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"From a certain point onward there is no longer any turning 
back. That is the point that must be reached." 

- Kafka 

ABSTRACT -- 

Protocols that allow operational sites to continue transac- 
tion processing even though site failures have occurred are 
called nonblocking. Many applications require nonblocking 
Qrotocols. This paper investigates the properties of non- 
blocking protocols. Necessary and sufficient conditions for 
a protocol to be nonblocking are presented and from these 
conditions a method for designing them is derived. Both a 
central site nonblocking protocol and a decentralized non- 
blocking protocol are presented. 

1 -- Introduction 

Recently, considerable research 
interest has been focused on distributed 
data 'base systems [LORI77,- ROTH77, SCHA78, 
SVOB791. Several systems have been oro- 
posed and are in various stages of imple- 
mentation, including SDD-1 [HAMM79], 
SYSTEM-R [LIND79], and Ingres [STON791. It. 
is widely recognized that distributed 
crash recovery is vital to the usefulness 
of these systems. However, resilient Qro- 
tocols are hard to design and they are 
expensive. Crash recovery algorithms are 
based on the notion that certain basic 
operations on the data are logically indi- 
visible. These operations are called 
transactions. 
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Transaction Manaoement 
By definition, a transaction on a 

distributed data base system is an atomic 
operation: either it executes to comple-. 
tion or it appears never to have executed 
at all. However, a transaction is rarely a 
physically atomic operation, rather, dur- 
ing execution it must be decomposed into a 
seguence of physical operations. This 
discrepancy between logical atomicity (as 
seen by the application) and physical 
atomicity poses a significant problem in 
the implementation of distributed systems. 
This problem is amplified when transaction 
atomicity must be preserved across multi- 
ple failures. Nonetheless, most applica- 
tions require that a notion of transaction 
atomicity (above the level of physical 
atomicity) be supported and made resilient 
to failures. 

Preserving transaction atomicity in 
the single site case is a well understood 
problem [LIND79, GRAY791. The Qrocessing 
of a single transaction is viewed as fol- 
lows. At some time during its execution, 
a commit point is reached-where the site 
decidesto commit or to abort the transac- 
tion. A commit is an unconditional 
guarantee to execute the transaction to 
completion, even in the event of multiple 
failures. Similarly, an abort is an 
unconditional guarantee to "back out" the 
transaction so that none of its results 
persist. If a failure occurs before the 
commit Qoint is reached, then immediately 
upon recovering the site will abort the 
transaction. Commit and abort are 
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irreversible. See [LIND79] ,for a discus- There are several 
sion on implementing this abstraction of 

possible execution 
states of the transaction; two are of 

transaction management. interest. 
The problem of guaranteeing transac- 

tion atomicity is compounded when more 
than one site is involved. Given that each 
site has a local recovery strategy that 
provides atomicity at the local level, the 
problem becomes one of insuring that the 
sites, either unanimously abort or unani- 
mously commit. A mixed decision results 
in an inconsistent data base. 

Protocols for preserving transaction 
atomicity are called commit protocols. 
Several commit protocols have been pro- 
posed [ALSB76, HAMM79, LAMP76, LIND79, 
STON79] The simplest commit protocol that 
allows unilateral abort is the two phase 
commit protocol illustrated in figure 1 
[GRAY79, LAMP761. This protocol uses a 
designated site (site 1 in the figure) to 
coordinate the execution of the transac- 
tion at the other. sites. In the first 
phase of the protocol the coordinator dis- 
tributes the transaction to all sites, and 
then each site individually votes on 
whether to commit (yes) or abort (no) it. 
In the second phase, the coordinator col- 
lects all the votes and informs each site 
of the outcome. In the absence of 
failures, this protocol preserves atomi- 
city. 

First, either of the failed sites may 
have aborted the transaction. Secondly, 
all sites may have decided to commit the 
protocol. In the latter situation, if the 
coordinator failed between sending commit 
messages and if the second site failed 
after receiving a commit message, then the 
transaction has been committed at the 
second site. Since site three has no way 
of determining the status of the transac- 
tion at the second site, it can not safely 
proceed. Instead, execution of the tran- 
saction must be blocked at site three 
until one of the failed sites has 
recovered. 

The two phase commit protocol is an 
example of a blocking protocol: opera- 
tional sites sometimes. wait on the 
recovery of a failed sites. Locks must be 
held on the database while the transaction 
is blocked. 

A protocol that never requires opera- 
tional sites to block until a failed site 
has recovered is called a nonblocking pro- 
toco1. 

Termination and Recovery Protocols 

Nonblocking Commit Protocols 
Consider what happens in the two 

phase protocol if both the, coordinator and 
the second site crash after the third site 
has voted on the transaction, but before 
the third has received a commit message. 

When the occurrence of site failures 
render the continued execution of the com- 
mit protocol impossible, then a termina- 
tion protocol is invoked. The purpose of 
a termination protocol is to terminate 
transaction execution as quickly as possi- 
ble at the operational sites. The proto- 
co1 , of course, must guarantee transaction 
atomicity. Clearly, a termination 

SITE 1 --- - SITE 2 --- 

(1) Transaction is received. 
"Start Xact" is sent. 

*'Start Xact" is received. 
Site 2 votes: 

"yes" to commit, 
"no" to abort. 

The vote is sent to site 1. 

(2) The vote is received. 
If vote="yes" and site 1 agrees, 

then "commit" is sent; 
else, "abort" is sent. :b 

Either q*commit" or "abort" is 
received and processed. 

Figure 2. The two-phase commit protocol (2 sites). 
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protocol can accomplish its task only if a 
nonblocking commit protocol is used. In 
section 6, we derive a centralized termi- 
nation protocol. 

The final class of protocols required 
to handle site failures are called 

tion processing. Recovery protocols are 
not discussed in this paper, interested 
readers are referred to [LIND79, HAMM79, 
SKEE8lal. 

In the next section we present the 
I 1 formalisms reauired in the remainder of 
I 

the paper. Commit protocols are modelled 
by finite state automata. The local state 
and the global state of a transaction are 
defined. 

In the third section two prevalent 
commit paradigms are presented: the cen- 

i tral site model and the decentralized 
model. It is shown that protocols in both 
models have synchronization points. This 
property will be used in designing non- 
blocking protocols. 

In section fourth the major results 
of the paper are presented. First, neces- 
sary and sufficient conditions for a pro- 
tocol to be nonblocking are derived. 
Next, we demonstrate that "buffer states" 
can be added to a protocol to make it non- 
blocking. For most practical protocols, a 
single buffer state is sufficient. 

In the fifth section we present a 
protocol invoked to terminate the transac- 

1 tion at the operational sites after the 
occurrence of (multiple) site failures. 

Throughout the paper two assumptions 
about the underlying communications net- 
work are made: 

I (1) point-to-point communication is pos- 
sible between two operational sites 
(i.e. the network never fails), 

(2) the network can detect the failure of 
a site (e.g. by a "timeout") and can 
reliably report this to an opera- 
tional site. 

2 Formal Model Summarized _* - - 
In this section, we use a generaliza- 

tion of the formal model introduced in 
[SKEE8la] to describe commit protocols. 
Transaction execution at each site is 
modelled as a finite state automaton 
(FSA) , with the network serving as a com- 

mon input/output tape to all sites. The 
states of the FSA for site i are called 
the local states of site i. -- 

A state transition involves the site 
reading a (nonempty) string of messages 
addressed to it, writing a string of mes- 
sages, and moving to the next local state. 
The change of local state is an instan- 
taneous event, marking the end of the 
transition (and all associated activity). 
In the absence of a site failure, a state 

transition is an atomic event. State 
transitions at one site are asynchronous 
with respect to transitions at other 
sites. 

In figure 2, this model is illus- 
trated for the two phase commit protocol 
of figure 1. One FSA describes the proto- 
col executed by the coordinator, while the 
other describes the protocol executed by 
each slave. Each FSA has four (local) 
states: an initial state (gi), a wait 
state (wi), an abort state (ai), and a 
commit state (ci). Abort and commit are 
final states, indicating that the transac- 
tion has been either aborted or committed, 

Site I 

(co - ordinotor 1 

Q 

ql 

I request 
xoct 2 ... xact, wl 

ho,)lno2 I.-.. I non (yes,),yes,... yes, 

abort . . . . . 
2 A abort, commit2 . . e commit, 

0 0 al \3 0 5 

Site i (i =2,3,-n) 

( Slave) 

commiti I - 
0 ci 

Figure 2. The FSA's for the two phase 
commit (n sites). 



respectively. 
Figure 2 also illustrates the conven- 

tions used in the remainder of the paper. 
Local states for site i are subscripted 
with i. Messages sent or received by a 
slave are subscripted with that slave's 
site number. 

The finite state automata describing 
a commit protocol exhibit the following 
four properties: 
(1) 

(2) 

(3) 

(4) 

the 
the 

The FSA's are nondeterministic. The 
behavior of each FSA is not known 
apriori because of the possibility of 
deadlocks, failures, and user aborts. 
Moreover, when multiple messages are 
addressed to a site, the order of 
receiving the messages is arbitrary. 
The finai states of the FSA's are 
partitioned into two sets: the abort 
states, and the commit states. 
Once a site has made a transition to 
an abort state, then transitions to 
nonabort states are not allowed. A 
similar constraint holds for commit 
states. Consequently, the act of 
committing or aborting is irreversi- 
ble. 
The state diagram describing a FSA is 
acyclic. This guarantees that the 
protocol executing at every site will 
eventually terminate. 
Protocols are often characterized by 

number of phases required to commit 
transaction. Intuitively, a phase 

occurs when all sites executing the proto- 
col make a state transition. The number 
of phases in a protocol is a rough measure 
of its complexity and cost (in messages). 
Distributed protocols generally reguire at 
least two phases. 

Global Transaction State 
The global state of a distributed 

transactionisdem to consist of: 
(1) a global state vector containing the 

local states of the participating 
FSA's and 

(2) the outstanding messages in the net- 
work. 

The global state defines the complete pro- 
cessing state of a transaction. 

The graph of all global states reach- 
able from the initial global state .is 
instrumental in specifying and analyzing 
protocols. For example, a global state is 
said to be inconsistent if it contains 
both a local commit state and a local 
abort state. Protocols which maintain 
transaction atomicity can have no incon- 
sistent global states. Figure 3 gives the 
reachable state graph for the two phase 
protocol discussed earlier. 

A global state is said to .be a final 
state if all local states contained in the 
state vector are final states. A global 

( initial state 1 

q, q2 

8 

request 

Figure 3. Reachable state graph for the 
two phase commit protocol. 

state is a terminal state if from it there 
are no immediately reachable successors. 
A terminal state that is not a final state 
is a deadlocked state: the transaction 
will never be successfully completed. 

Given that the state of site i is 
known to be si, then it is possible to 
derive from the global state graph the 
local states that may be concurrently 
occupied by other sites. This set of 
states if called the concurrency set for 
state si . 

Although the reachable global state 
graph grows exponentially with the number 
of sites, in practice we seldom need to 
actually construct the graph. In subse- 
quent sections, we will be able to infer 
most properties of the graph by examining 
properties of the local states. 

Committable States 
A local state is called committable 

if occu$ancy of that state by any site 

'Formally, the concurrency set of state 
s. is the set of all local states sn, 
wiiere i#j, such that S. and s. are ion- 
tained in the same '(reachable) global 
state. 
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implies that all sites have voted yes on 
committing the transaction. A site that 
is n;t committable is called Encommitt- 
able . Intuitively, a site in a noncom- 
mittable state does not know whether all 
the other sites have voted to commit. 

In the two phase protocol of figure 
2, the only committable state is the com- 
mit state (ci); all other states are non- 
committable. Recall, that this protocol 
is a blocking protocol, and it is common 
for blocking protocols to have only one 
committable state. will 
(without proof) that nonWbelocking pro~~~~:~ 
always have more than one committable 
state. 

Site Failures 
Since the sending of more than one 

message is not a physically atomic opera- 
tion, it can not be assumed that local 
state transitions are atomic under site 
failures. A site may,only partially com- 
plete a transition before failing. In 
particular, only part of the messages that 
were to be sent during a transition may, 
in fact, be transmitted. 

Failures cause an exponential growth 
in the number of reachable global states. 
Fortunately, it will never be necessary to 
construct the (reachable) global state 
graph with failures. In the subsequent 
sections, any reference to global state 
graphs will be to graphs in the absence of 
failures. 

3. 
Cols 

The Two Paradigms for Commit Proto- -- --- 
7 

AlmOSt every commit protocol can be 
classified into either one of two generic 
classes of commit protocols: the central 
site class or the (completely) decentral- 
ized class. These classes represent two 
very distinct philosophies in commit pro- 
toco1s. In this section, we characterize 
and give an example of each class. The 
examples were chosen because they are the 
simplest and most renowned protocols in 
these classes. However, neither example 
is a nonblocking protocol. In the next 
section we will show how to extend both of 
them to become nonblocking protocols. 

The Central Site Model -- 
This model uses one site, the coordi- 

nator to direct transaction processing at 
all the participating sites, which we will 
denote as slaves. 

2 
TO call “noncommittable” states 

“abortable” would be misleading, since a 
transaction that is not in a final commit 
state at any site can still be aborted. 
In fact, sometimes transactions in com- 
mittable (but not commit) states will be 
aborted because of failures. 

The properties of prOtOCOls in this 
class are: 
(1) There is a single coordinator, exe- 

cuting the coordinator protocol. 
(2) All other participants (slaves) exe- 

cute the slave protocol. 
(3) A slave can communicate only with the 

coordinator. 
(4) During each phase of the protocol 

the coordinator sends the same mes- 
sage to each slave and waits for a 
response from each one; 
The two phase protocol presented in 

figures 1 and 2 is the simplest example of 
a central site protocol. Other examples 
can be found in [LAMP76, HAHM79, SKEEBla]. 
Central site protocols are popular in 
literature because they are 
cheap, 

relatively 
conceptually simple, and robust to 

most single site failures. Their major 
weakness is their vulnerability to a coor- 
dinator failure. 

Property (4) assures that the sites 
progress through. the protocol at approxi- 
mately the same rate. Let us define this 
property as follows : 

Definition. A protocol is said to 
be synchronous within one state 
transition if onesitenevenads 
another site by more than one 
state transition during the execu- 
tion of the protocol. 

The central site protocol (including both 
the coordinator protocol and the slave 
protocol) is “synchronous within one state 
transition". This property will be used 
in constructing nonblocking central site 
commit protocols. 

The Decentralized Model 
In a fully decentralized approach, 

each site participates as an equal ,in the 
protocol and executes the same protocol. 
Every site communicates with every other 
site. 

Decentralized protocols are charac- 
terized by successive rounds of message 
interchanges. We are interested in a 
rather stylized approach to decentralized 
protocols: during a round of message 
interchange, each site will send the 
identical message to every other site. A 
site then waits until it has received mes- 
sages from all its cohorts before begin- 
ning the next round of message inter- 
change. To simplify the subsequent dis- 
cussion, during a message interchange we 
will speak as if sites send messages to 
themselves. 

The simplest decentralized commit 
protocol is the decentralized two phase 
commit illustrated in figure 4FAll par- 
Zicipating sites run this protocol. 
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(Messages are doubly subscripted: the 
first subscript refers to the sending 
site, the second refers to the receiving 
site.) 

the 
In the first phase 3ach site receives 

"start xact" message , decides whether 
to unilaterally abort, and sends that 
decision to each of its cohorts. In the 
second phase, each site accumulates all 
the abort decisions and moves to a final 
state. 

Like the central site two phase pro- 
toco1, the decentralized two phase proto- 
col is synchronous within one state tran- 
sition. 

---- 
Sites progress through the proto- 

col at approximately the same rate. 

4 -* Nonblocking Commit Protocols 
In this section we present the major 

result of this paper: necessary and suffi- 
cient conditions for a protocol to be non- 
blocking. We then augment the protocol 
presented in the last section to construct 
nonblocking protocols. 

The Fundamental Nonblockinq Theorem 
When a site failure occurs, the 

operational sites must reach a consensus 
on committing the transaction by examining 
their local states. 

Site i (i= 1,2, 

I 
yes,, - yesni 

0 0 ‘i 

n) 

Figure 4. The decentralized two phase 
commit protocol (n sites). 

3 We do not model the mechanism by which 
the transaction is distributed to the 
sites. This is most likely performed by 
the site receiving the transaction request 
from the application. 

Let US consider the simplest case, 
where only a single site remains opera- 
tional. This site must be able to infer 
the progress of the other sites solely 
from its local state. Clearly, the site 
will be able to safely abort the transac- 
tion if and only if the concurrency set 
for its local state does not contain a 
commit state. On the other hand, for the 
site to be able to safely commit, its 
local state must be "committable" and the 
concurrency set for its state must not 
contain an abort state. 

A blocking situation arises whenever 
the concurrency set for the local state 
contains both a commit and an abort state. 
A blocking situation also arises whenever 
the site is in a "noncommittable" state 
and the concurrency set for that state 
contains a commit state -- the site can 
not commit because it can not infer that 
all sites have voted yes on committing, 
and it can not abort because another site 
may have committed the transaction before 
crashing. Notice that both two phase com- 
mit protocols can block for either reason. 

These observations imply the follow- 
ing simple but powerful result. 

Theorem 1 (the fundamental non- 
blocking theorem). A protocol is 
nonblockinq if and only if it sa- 
tisfies both of the following con- 
ditions (for every participating 
site): 

(1) there exists no local state such 
that its concurrency set contains 
both an abort bnd a commit state, 

(2) there exist no noncommittable 
state whose concurrency set con- 
tains a commit state. 

Again, the single operational site case 
demonstrated the necessity of the condi- 
tions stated in the theorem. To prove 
sufficiency, we must shown that it is 
always possible to terminate the protocol, 
in a consistent state, at all operational 
sites In section 5 we present a termina- 
tion protocol that will successfully ter- 
minate the transaction executed by any 
commit protocol obeying both conditions of 
the fundamental nonblocking theorem. 

A useful implication of this theorem 
is the following corollary. 

Corollary. A commit protocol is 
iionblocking with respect to k-l 
si+e failures (2 < k <= the number 
of. participating sites) if and 
only if there is a subset of k 
sites that obeys both conditions 
of the fundamental nonblocking 
theorem. 

It is obvious that a protocol with k sites 
obeying the fundamental theorem will be 
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nonblocking as long as one of those k 
sites remains operational. (The case 
where k=2 is a special case that has been 
examined in [SKEE8lbl .) 

The fundamental nonblocking theorem 
provides a way to check whether a protocol 
is nonblocking; however, it does not pro- 
vide a methodology for constructing non- 
blocking protocols. In the next section 
we develop a set of design rules that 
yield nonblocking protocols. These rules 
take the form of structural constraints. 

Buffer States -- s. 
The two phase central site (slave) 

protocol and the two phase decentralized 
protocol are very similar: they are struc- 
turally equivalent, and they are both syn- 
chronous within one state transition. 
These similar ities, especially the latter, 
suggests that a common solution to the 
blocking problem may exist. Their common 
structure, which is illustrated in figure 
5 for reference, constitutes the canonical 
two phase commit protocol. 

Consider a protocol that is synchro- 
nous within one state transition. The 
concurrency set for a given state in the 
protocol can contain only the states that 
are adjacent to the given state and the 
given state, because the states of the 
participating sites never differ by more 
than a single state transition. In the 
canonical two phase commit protocol, the 
concurrency set of state q contains q, w 
and a. The concurrency set for state w 
contains all of the local states of the 
protocol. 

This observation together with the 
fundamental nonblocking theorem yields: 

it 5. Figure The canonical two phase comm 
protocol. 

(1 

(2 

Lemma. A orotocol that is syn- 
chronous within one state transi- 
tion is nonblocking if and only 
if: 

1 it contains no local state adja- 
cent to both a commit and an abort 
state, ahd 

1 it contains no noncommittable 
state that is adjacent to a commit 
state. 

State w violates both constraints of 
the lemma. To satisfy the lemma we can 
introduce a buffer state between the wait 
state (w) andc?ZiiZ state (c). This 
new protocol is illustrated in figure 6. 
Since the new state is a committable 
state, both conditions of the lemma are 
satisfied. The buffer state can be 
thought of a “prepare to commit” state, 
and therefore, is labelled p in the illus- 
tr ation. 

We will refer to this protocol as the 
canonical nonblocking protocol. It is a 
three phase protocol. 

The above lemma is a very strong 
result. Since all proposed commit proto- 
col s are synchronous - within one state 
transition, the lemma can be-appm 
directly. In ISKEE8lbl the lemma is wren- 
eralized to apply to less “synchronous” 
protocols. 

The lemma imposes constraints on the 
local structure of a protocol. This is 
convenient since it is much easier to 
design protocols using local constraints 
than using global constraints. As an 
example, the canonical three phase proto- 
col was designed using .the constraints 

0 C 

Figure 6. The canonical nonblocking cov 
mit protocol. 
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given in the lemma. 
The significance of the canonical 

three phase commit protocol is that it can 
be specialized to yield practical non- 
blocking protocols. In the next sections, 
two nonblocking protocols are presented -- 
a central site protocol and a decentral- 
ized pKOtOCO1. Both protocols were 
derived directly from the canonical three 
phase protocol. 

5 Nonblocking Central Site Protocol 
A nonblocking central site protocol 

is illustrated in figure 7. The slave pro- 
tocol is the canonical three phase proto- 
col (with appropriate messages added). 
The coordinator protocol is also a three 
phase protocol that is a straightforward 
extension of the two phase coordinator 
pKOtOCO1. The "prepare" (p) state in the 
coordinator directs the slaves into their 
corresponding "prepare" state. 

fi Nonblocking Decentralized Protocol 

A nonblocking decentralized protocol 
is illustrated in figure 8. Again, the 
pKOtOCO1 is the canonical nonblocking pro- 
tocol. The addition of the "prepare" 
state translates to another round of mes- 
sages in the decentralized class. 

5 -* Termination Protocols 

Termination protocols are invoked 
when the occurrence of site failures 
render the continued execution of the com- 
mit protocol impossible. This occurs when 
the coordinator fails in a central site 
pKOtOCO1, OK when any site fails during a 
decentralized protocol. The purpose of 
the termination protocol is to terminate 
the transaction at all operational sites 
in a consistent manner. 

Site I 

(co- ordinator 1 

request 
xoctg... xact, 

commi$... commit, 

Site i (i = 2,3--n) 

( slove 1 

Clearly, a termination protocol can 
accomplish its task only if the current 
state of at least one operational site 
obeys the conditions given in the funda- 
mental theorem. nonblocking However, 
since subseguent site failures may occur 
during the termination protocol, in the 
worst case it will be able to terminate 
correctly only if all of the operational 
sites obey the fundamental nonblocking 
theorem. 

We now present a central site termi- 
nation protocol. It will successfully 
terminate the transaction as long as one 
site,executing a nonblocking commit proto- 
col remains operational. 

preparei 
OCki 

A decentralized termination protocol 
is presented in [SKEE8lbl. :c 

Central Site Termination Protocol ‘TSA ci 
The basic idea of this scheme is to 

choose a coordinator. which'we will call a 
backup cooKdinatoK, from the set of opera- 
tional sites. The backup coordinator will Figure 7. A (three phase) nonblocking 
complete the transaction by directing all central site commit protocol. 
the remaining sites toward a commit OK an 
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Site i (i =I,& - n ) 

I 

yes,i .-- yesni 
preparei, -. . preparei, 

0 pi 

1 prepare,, -. . prepareni 

1 

0 Ci 
Figure 8. A (three phase) nonblocking de- 
centralized commit protocol. 

abort. Since the backup can fail before 
terminating the transaction, the protocol 
must be reentrant. 

Backup coordinators were introduced 
in SDD-1 [HAMM791. The scheme presented 
is a modification of that scheme. 

When the termination protocol is 
invoked, a backup must be chosen. The 
method used is not important. The sites 
could vote, or alternatively, the choice 
could be based on a preassigned ranking. 

Once the backup has been chosen, it 
will base the commit decision only on its 
local state. The rule for deciding is: 

Decision Rule For Backup Coordina- 
tors. --- If the concurrency set for 
thecurrent state of the backup 
contains a commit state, then the 
transaction is committed. Other- 
wise, it is aborted. 

The backup executes the following two 
phase protocol: 
Phase 1: The backup issues a message to 

all sites to make a transition 
to its local state. The backup 
then waits for an acknowledgment 
from each site. 

Phase 2: The backup issues a commit or 
abort message to each site. (BY 
applying the decision rule given 
above.) 

If the backup is initially in a commit or 
an abort state, then the first phase can 
be omitted. 

Phase 1 of the backup protocol is 
necessary because the backup may fail. By 
insuring that all sites are in the same 
state before committing, (aborting), the 
bat kup insures that subsequent backup 
coordinators will make the same commit 
decision. A proof of correctness for this 
protocol can be found in [SKEEBlb]. 

Let us consider an invocation of the' 
protocol by the canonical three phase com- 
mit protocol. The backup will chose to 
abort on states g, w, and a, and to commit 
on states p and C~ If the chosen backup 
was in state p initially, then the mes- 
sages sent to all sites are: 
(1) "move to state p", and 
(2) "commit". 

a- -- Conclusion 
In this Qaoer we formallv introduced 

the nonblocking-problem and the associated 
terminoloav. Althoush this problem is 
widely recognized by practitioners in dis- 
tributed crash recovery, it is the 
author's belief that this is the first 
time that the problem has been treated 
formally in the literature. 

Also, the two most popular commit 
classes -- central site and decentralized 
-- were characterized. Every published 
commit protocol is a member of one of the 
classes. These classes are likely to pre- 
vail in the future. 

We illustrated each commit class with 
a two phase protocol. Two phase protocols 
are popular because they are the simplest 
and the cheapest (in the number of mes- 
sages) protocols that allow unilateral 
abort by an arbitrary site. Unfor- 
tunately, two phase protocols can block on 
site failures. 

The major contributions of this paper 
are the fundamental nonblockinq theorem 
and. from it. necessarv and sufficient 
conditions for designing both central site 
and distributed nonblocking protocols. 

We' presented two such nonblocking 
protocols: the three phase central site 
and the three phase distributed commit 
protocols. The three phase protocols were 
derived from the two phase protocols by 
adding a "prepare to commit" state. This 
addition is the least modification that 
can be made to a two phase protocol in 
order for it to satisfy the fundamental 
nonblocking theorem. Therefore, such 
three phase protocols are the simplest ,, 
(and cheapest) nonblocking protocols. 
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Nonetheless, an additional phase 
imposes a substantial overhead (in the 
number of messages). This overhead can be 
reduced by having only a few sites execute 
the three phase protocol: the remaining 
can execute the cheaper two phase proto- 
co1 . The transaction will not block as 
long as one of the sites executing the 
three phase protocol remains operational. 
Since two site failures are always neces- 
sary to block a transaction ([SKEEBlb]), 
the number of sites executing the three 
phase protocol should be greater than two. 

Lastly, we presented a termination 
protocol to be invoked when a coordinator 
fails in a central site commit protocol or 
when any site fails in a decentralized 
commit protocol. 

It is not necessary that the commit 
protocol and the termination protocol 
belong to the same class. In some 
environments, it maybe reasonable to run a 
central site commit protocol and a distri- 
buted termination protocol. 
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