara, “A survey on wavelet applications
in data mining,” ACM SIGKDD Explorations Newsletter, vol. 4, no. 2,
pp. 49–68, 2002.

[19] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based histograms for
selectivity estimation,” in ACM SIGMOD Record, vol. 27, no. 2. ACM,
1998, pp. 448–459.

[20] J. S. Vitter and M. Wang, “Approximate computation of multidimensional
aggregates of sparse data using wavelets,” in ACM SIGMOD Record,
vol. 28, no. 2, 1999.

[21] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss, “One-
pass wavelet decompositions of data streams,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 15, no. 3, pp. 541–554, 2003.

[22] G. Cormode, M. Garofalakis, and D. Sacharidis, “Fast approximate
wavelet tracking on streams,” in Advances in Database Technology-
EDBT 2006. Springer, 2006, pp. 4–22.

[23] M. Garofalakis and P. B. Gibbons, “Wavelet synopses with error
guarantees,” in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM, 2002, pp. 476–487.

[24] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses for
massive data: Samples, histograms, wavelets, sketches,” Foundations and
Trends in Databases, vol. 4, no. 1–3, pp. 1–294, 2012.

[25] S. Guha, “Space efficiency in synopsis construction algorithms,” in
Proceedings of the 31st international conference on Very large data
bases. VLDB Endowment, 2005, pp. 409–420.

[26] S. Muthukrishnan, “Subquadratic algorithms for workload-aware haar
wavelet synopses,” in FSTTCS 2005: Foundations of Software Technol-
ogy and Theoretical Computer Science. Springer, 2005, pp. 285–296.

[27] C. Pang, Q. Zhang, D. Hansen, and A. Maeder, “Unrestricted wavelet
synopses under maximum error bound,” in Proceedings of the 12th

International Conference on Extending Database Technology: Advances
in Database Technology. ACM, 2009, pp. 732–743.

[28] M. Garofalakis and A. Kumar, “Wavelet synopses for general error
metrics,” ACM Transactions on Database Systems (TODS), vol. 30, no. 4,
pp. 888–928, 2005.

[29] S. Guha and B. Harb, “Wavelet synopsis for data streams: minimizing
non-euclidean error,” in Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining. ACM,
2005, pp. 88–97.

[30] Y. Matias and L. Portman, “Workload-based wavelet synopses,” Techni-
cal report, Department of Computer Science, Tel Aviv University, Tech.
Rep., 2003.

[31] I. Mytilinis, D. Tsoumakos, and N. Koziris, “Distributed wavelet thresh-
olding for maximum error metrics,” in Proceedings of the 2016 Interna-
tional Conference on Management of Data. ACM SIGMOD, 2016, pp.
663–677.

[32] J. Jestes, K. Yi, and F. Li, “Building wavelet histograms on large data
in mapreduce,” Proceedings of the VLDB Endowment, vol. 5, no. 2, pp.
109–120, 2011.

[33] P. Karras and N. Mamoulis, “Hierarchical synopses with optimal error
guarantees,” ACM Transactions on Database Systems (TODS), vol. 33,
no. 3, p. 18, 2008.

[34] Q. Zhang, C. Pang, and D. Hansen, “On multidimensional wavelet
synopses for maximum error bounds,” in International Conference on
Database Systems for Advanced Applications. Springer, 2009, pp. 646–
661.

[35] X. Li, S. Huang, H. Zhao, X. Guo, L. Xu, X. Li, and Y. Li,
“Image compression based on restcted wavelet synopses with
maximum error bound,” in Proceedings of the 9th International
Conference on Utility and Cloud Computing, ser. UCC ’16. New
York, NY, USA: ACM, 2016, pp. 333–338. [Online]. Available:
http://doi.acm.org/10.1145/2996890.3007880

[36] A. Wasay, X. Wei, N. Dayan, and S. Idreos, “Data canopy: Accelerat-
ing exploratory statistical analysis,” in Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 2017, pp.
557–572.

[37] “Nyct,” http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.
[38] “Linked sensor data,” https://wiki.knoesis.org/index.php/SSW Datasets.
[39] “National oceanic and atmospheric administration,”

https://www1.ncdc.noaa.gov/pub/data/noaa/.
[40] “Spark SQL,” https://spark.apache.org/sql/.
[41] “Parquet,” https://parquet.apache.org/.

Ioannis Mytilinis is a Ph.D. candidate at the
Computing Systems Laboratory of the National
Technical University of Athens (NTUA). His re-
search lies in the fields of Large Scale Data
Management, Distributed Systems and Cloud
Computing. He received his Diploma in Elec-
trical and Computer Engineering from NTUA in
2012. He is a member of ACM SIGMOD and
of Technical Chamber of Greece. For more:
http://www.cslab.ece.ntua.gr/∼gmytil.

Dimitrios Tsoumakos is an Associate Profes-
sor in the Department of Informatics of the Io-
nian University. He is also collaborating with the
Computing Systems Laboratory of the National
Technical University of Athens (NTUA). He re-
ceived his Diploma in Electrical and Computer
Engineering from NTUA in 1999, then joined
the graduate program in Computer Sciences at
the University of Maryland in 2000, where he
received his M.Sc. (2002) and Ph.D. (2006). For
more: http://www.cslab.ece.ntua.gr/∼dtsouma.

Nectarios Koziris is a Professor of Computer
Science in the School of Electrical and Com-
puter Engineering at the National Technical Uni-
versity of Athens. His research interests include
parallel and distributed systems, interaction be-
tween compilers, OS and architectures, scalable
data management and large scale storage sys-
tems. He is a member of the IEEE Computer
Society, senior member of the ACM, elected
chair of the IEEE Greece Section and started
the IEEE Computer Society Greece. For more:

http://www.cslab.ece.ntua.gr/∼nkoziris.

