
Clouseau: Blockchain-based Data Integrity for HDFS Clusters

Alyzia Konsta∗, Ioannis Mytilinis†, Katerina Doka∗, Sotiris Niarchos∗ and Nectarios Koziris∗
∗Computing Systems Laboratory, National Technical University of Athens

{akonsta, katerina, sniarchos, nkoziris}@cslab.ece.ntua.gr
†École Polytechnique Fédérale de Lausanne (EPFL)

ioannis.mytilinis@epfl.ch

Abstract—As the volume of produced data is exponentially in-
creasing, companies tend to rely on distributed systems to meet
the surging demand for storage capacity. With the business
workflows becoming more and more complex, such systems
often consist of or are accessed by multiple independent,
untrusted entities, which need to interact with shared data.
In such scenarios, the potential conflicts of interest incentivize
malicious parties to act in a dishonest way and tamper the data
to their own benefit. The decentralized nature of the systems
renders verifiable data integrity a strenuous but necessary task:
The various parties should be able to audit changes and detect
tampering when it happens.

In this work, we focus on HDFS, the most common
storage substrate for Big Data analytics. HDFS is vulnerable to
malicious users and participating nodes and does not provide
a trustful lineage mechanism, thus jeopardizing the integrity
of stored data and the credibility of extracted insights. As
a remedy, we present Clouseau, a blockchain-based system
that provides verifiable integrity over HDFS, while it does not
incur significant overhead at the critical path of read/write
operations. During the demonstration, the attendees will have
the chance to interact with Clouseau, corrupt data themselves,
and witness how Clouseau detects malicious actions.

1. Introduction

Modern business workflows have become increasingly
complex and decentralized, allowing different organizations
and institutions to share and operate on sheer volumes
of data, mostly through distributed storage and processing
frameworks. In such environments, the lineage of infor-
mation usually includes updates by more than one enti-
ties, which are not by default trusted, but may in fact act
maliciously, tampering data for their own interest. Even
within the same company, when various departments access
a common datastore, possible data inconsistencies may lead
to intra-company disputes that are hard to resolve. For
the aforementioned reasons, it is important that distributed
datastores provide for verifiable data lineage and integrity.

Until now, distributed data stores mostly assume that
participating entities are trusted and always act in an honest

§. The work has been done while Ioannis Mytilinis was with CSlab,
NTUA.

way. Most security features introduced to such frameworks
revolve around user authentication and authorization, com-
pletely neglecting the trust aspect [1], [2]. However, legiti-
mate users and entities can still harm the system.

Ideally, what we need in order to protect shared data
is an immutable audit log, that keeps track of all the in-
teractions between the various parties involved as well as
a mechanism to concisely prove the validity and integrity
of the stored data, without having to retrieve the whole,
possibly huge dataset.Thus, any tampering of the data, de-
liberate or not, will be detected by third-party auditors, and
the responsible party will be identified through the logs. To
avoid privacy breaches and boost performance, we would
not expose the data itself to the third-party auditors, but
only a specific set of metadata that could reconstruct state
and prove provenance.

Blockchain is a technology that naturally fits the purpose
and has recently flourished exactly due to its ability to
provide secure transaction tracking. It inherently guarantees
immutability and does not rely on a specific trusted third-
party but rather on decentralized auditors. Thus, the use
of blockchains is nowadays not restricted exclusively to
the support of cryptocurrencies but has been adopted by a
plethora of applications such as asset management, supply
chains and IoT.

Introducing blockchains into databases and storage sys-
tems in order to safeguard data is not a new concept. In the
last few years, there have been several attempts originating
both from academia and the industry towards this direction.
Systems like Veritas [3], Spitz [4], ChainifyDB [5] and
BigchainDB [6] combine the merits of databases with those
of blockchains, offering regular SQL interfaces with rich
querying capabilities and immutability at the same time.

However, such approaches opt for radically new designs
and require major changes in the software stack of the
current data processing systems. To provide wider appli-
cability, we target HDFS clusters. HDFS is the distributed
filesystem of Hadoop and the most prevalent framework of
choice for distributed analytics. Despite its wide adoption,
HDFS is still vulnerable to a variety of attacks and there
exist scenarios where data integrity is at stake. For instance,
when multiple untrusted parties have physical access to the
cluster or in case of federated installations, HDFS cannot
prevent malicious users from tampering the data.



To remedy this, we propose Clouseau, a system that
integrates HDFS with the Ethereum blockchain to offer
provable data integrity and tamper evidence at all times. In
a nutshell, Clouseau uses blockchain as a secure coordinator,
complementary to the existing HDFS Namenode. The on-
chain metadata are accessed through smart contracts and are
used to provide merkle proofs and prove integrity. For the
sake of performance, we keep on-chain information to the
bare minimum. Moreover, since we mainly use Ethereum as
a trust delegator, exploiting its consensus mechanism, and
are not interested in its financial implications, we rely on
permissioned installations, where gas does not correspond
to actual money.

In contrast to previous work [7] that assumes only
Datanodes to be corrupted and builds a reputation-based
system to penalize distrustful nodes, in Clouseau we make
no such assumptions. Any party involved in the data storage
process may have incentives to tamper the data.

Our contributions are summarized as follows:
• We propose a mechanism to guarantee verifiable integrity
of distributed, shared data, leveraging merkle proofs and
smart contracts. The efficiency of the mechanism is
achieved by keeping the interaction with the blockchain
to the bare minimum.

• We incorporate the proposed mechanism to the HDFS
framework to provide trust in an untrusted environment,
where any node may potentially be malicious. This
is achieved at the cost of a configurable performance
penalty. As we describe next, there are 2 tuning knobs that
allow a user to explore the security-performance spectrum
and choose the right configuration based on her needs.

2. Background
This section provides the necessary background for the

understanding of the system. We first quickly recap the
architecture of HDFS along with its deficiencies with respect
to security and then discuss merkle proofs.

2.1. HDFS
HDFS comprises a master-slave distributed architecture,

where the slaves (Datanodes) are responsible for storing
and serving data, while the master (Namenode) coordinates
client requests and maintenance operations, while doing the
bookkeeping for data placement. Albeit the system provides
a unified namespace, files are physically partitioned into
blocks of configurable size (usually 128 MB) and are repli-
cated over the network.

Writing a file requires the client to pack data into blocks.
For each such block, the client contacts the Namenode
and requests the address of a Datanode that can store the
data. The Namenode uses a rack-aware scheme to select
a Datanode and similarly to filesystems with POSIX se-
mantics, it creates an inode that holds all the information
of the specific block (e.g., location, file name, etc.). The
HDFS inodes are maintained only by the Namenode and are
stored in memory. Finally, the client, knowing the address
of the Datanode, directly connects to it and transfers the

block. The process of reading a file is similar: The client
interacts with the Namenode, which provides the address
of the Datanodes actually storing the file blocks, and the
client can directly fetch the respective data blocks. The data
blocks are accompanied by checksums, maintained by the
responsible data nodes, which are used by the client to check
the successful transfer of data.

Moreover, for health monitoring, Datanodes periodically
send a heartbeat and a block report to the Namenode. The
heartbeat is sent by default every 3 seconds and notifies that
the specific Datanode is up and running. The block report
is a more heavyweight operation that happens at larger time
intervals (typically every 6 hours). During a block report, a
Datanode sends information about all the blocks it maintains
and a sanity check is performed at the Namenode’s side.
While the report is taking place, Namenode enters safe mode
and does not accept client requests.

Evidently, apart from being a single point of failure,
the Namenode is by default considered as trusted for the
sound operation of the system. A malicious Namenode could
alter inode information to intentionally hide parts of a file
or add extra blocks to a file that never existed. Moreover,
the Namenode could interfere in the block report process,
falsely affirming tampered blocks as valid or, inversely,
reporting valid blocks as corrupted. Furthermore, even under
the presence of an honest Namenode, the existing block
report mechanism cannot prevent malicious Datanodes from
tampering the data, since the validation performed by the
Namenode is based on the cross-check of simple metadata
information such as size and generation timestamp, that do
not concern the block’s actual contents.

DA DB DC DD DE DF DG DH DJ DK DL DM DN DO DP DQ

HA HB HC HD HE HF HG HH HJ HK HL HM HN HO HP HQ

HAB HCD HEF HGH HJK HLM HNO HPQ

HABCD HEFGH HJKLM HNOPQ

HABCDEFGH HJKLMNOPQ

HABCDEFGHJKLMNOPQ

Figure 1. Merkle proof example

We argue that these are major shortcomings of current
HDFS installations. Anyone (company, physical entity, etc.)
that controls the Namenode or a set of Datanodes, can
tamper files in a completely untraceable manner. This is
exactly the problem that Clouseau aims to tackle.

2.2. Merkle proofs

In cryptography, a merkle tree is a tree where each leaf
is the hash of a data block and each inner-node is the hash of
its children. Figure 1 depicts an example. The green nodes
below the dashed line correspond to data blocks, while the
nodes above the line reflect the merkle tree.



NameNode

FS contract Validator Oracle

Da
ta

N
od

e
Da

ta
N

od
e

Da
ta

N
od

e

…
Client

1

1

Root hash 

& leaves

2

Ethereum
Blockchain

Data

3

Bl
ck

1
Bl

ck
3

Bl
ck

2

Figure 2. Writing a file

The reason why these trees are useful is because they
can provide inclusion and integrity proofs. Inclusion guar-
antees that a data block has not been deleted and integrity
guarantees that a data block has not been modified. These
guarantees come in the form of merkle proofs.

Let us assume that Alice knows the root hash of a file
and requests Bob to prove the inclusion and integrity of
block DN . Then, Bob hashes DN and its sibling data block
DO and obtains HN and HO respectively. Then, he hashes
HN and HO to get HNO and so on until he computes the
root hash. When the computation of hashes is done, Bob
sends to Alice: (i) the data of the requested block (DN ) and
(ii) the sibling nodes of the ones he computed at each level
of the merkle tree (annotated with blue color in Figure 1).
Having this information, Alice can reconstruct the path to
the root and check whether the computed root hash equals
the one she already has in her possession.

3. Architecture
Data integrity in Clouseau is verified with the use of

merkle proofs through a set of Ethereum contracts. This
section describes the architectural design choices, the inte-
gration between HDFS and Ethereum and how the synergy
of the two creates a trusted environment for analytics.

Ethereum in Clouseau acts as a third-party auditor that
tracks the state of uploaded files. In case a malicious subset
of participating nodes, be it the Namenode and/or Datan-
ode(s), tampers the data, the auditor detects the tampering
and broadcasts a message with: (i) the identity of the dis-
honest party, (ii) the id of the corrupted block and (iii) a
timestamp. To provide this auditing functionality, we have
modified the read/write operations of HDFS, as well as
the periodic block report procedure. Also, we had to equip
each HDFS entity with an accompanying DApp with its
own wallet and cryptographic key-pair. Finally, our protocol
requires 3 more smart contracts that act as referees and
are not associated with any Datanode (or the Namenode).
These smart contracts have been uploaded on chain by the
administrator of the system upon startup and their addresses
were broadcasted to all members of the cluster.
HDFS write operation: The operation is illustrated in
Figure 2. The client first splits the file to be uploaded into

blocks as in the regular case. To be able to provide data
integrity guarantees, we construct a merkle tree for each
block. We further split the block into smaller chunks and
follow the construction process described in Section 2.2. The
selection of the chunk size of each merkle leaf determines
the size of the merkle tree and provides a tunable knob
between performance and security. Smaller chunks increase
security at the cost of degraded performance.

After the client constructs the merkle tree, two actions
are performed in parallel: (i) a request is sent to the Namen-
ode and (ii) the root hash and the leaves of the merkle tree
are stored on chain. For this purpose, we have created the
FS smart contract, which is responsible for storing state and
metadata that would normally reside in Namenode’s mem-
ory. As a blockchain transaction can introduce significant
latency and we wish to avoid a performance overhead in
the critical path of HDFS I/O operations, this call happens
in an asynchronous manner (signified by a dashed line).
HDFS read operation: We have modified the HDFS API
to offer the flexibility of choosing once again between per-
formance and security. The typical get operation of HDFS
is still available for non-critical data. However, we also
allow the client to opt for integrity validation upon a read
request, as an extra sanity check apart from the periodic
block report mechanism described in the following. During
a secure HDFS get request, the client directly contacts the
blockchain and retrieves a checksum for each block she
reads. This way, we can guarantee integrity while making
no assumptions on the Datanodes’ honesty.
Block reports: In Clouseau, Datanodes send block reports
not only to the Namenode but also to the third-party auditor,
i.e., the blockchain. The initiation of a block report by a
Datanode signifies the creation of k merkle proofs for the
block. The k-value is a second knob of the system that
trades security for availability: Higher k-values raise the
probability to identify a potentially malicious action, but at
the same time result in longer block reporting procedures,
during which the Namenode does not accept client requests.

A question that naturally arises is who decides on the k
specific chunks that are requested. The Datanode is pre-
cluded, since a malicious Datanode would always make
convenient choices that avoid tampered data. The Namenode
is not a wise choice either: A malicious Namenode could
conspire with a Datanode and designate only pre-agreed
proofs. Thus, we delegate the decision to the blockchain.
This is the purpose of the Oracle contract. Given k, a
Datanode and a timestamp, it generates k proof requests.

In order to maintain low communication costs, instead of
returning the k proof requests per se, the Oracle sends back
only a seed that can be used by a pseudo-random generator
of the Datanode to generate a deterministic sequence of k
chunk ids, i.e., the k proof requests. Thus, given a seed, the
Datanode knows for which blocks it should provide proofs
and the blockchain knows which proofs to expect.

Merkle proofs are constructed in the standard way and
emitted to the Validator contract. Validator checks two
things: (i) whether the proof is provided for the chunk for
which it was requested and (ii) whether the proof is valid.



Figure 3. UI screenshot for block report

Algorithm 1: Merkle proof validation
input: timestamp t, Datanode address da, num of

proofs k, homomorphic hash H
// Computations done at the Oracle

1 seed = oracle.generate(k, t, da);
2 send seed back to the Datanode through a

blockchain event ;
// Datanode computations

3 for i in [1, k] do
4 chunk id = chunk generator(seed).next();
5 proof = merkle proof(data[chunk id]);
6 send(chunk id, merkle proof);
// Validator computations

7 foreach (chunk id, proof) do
8 assert(fscontract.getLeaf(chunk id) =

proof.leaf);
9 assert(validate proof(proof) =

fscontract.getRootHash(chunk id));

For the former, Validator consults the leaves stored in the
FS contract for the specific block, and for the latter it relies
on the block’s root hash. Algorithm 1 presents the whole
validation process.

As the standard merkle proof validation procedure dic-
tates, merkle proofs need to be accompanied by the raw data
of the corresponding chunks/merkle leaves, to ensure the
Namenode stores the actual data and not just the resulting
merkle tree. Since this practice might violate privacy, al-
ternative ways for data verification are examined, including
zero-knowledge proofs. This is a subject of future work.

4. Demo Description
The demonstration will allow attendees to interact with

Clouseau, offering them the opportunity to upload files,
trigger block reports and finally inspect identified inconsis-
tencies in the data. All these operations can be performed
through an intuitive web user interface that visualizes health
and integrity of data stored in the system.

For the ease of adoption, but also for the sake of
seamless integration, we have extended the HDFS UI. The
web pages traditionally used for browsing the filesystem

now contain an additional health attribute that indicates
the percentage of corrupted blocks as per the last report.
Moreover, a new Security Admin page has been created. As
it can be seen in the screenshot of Figure 3, we can use this
dashboard to visually explore the proofs of the block reports
and guide the exploration by various attributes such as the
report dates, the Datanode of interest, the file of interest etc.

To facilitate block corruption for the demo purposes, we
have created a web page that is exposed by each Datanode
and permits to tamper data following different error distri-
butions. Thus, the attendees will have the chance to corrupt
data themselves and then trigger a block report to witness
the ability of the system to detect malicious actions. The
demonstration will also allow attendees to explore the trade-
offs of the performance-security continuum in Clouseau.
By selecting chunk sizes of various granularities and by
requesting a variable number of proofs per block report,
attendees will have a first-hand experience on the impact of
Clouseau’s tuning knobs.
5. Acknowledgement

This work has been supported by the European Commis-
sion in terms of the H2020 ELEGANT Project (957286).
References
[1] “Hadoop in secure mode,” https://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-common/SecureMode.html, accessed: 2020-11-16.
[2] “Apache sentry,” https://sentry.apache.org/, accessed: 2020-11-16.
[3] L. Allen, P. Antonopoulos, A. Arasu, J. Gehrke, J. Hammer, J. Hunter,

R. Kaushik, D. Kossmann, J. Lee, R. Ramamurthy et al., “Veritas:
Shared verifiable databases and tables in the cloud,” in 9th Biennial
Conference on Innovative Data Systems Research (CIDR), 2019.

[4] M. Zhang, Z. Xie, C. Yue, and Z. Zhong, “Spitz: a verifiable database
system,” arXiv preprint arXiv:2008.09268, 2020.

[5] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal, “Chaini-
fydb: How to blockchainify any data management system,” arXiv
preprint arXiv:1912.04820, 2019.

[6] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: a scalable blockchain database,” white paper,
BigChainDB, 2016.

[7] S. M. Khan and K. W. Hamlen, “Hatman: Intra-cloud trust management
for hadoop,” in 2012 IEEE Fifth International Conference on Cloud
Computing. IEEE, 2012, pp. 494–501.


