
kdANN+: A Rapid AkNN Classifier for Big
Data

Nikolaos Nodarakis1, Evaggelia Pitoura2, Spyros Sioutas3,
Athanasios Tsakalidis1, Dimitrios Tsoumakos3, and Giannis Tzimas4

1 Computer Engineering and Informatics Department, University of Patras,
26500 Patras, Greece

{nodarakis,tsak}@ceid.upatras.gr
2 Computer Science Department, University of Ioannina

pitoura@cs.uoi.gr
3 Department of Informatics, Ionian University,

49100 Corfu, Greece
{sioutas,dtsouma}@ionio.gr

4 Computer & Informatics Engineering Department, Technological Educational
Institute of Western Greece, 26334 Patras, Greece

tzimas@cti.gr

Abstract. A k-nearest neighbor (kNN) query determines the k nearest
points, using distance metrics, from a given location. An all k-nearest
neighbor (AkNN) query constitutes a variation of a kNN query and
retrieves the k nearest points for each point inside a database. Their
main usage resonates in spatial databases and they consist the back-
bone of many location-based applications and not only. In this work, we
propose a novel method for classifying multidimensional data using an
AkNN algorithm in the MapReduce framework. Our approach exploits
space decomposition techniques for processing the classification proce-
dure in a parallel and distributed manner. To our knowledge, we are the
first to study the kNN classification of multidimensional objects under
this perspective. Through an extensive experimental evaluation we prove
that our solution is efficient, robust and scalable in processing the given
queries.

Keywords: classification· nearest neighbor· MapReduce· Hadoop· mul-
tidimensional data· query processing

1 Introduction

Classification is the problem of identifying to which of a set of categories a new
observation belongs, on the basis of a training set of data containing observations
(or instances) whose category membership is known. One of the algorithms for
data classification uses the kNN approach [10]. It computes the k nearest neigh-
bors (belonging to the training dataset) of a new object and classifies it to the
category that belongs the majority of its neighbors.

A k-nearest neighbor query [19] computes the k nearest points, using distance
metrics, from a specific location and is an operation that is widely used in spatial
databases. An all k-nearest neighbor query constitutes a variation of a kNN query
and retrieves the k nearest points for each point inside a dataset in a single
query process. There is a wide diversity of applications that AkNN queries can
be harnessed. The classification problem is one of them. Furthermore, they are
widely used by location based services [13]. For example, consider users that send
their location to a web server to process a request using a position anonymization
system in order to protect their privacy from insidious acts. This anonymization
system may use an AkNN algorithm to calculate the k nearest neighbors for each
user. After that, it sends to the server the locations of the neighbors along with
the location of the user that made the request at the first place. In addition,
many algorithms have been developed to optimize and speed up the join process
in databases using the kNN approach.

Although AkNN is a fundamental query type, it is computationally very ex-
pensive. The naive approach is to search for every point the whole dataset in
order to estimate its k-NN list. This leads to an O

(
n2
)

time complexity assuming
that n is the cardinality of the dataset. As a result, quite a few centralized algo-
rithms and structures (M-trees, R-trees, space-filling curves, etc.) have been de-
veloped towards this direction [6, 12, 15, 31]. However, as the volume of datasets
grows rapidly even these algorithms cannot cope with the computational burden
produced by an AkNN query process. Consequently, high scalable implementa-
tions are required. Cloud computing technologies provide tools and infrastructure
to create such solutions and manage the input data in a distributed way among
multiple servers. The most popular and notably efficient tool is the MapReduce
[9] programming model, developed by Google, for processing large-scale data.

In this paper, we propose a method for efficient multidimensional data clas-
sification using AkNN queries in a single batch-based process in Hadoop [22, 25],
the open source MapReduce implementation. The basic idea is to decompose
the space, where the data belongs, into smaller partitions. Afterwards, we get
the k nearest neighbors for each point to be classified only by searching the ap-
propriate partitions. Finally, we add it to the category it belongs based on the
class that the majority of its neighbors belongs. The space decomposition relies
on the data distribution of the training dataset.

More specifically, we sum up the technical contributions of our paper as
follows:

– We present an implementation of a classification algorithm based on AkNN
queries using MapReduce. We apply space decomposition techniques (based
on data distribution) that divides the data into smaller groups. For each
point we search for candidate k-NN objects only in a few groups. The gran-
ularity of the decomposition is a key factor for the performance of the al-
gorithm and we analyze it further in Section 6.1. At first, the algorithm
defines a search area for each point and investigates for k-NN points in the
groups covered by this area. If the search area of a point does not include
at least k neighbors, it is gradually expanded until the desired number is

reached. Finally, we classify the point to the category that belongs the ma-
jority of its neighbors. The implementation defines the MapReduce jobs with
no modifications to the original Hadoop framework.

– We provide an extension for d > 3 in Section 5 (d stands for dimensionality).
– We evaluate our solution through an experimental evaluation against large

scale data up to 4 dimensions. Furthermore, we study various parameters
that can affect the total computational cost of our method using real and
synthetic datasets. The results prove that our solution is efficient, robust and
scalable.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 presents the initial idea of the algorithm, our technical contributions
and some examples of how the algorithm works. Section 4 presents a detailed
analysis of the classification process developed in Hadoop. Section 5 provides an
extension for d > 3 and Section 6 presents the experiments that where conducted
in the context of this work. Finally, Section 7 concludes the paper and Section
8 presents future steps.

2 Related Work

AkNN queries have been extensively studied in literature. In [15], a method
based on M-trees is proposed that processes AkNN spatial network queries. The
experimental evaluation runs over a road network dataset for small k values. In
addition, a structure that is popular for answering efficiently to kNN queries is R-
tree [19]. Assuming that we execute a kNN query for all elements stored in the R-
tree, we facilitate the AkNN query process with such indexes. Pruning techniques
can be combined with such structures to deliver better results [6, 12]. Mobile
networks are also a domain where AkNN find application as shown in [4]. Their
work suggest a centralized algorithm that identifies to every smartphone user
its k geographically nearest neighbors in O (n · (k + l)) time, where n denotes
the number of users and l is a network-specific parameter. Moreover, efforts
have been made to design low computational cost methods that execute such
queries in spatial databases. For instance, [27] studies both the kNN query and
the kNN join in a relational database. Their approach guarantees to find the
approximate kNN with only logarithmic number of page accesses in expectation
with a constant approximation ratio. Also, it can be extended to find the exact
kNN efficiently in any fixed dimension. The works in [26, 29] propose algorithms
to answer kNN join.

The methods proposed above can handle data of small size in one or more
dimensions, thus their use is limited in centralized environments only. During
the recent years, the researchers have focused on developing approaches that are
applicable in distributed environments, like our method, and can manipulate big
data in an efficient manner. The MapReduce framework seems to be suitable for
processing such queries. For example, in [28] the discussed approach splits the
target space in smaller cells and looks into appropriate cells where k-NN objects
are located, but applies only in 2-dimensional data. Our method speeds up the

naive solution of [28] by eliminating the merging step, as it is a major drawback.
We have to denote here that in [28] it is claimed that the computation of the
merging step can be performed in one node since we just consider statistic values.
But this is not entirely true since this process can derive a notable computational
burden as we increase dimensions and/or data size, something that is confirmed
in the experimental evaluation. In addition, the merging step can produce size-
able groups of points, especially as k increments, that can overload the first step
of the AkNN process. Moreover, our method applies for more dimensions. Es-
pecially, for d >= 3 the multidimensional extension is not straightforward at
all.

In [21], locality sensitive hashing (LSH) is used together with a MapReduce
implementation for processing kNN queries over large multidimensional datasets.
This solution suggests an approximate algorithm like the work in [30] (H-zkNNJ)
but we focus on exact processing of AkNN queries. Furthermore, AkNN queries
are utilized along with MapReduce to speed up and optimize the join process
over different datasets [2, 17] or support non-equi joins [24]. Moreover, [3] makes
use of a R-tree based method to process kNN joins efficiently. Together with
kNN, many other popular spatial queries have been studied and implemented
efficiently on top of Hadoop/HBase frameworks [1, 11, 16].

In [5] a minimum spanning tree based classification model is introduced and it
can be viewed as an intermediate model between the traditional k-nearest neigh-
bor method and cluster based classification method. Another approach presented
in [14] recommends parallel implementation methods of several classification al-
gorithms, including k-nearest neighbor, bayesian model, decision tree. However,
it does not contemplate neither the perspective of dimensionality nor parameter
k.

In brief, our proposed method implemented in the Hadoop MapReduce frame-
work, extends the traditional kNN classification algorithm and processes exact
AkNN queries over massive multidimensional data. In this way, we achieve to
classify a huge amount of objects in a single batch-based process. Compared
to the aforementioned solutions, our method does not focus solely on the join
operator but provides a more generalized framework to process AkNN queries.
In other words, we boost the performance of the AkNN query process regard-
less the context of use of the query (kNN join, AkNN classification, etc.) The
experimental evaluation considers a wide diversity of factors that can affect the
execution time such as the value of k, the granularity of space decomposition,
dimensionality and data distribution.

3 Overview of Classification Algorithm

In this section, we first define some notation and provide some definitions used
throughout this paper. Table 1 lists the symbols and their meanings. Next, we
outline the architecture of MapReduce model. Finally, we give a brief review of
the method our solution relies on and then we extend it for more dimensions
and tackle some performance issues.

Table 1. Symbols and their meanings

n granularity of space decomposition

k number of nearest neighbors

d dimensionality

D a d-dimensional metric space

dist(r, s) the distance from r to s

kNN(r, S) the k nearest neighbors of r from S

AkNNC(R,S) ∀r ∈ R classify r based on kNN(r, S)

ICCH interval, cell cube or hypercube

ICSH interval, circle, sphere or hypersphere

I input dataset

T training dataset

cr the class of point r

CT the set of classes of dataset T

SI size of input dataset

ST size of training dataset

M total number of Map tasks

R total number of Reduce tasks

3.1 Definitions

We consider points in a d-dimensional metric space D. Given two points r and s
we define as dist(r, s) the distance between r and s in D. In this paper, we used
the distance measure of Euclidean distance

(r, s) =

√∑d

i=1
(r[i]− s[i])

2

where r[i] (respectively s[i]) denote the value of r (respectively s) along the i-th
dimension in D. Without loss of generality, alternative distance measures (i.e.
Manhattan distance) can be applied to our solution.

Definition 1. kNN: Given a point r, a dataset S and an integer k, the k nearest
neighbors of r from S, denoted as kNN(r, S), is a set of k points from S such
that ∀p ∈ kNN(r, S), ∀q ∈ {S − kNN(r, S)}, dist(p, r) < dist(q, r).

Definition 2. AkNN: Given two datasets R,S and an integer k, the all k
nearest neighbors of R from S, named AkNN(R,S), is a set of pairs (r, s) such
that AkNN(R,S) = {(r, s) : r ∈ R, s ∈ kNN(r, S)}.

Definition 3. AkNN Classification: Given two datasets R,S and a set of
classes CS where points of S belong, the classification process produces a set of
pairs (r, cr), denoted as AkNNC(R,S), such that AkNNC(R,S) = {(r, cr) :
r ∈ R, cr ∈ CS} where cr is the class where the majority of kNN(r, S) belong
∀r ∈ R.

We explain Definition 3 using an illustrative example, as shown in Fig. 1.
We assume that S = {a, b, c, d, e, f, g, h, i, j, k}, R = {l,m, n}, CS = {A,B} and

k = 3. We draw the boundary circle (see below in Section 3.2) that covers at least
k points and construct kNN(r, S),∀r ∈ R. Next, we determine the dominant
class cr in each kNN(r, S),∀r ∈ R and build the final AkNNC(R,S) set.

Fig. 1. AkNNC(R,S) explanation

3.2 Classification Using Space Decomposition

Consider a training dataset T , an input dataset I and a set of classes CT where
points of T belong. First of all, we define as target space the space enclosing
the points of I and T . The partitions that are defined when we decompose
the target space for 1-dimensional objects are called intervals. Respectively, we
call cells and cubes the partitions in case of 2 and 3-dimensional objects and
hypercubes for d > 3. For a new 1D point p, we define as boundary interval the
minimum interval centred at p that covers at least k-NN elements. Respectively,
we define the boundary circle and boundary sphere for 2D and 3D points and
the boundary hypersphere for d > 3. The notion of hypercube and hypersphere
are analyzed further in Section 5. When the boundary ICSH centred in an ICCH
icch1, intersects the bounds of an other icch2 we say an overlap occurs on icch2.
Finally, for a point i ∈ I, we define as updates of kNN(i, T) the existence of
many different instances of kNN(i, T) that need to be unified to a final set.

We place the objects of T on the target space according to their coordinates.
The main idea of equal-sized space decomposition is to partition the target space
into nd equal sized ICCHs where n and the size of each ICCH are user defined.
Each ICCH contains a number of points of T . Moreover, we construct a new
layer over the target space according to CT and ∀t ∈ T, ct ∈ CT . In order
to estimate AkNNC(I, T), we investigate ∀i ∈ I for k-nearest neighbors only
in a few ICCHs, thus bounding the number of computations that need to be
performed for each i.

3.3 MapReduce Model

Here, we briefly describe the MapReduce model [9]. The data processing in
MapReduce is based on input data partitioning; the partitioned data is exe-

cuted by a number of tasks executed in many distributed nodes. There exist two
major task categories called Map and Reduce respectively. Given input data,
a Map function processes the data and outputs key-value pairs. Based on the
Shuffle process, key-value pairs are grouped and then each group is sent to the
corresponding Reduce task. A user can define his own Map and Reduce functions
depending on the purpose of his application. The input and output formats of
these functions are simplified as key-value pairs. Using this generic interface, the
user can focus on his own problem and does not have to care how the program
is executed over the distributed nodes. The architecture of MapReduce model is
depicted in Fig. 2.

Fig. 2. Architecture of MapReduce model

3.4 Previous Work

A very preliminary study of naive AkNN solutions is presented in [28] and uses
a simple cell decomposition technique to process AkNN queries on two different
datasets, i.e. I and T . The objects consisting both datasets are 2-dimensional
points having only one attribute, the coordinate vector and the target space
comprises of 2n × 2n equal-sized cells.

The elements of both datasets are placed on the target space according to
their coordinate vector and a cell decomposition is applied. For a point i ∈ I
it is expected that its kNN(i, T) will be located in a close range area defined
by nearby cells. At first, we look for candidate k-NN points inside the cell that
i belongs in the first place, name it cl. If we find at least k elements we draw
the boundary circle. There is a chance the boundary circle centred at cl overlaps
some neighboring cells. In this case, we need to investigate for possible k-NN
objects inside these overlapped cells in order to create the final k-NN list. If no

overlap occurs, the k-NN list of i is complete. Next, we present an example to
provide a better perception of the algorithm.

Figure 3 illustrates an example of the AkNN process of a point in dataset I
using a query for k = 3. Initially, the point looks for k-NN objects inside cell 2.
Since there exist at least 3 points of dataset T in cell 2 the boundary circle can
be drawn. The boundary circle overlaps cells 1,3 and 4, so we need to investigate
for additional k-NN objects inside them. The algorithm outputs an instance of
the k-NN list for every overlapped cell. These instances need to be unified into
a k-NN list containing the final points (x, y, z).

Fig. 3. kNN process using cell decomposition (k = 3)

This approach, as described above, fails to draw the boundary circle if cl
contains less than k points. The solution to the problem is simple. At first,
we check the number of points that fall into every cell. If we find a cell with
less than k points we merge it with the neighboring cells to assure that it will
contain the required number of objects. The way the merging step is performed
relies on the principles of hierarchical space decomposition used in quad-trees
[20]. Note that this is the reason why the space decomposition involves 2n ×
2n cells. This imposes two more steps that need to be done before we begin
calculating kNN(i, T). In the beginning, a counting phase needs to be performed
followed by a merging step in order to overcome the issue mentioned above.
This preprocessing phase induces additional cost to the total computation and,
as shown in the experiments, the merging step can lead to a bad algorithmic
behavior.

3.5 Technical Contributions

In this subsection, we extend the previous method for more dimensions and
adapt it to the needs of the classification problem. Moreover, we analyze some
drawbacks of the method studied in [28] and propose a mechanism to make the
algorithm more efficient.

Firstly, we have a training dataset T , an input dataset I and a set of classes
CT where points of T belong. The only difference now is that the points in the

training dataset have one more attribute, the class they belong. In order to com-
pute AkNNC(I, T), a classification step is executed after the construction of
the k-NN lists. The class of every new object is chosen based on the class mem-
bership of its k-nearest neighbors. Furthermore, now the space is decomposed in
2dn ICCHs since we consider a d-dimensional metric space D.

As mentioned before, the simple solution presented in [28] has one major
drawback which is the merging step. Figure 4(a) depicts a situation where the
merging step of the original method can significantly increase the total cost of
the algorithm. Consider two points x and y entering cells 3 and 2 respectively
and k = 3. We can draw point’s x boundary circle since cell 3 includes at least
k elements. On the contrary, we cannot draw the boundary circle of point y,
so we need to unify cells 1 through 4 into one bigger cell. Now point y can
draw its boundary circle but we overload point’s x k-NN list construction with
redundant computations. In the first place, the k-NN list of point x would only
need 4 distance calculations to be formed. After the merging step we need to
perform 15, namely almost 4 times more than before and this would happen for
all points that would join cells 1,3 and 4 in the first place.

1 2

3 4

Dataset T point

Dataset I point

x

y

x

y
Merging

(a) Merging issue (b) Increase range

Fig. 4. Issue of the merging step before the kNN process and way to avoid it (k = 3)

In order to avoid a scenario like above, we introduce a mechanism where
only points that cannot find at least k-nearest neighbors in the ICCH in the first
place proceed to further actions. Let a point p joining an ICCH icch that encloses
l < k neighbors. Instead of performing a merging step, we draw the boundary
ICSH based on these l neighbors. Then, we check if the boundary ICSH overlaps
any neighboring ICCHs. In case it does, we investigate if the boundary ICSH
covers at least k elements in total. In case it does, then we are able to build
the final k-NN list of the point by unifying the individual k-NN lists that are
derived for every overlapped ICCH. In case the boundary ICSH does not cover
at least k objects in total or does not overlap any ICCHs, then we gradually
increase its search range (by a fraction of the size of the ICCH each time) until
the prerequisites are fulfilled.

Figure 4(b) explains this issue. Consider two points x and y entering cells 3
and 1 respectively and k = 3. We observe that cell 3 contains 4 neighbors and
point x can draw its boundary circle that covers k-NN elements. However, the
boundary circle centred at point y does not cover k-NN elements in the first

place. Consequently, we gradually increase its search range until the boundary
circle encloses at least k-NN points. Note that eliminating the merging step, we
also relax the condition of decomposing the target space into 2dn equal-sized
splits and generalize it to nd equal-sized splits.

Summing up, our solution can be implemented as a series of MapReduce jobs
as shown below. These MapReduce jobs will be analyzed in detail in Section 4:

1. Distribution Information. Count the number of points of T that fall into
each ICCH.

2. Primitive Computation Phase. Calculate possible k-NN points ∀i ∈ I
from T in the same ICCH.

3. Update Lists. Draw the boundary ICSH ∀i ∈ I and increase it, if needed,
until it covers at least k-NN points of T . Check for overlaps of neighboring
ICCHs and derive updates of k-NN lists.

4. Unify Lists. Unify the updates of every k-NN list into one final k-NN list
∀i ∈ I.

5. Classification. Classify all points of I.

In Fig. 5, we illustrate the working flow of the AkNN classification process.
Note, that the first MapReduce job acts as a preprocessing step and its results
are provided as additional input in MapReduce Job 3 (to determine how much
we need to increase the boundary ICSH) and that the preprocessing step is
executed only once for T .

In order to fully comprehend the working flow of the AkNN classification
process, a brief interpretation of Fig. 5 follows. In the preprocessing step, we
count the number of points that fall in every ICCH (e.g. ICCH 2 contains 13
points). Now, consider points A,C which belong to ICCH 2, 3 respectively. In
the second MapReduce job, we derive an initial k-NN list for points A,C based
on the objects contained in the same ICCH. In MapReduce job 3, observe that
the boundary ICSH of A overlaps ICCH 3, 4 and a new k-NN list instance is
produced for each of them. The flag in each record is false, which indicates the
need of extra computations to build the k-NN list. On the other hand, the flag of
C equals to true and its k-NN list does not need any amendment. In MapReduce
job 4, the two k-NN lists of A are unified to a final one and lastly, in the fifth
MapReduce job we classify A,C based on the majority of class membership of
their neighbors.

4 AkNN Classification with MapReduce

In this section, we present a detailed description of the classification process
as implemented in the Hadoop framework. The whole process consists of five
MapReduce jobs which are divided into three phases. Phase one estimates the
distribution of T over the target space. Phase two determines kNN(i, T),∀i ∈ I
and phase three estimates AkNNC(I, T). The records in T have the format
<point id, coordinate vector, class> and in I have the format <point id, coor-
dinate vector>. Furthermore, parameters n and k are defined by the user. In the

Fig. 5. Overview of the AkNN classification process

following subsections, we describe each MapReduce job separately and analyze
the Map and Reduce functions that take place in each one of them. For each
MapReduce job, we also quote pseudo-code, in order to provide a better com-
prehension of the Map and Reduce functions, and proceed to time and space
complexity analysis.

4.1 Getting Distribution Information of Training Dataset

This MapReduce job is a preprocessing step required by subsequent MapReduce
jobs that receive its output as additional data. In this step, we decompose the
entire target space and count the number of points of T that fall in each ICCH.
Below, we sum up the Map and Reduce functions of this MapReduce process.

The Map function takes as input records with the training dataset format.
Afterwards, it estimates the ICCH id for each point based on its coordinates and
outputs a key-value pair where the key is ICCH id and the value is number 1.
The Reduce function receives the key-value pairs from the Map function and for
each ICCH id it outputs the number of points of T that belong to it.

Each Map task needs O (ST /M) time to run. Each Reduce task needs O
(
nd/R

)
time to run as the total number of ICCHs is nd. So, the size of the output will
be O

(
nd · csi

)
, where csi is the size of sum and icch id for an output record.

MapReduce Job 1

1: function Map(k1, v1)
2: coord = getCoord(v1); icch id = getId(coord);
3: output(icch id, 1);
4: end function

5: function Reduce(k2, v2)
6: sum = 0;
7: for all v ∈ v2 do
8: sum = sum + getSum(v);
9: end for

10: output(k2, sum);
11: end function

4.2 Estimating Primitive Phase Neighbors of AkNN Query

In this stage, we concentrate all training (LT) and input (LI) records for each
ICCH and compute possible k-NN points for each item in LI from LT inside
the ICCH. Below, we condense the Map and Reduce functions. We use two Map
functions, one for each dataset, as seen in MapReduce Job 2 pseudo-code.

For each point t ∈ T , Map1 outputs a new key-value pair in which the ICCH
id where t belongs is the key and the value consists of the id, coordinate vector
and class of t. Similarly, for each point i ∈ I, Map2 outputs a new key-value pair
in which the ICCH id where i belongs is the key and the value consists of the id
and coordinate vector of i. The Reduce function receives a set of records from
both Map functions with the same ICCH ids and separates points of T from
points of I into two lists, LT and LI respectively. Then, the Reduce function
calculates the distance for each point in LI from LT . Subsequently, it estimates
the k-NN points and forms a list L with the format < p1, d1, c1: . . . :pk, dk, ck >,
where pi is the i-th NN point, di is its distance and ci is its class. Finally, for
each p ∈ LI , Reduce outputs a new key-value pair in which the key is the id of
p and the values comprises of the coordinate vector, ICCH id and list L of p.

Each Map1 task needs O (ST /M) time and each Map2 task needs O (SI/M)
time to run. For a Reduce task, suppose ui and ti the number of input and
training points that are enclosed in an ICCH in the i-th execution of a Reduce
function and 1 ≤ i ≤ nd/R. The Reduce task needs O (

∑
i ui · ti). Let Ls to be

the size of k-NN list and icch id ∀i ∈ I. The output size is O (SI · Ls) = O (SI).

4.3 Checking for Overlaps and Updating k-NN Lists

In this step, at first we gradually increase the boundary ICSH (how much de-
pends on information from the first MapReduce job), where necessary, until it
includes at least k points. Then, we check for overlaps between the ICSH and the
neighboring ICCHs and derive updates of the k-NN lists. The Map and Reduce
functions are outlined in MapReduce Job 3 pseudo-code. Again, we have two

MapReduce Job 2

1: function Map1(k1, v1)
2: coord = getCoord(v1); p id = getPointId(v1);
3: class = getClass(v1); icch id = getId(coord);
4: output(icch id,< p id, coord, class >);
5: end function

6: function Map2(k1, v1)
7: coord = getCoord(v1);
8: p id = getPointId(v1);
9: icch id = getId(coord);

10: output(icch id,< p id, coord >);
11: end function

12: function Reduce(k2, v2)
13: LT = getTrainingPoints(v2);
14: LI = getInputPoints(v2);
15: for all p ∈ LI do
16: L = List{};
17: for all t ∈ LT do
18: L.add(newRecord(t, dist(p, t), t.class));
19: end for
20: output(p.id,< p.coord, k2,getKNN(L) >);
21: end for
22: end function

Map functions but the pseudo-code of Map1 function is omitted since it is the
same with the respective function from MapReduce Job 2.

For each point i ∈ I, function Map2 computes the overlaps between the
ICSH and the neighboring ICCHs. If no overlap occurs, it does not need to
perform any additional steps. It outputs a key-value pair in which ICCH id is
the key and the value consists of id, coordinate vector and list L of i and a
flag true which implies that no further process is required. Otherwise, for every
overlapped ICCH it outputs a new record where ICCH id′ (id of an overlapped
ICCH) is the key and the value consists of id, coordinate vector and list L of i
and a flag false. The flag indicates we need to search for possible k-NN objects
inside the overlapped ICCHs. The Reduce function receives a set of points with
the same ICCH ids and separates the points of T from points of I into two lists,
LT and LI respectively. After that, the Reduce function performs extra distance
calculations using the points in LT and updates k-NN lists for the records in LI .
Finally, for each p ∈ LI it generates a record in which the key is the id of p and
the values comprises of the coordinate vector, ICCH id and list L of p.

As before, each Map1 task needs O (ST /M) time to run. Consider an unclas-
sified point p initially belonging to an ICCH icch. Let r be the number of times
we increase the search range for p and icchov the number of ICCHs that may
be overlapped for p. For each Map2 task the i-th execution of the Map function

MapReduce Job 3

1: function Map2(k1, v1)
2: c = getCoord(v1); p id = getPointId(v1);
3: kNN = getKNNList(v1); r = getRadius(kNN);
4: while kNN.size() < k do
5: increase(r); kNN.addAll(getNeighbors(r));
6: end while
7: oICCHs = getOverlappedICCHs(r);
8: if oICCHs.size() > 0 then
9: for all icch ∈ oICCHs do

10: output(icch,< p id, c, kNN, false >);
11: end for
12: else
13: output(getId(c), < p id, c, kNN, true >);
14: end if
15: end function

16: function Reduce(k2, v2)
17: LT = getTrainingPoints(v2);LI = getInputPoints(v2);
18: for all p ∈ I do
19: if p.flag == true then
20: output(p.id,< p.coord, key, p.kNN >);
21: else
22: L = List{};
23: for all t ∈ T do
24: L.add(newRecord(t, dist(p, t), t.class));
25: end for
26: Lf = finalKNN(L, p.kNN);
27: output(p.id,< p.coord, key, Lf >);
28: end if
29: end for
30: end function

performs icchovi + ri steps, where 1 ≤ i ≤ SI/M . So, each Map2 task runs in
O (
∑

i (icchovi + ri)) time. For a Reduce task, suppose ui and ti the number of
points of I and T respectively that are enclosed in an ICCH in the i-th execution
of a Reduce function and 1 ≤ i ≤ nd/R. The Reduce task needs O (

∑
i ui · ti).

The size of updated records is a fraction of SI . So, the size of the output is also
O (SI).

4.4 Unifying Multiple k-NN Lists

The previous step it is possible to yield multiple updates of a point’s k-NN list.
This MapReduce job tackles this problem and unifies possible multiple lists into
one final k-NN list for each point i ∈ I. The Map and Reduce functions are
summarized at MapReduce Job 4 pseudo-code below.

MapReduce Job 4

1: function Map(k1, v1)
2: output(getPointId(v1),getKKN(v1));
3: end function

4: function Reduce(k2, v2)
5: L = List{};
6: for all v ∈ v2 do
7: L.add(v);
8: end for
9: output(k2,unifyLists(L));

10: end function

The Map function receives the records of the previous step and extracts the
k-NN list for each point. For each point i ∈ I, it outputs a key-value pair in which
the key is the id of i and the value is the list L. The Reduce function receives as
input key-value pairs with the same key and computes kNN(i, T),∀i ∈ I. The
key of an output record is again the id of i and the value consists of kNN(i, T).

Each Map task runs in O (SI/M). For each Reduce task, assume updatesi
the number of updates for the k-NN list of an unclassified point in the i-th
execution of a Reduce function, where 1 ≤ i ≤ |NI |/R and |NI | the number of
points in input dataset. Then, each Reduce task needs O (

∑
i updatesi) to run.

Let, Iid the size of ids of all points in I and Lfinal is the size of the final k-NN
list ∀i ∈ I. The size of Lfinal is constant and Iid is O (SI). Consequently, the
size of the output is O (SI).

4.5 Classifying Points

This is the final job of the whole classification process. It is a Map-only job that
classifies the input points based on the class membership of their k-NN points.
The Map function receives as input records from the previous job and outputs
AkNNC(I, T). More precisely, each record handled by the Map function is a
point together with a list of class occurrences of its k-NN neighbors. The function
parses iteratively the list and reports the class with the highest cardinality. The
key of an output record is the id of the point given as input to the Map function,
while the value is the class the point is assigned. Each Map task runs in O (SI/M)
time and output size is O (SI).

5 Extension for d > 3

Here we provide the extension of our method for d > 3. In geometry, a hypercube
[7, 8] is a n-dimensional analogue of a square (n = 2) and a cube (n = 3) and is
also called a n-cube (i.e. 0-cube is a hypercube of dimension zero and represents
a point). It is a closed, compact and convex figure that consists of groups of

MapReduce Job 5

1: function Map(k1, v1)
2: H = HashMap < Class,Occurences > {};
3: H = findClassOccur(v1);
4: max = 0;maxClass = null;
5: for all entry ∈ H do
6: if entry.occur > max then
7: max = entry.occur;
8: maxClass = entry.class;
9: end if

10: end for
11: output(getPointId(v1),maxClass);
12: end function

opposite parallel line segments aligned in each of the space’s dimensions, per-
pendicular to each other and of the same length.

Respectively, an n-sphere [7, 8] is a generalization of the surface of an ordi-
nary sphere to a n-dimensional space. Spheres of dimension n > 2 are called
hyperspheres. For any natural number n, an n-sphere of radius r is defined as
a set of points in (n + 1)-dimensional Euclidean space which are at distance r
from a central point and r may be any positive real number. So, the n-sphere
centred at the origin is defined by:

Sn = {x ∈ <n+1 :‖ x ‖= r}

Figure 6 displays how to create a hypercube for d = 4 (4-cube) from a cube
for d = 3. Regarding our solution for d > 3, the target space now is decomposed
into equal-sized d-dimensional hypercubes and in the first place we investigate
for k-NN points in each hypercube. Next, we draw the boundary hypersphere
and increase it, if needed, until it bounds at least k neighbors. Afterwards, we
inspect for any overlaps between the boundary hypersphere and neighboring
hypercubes. Finally, we build the final k-NN list for each unclassified point and
categorize it according to class majority of its k-NN list.

Fig. 6. Creating a 4-cube from a 3-cube

6 Experimental Evaluation

In this section, we conduct a series of experiments to evaluate the performance
of our method under many different perspectives. More precisely, we take into
consideration the value of k, granularity of space decomposition, dimensionality
and data distribution.

Our cluster includes 32 computing nodes (VMs), each one of which has four
2.1 GHz CPU processors, 4 GB of memory, 40 GB hard disk and the nodes
are connected by 1 gigabit Ethernet. On each node, we install Ubuntu 12.04
operating system, Java 1.7.0 40 with a 64-bit Server VM, and Hadoop 1.0.4.
To adapt the Hadoop environment to our application, we apply the following
changes to the default Hadoop configurations: the replication factor is set to 1;
the maximum number of Map and Reduce tasks in each node is set to 3, the
DFS chunk size is 256 MB and the size of virtual memory for each Map and
Reduce task is set to 512 MB.

We evaluate the following approaches in the experiments:

– kdANN is the solution proposed in [28] along with the extension (which in-
vented and implemented by us) for more dimensions, as described in Section
3, in order to be able to compare it with our solution.

– kdANN+ is our solution for d-dimensional points without the merging step
as described in Section 3.

We evaluate our solution using both real2 and synthetic datasets. We create
1D and 2D datasets from the real dataset keeping the x and the (x, y) coor-
dinates respectively. In addition, by using statistics of underlying real dataset,
we add one more dimension z in order to construct a 4-dimensional dataset.
We process the datasets to fit into our solution (i.e. normalization) and we end
up with 1D, 2D, 3D and 4D datasets that consist of approximately 19,000,000
points and follow a power law like distribution. From each dataset, we extract
a fraction of points (10%) that are used as a training dataset. Respectively, we
create 1, 2, 3 and 4-dimensional datasets with uniformly distributed points, each
dataset has 19,000,000 points and the training datasets contain 1,900,000 points.
For each point in a training dataset we assign a class based on its coordinate
vector. The file sizes of datasets are:

1. Real Dataset
(a) 1D: Input set size is 309.5 MB and training set size is 35 MB
(b) 2D: Input set size is 403.5 MB and training set size is 44.2 MB
(c) 3D: Input set size is 523.7 MB and training set size is 56.2 MB
(d) 4D: Input set size is 648.6 MB and training set size is 67.4 MB

2 The real dataset is part of the Canadian Planetary Emulation Terrain 3D Mapping
Dataset, which is a collection of 3-dimensional laser scans gathered at two unique
planetary analogue rover test facilities in Canada. The dataset provides the coor-
dinates (x, y, z) for each laser scan in meters. http://asrl.utias.utoronto.ca/

datasets/3dmap/

2. Synthetic Dataset
(a) 1D: Input set size is 300.7 MB and training set size is 33.9 MB
(b) 2D: Input set size is 359.2 MB and training set size is 39.8 MB
(c) 3D: Input set size is 478.5 MB and training set size is 51.7 MB
(d) 4D: Input set size is 583.4 MB and training set size is 60.9 MB

We run experiments for data up to four dimensions due to the curse of dimen-
sionality. As shown in the experiments, for d > 2 the total execution cost rises
exponentially and for d > 4 overcomes the computational power of our cluster
infrastructure. We can dodge such limitations by incorporating in our system di-
mensionality reduction techniques, such as Principal Component Analysis (PCA)
or Singular Value Decomposition [18], or elasticity mechanisms [23]. We leave
this kind of extension for future work, as stated in Section 8, since it is beyond
the scope of this paper.

6.1 Tuning parameter n

One major aspect in the performance of the algorithm is the tuning of granularity
parameter n. In this experiment, we explain how to select a value of n in order to
succeed in achieving the shortest execution time. Each time the target space is
decomposed into 2dn equal partitions in order for kdANN to be able to perform
the merging step, as described in Section 3.

In the case of power law distributions, we choose higher values of n compared
to uniform distributions. The intuition behind this idea, is that we want to dis-
cretize the target space into splits that contain as few points as possible in order
to avoid an overload of the primitive computation phase. On the other hand,
as n increases, the number of update steps also increases. This can overwhelm
the AkNN process if the number of derived instances of the k-NN lists is mas-
sive. Regarding uniform distributions, we wish to create larger partitions, but
again not too big, in order to avoid executing many update steps. Each time,
the selection of n depends on the infrastructure of the cluster.

In Fig. 7, we depict how execution time varies as we alter value n in case
of 2-dimensional real dataset for k = 5. In case of kdANN+, we notice that as
parameter n grows the execution time drops and achieves its lowest value for
n = 9 and slightly increases for n = 10. In contrary, the execution time for
kdANN increases until n = 9 and drops significantly for n = 10. Moreover, its
lowest achieved value is almost ten times bigger than kdANN+. Considering the
above, we deduce that for power law distributions kdANN+ outperforms kdANN
as n changes. In addition, we conclude that the merging step affects greatly the
performance of kdANN and creates a wide divergence in total running time as
n mutates.

Figure 8, presents the results of execution time for both methods when
datasets follow a uniform distribution. Again, kdANN+ performs better than
kdANN. Nevertheless, now the curve of running time presents a same behavior
for both methods and when n = 7 the minimum running time is achieved. Ob-
serving the exported results from Fig. 7 and Fig. 8, we confirm our claim that we

Fig. 7. Effect of n (Real Dataset 2D)

choose higher values of n in case of power law distribution datasets, compared
to uniformly distributed datasets, in order to minimize the total execution time.

We proceed to similar experimental procedures for all dimensions. The results
for 1D, 3D and 4D points follow the same trend (we omit the graphs of other
dimensions to avoid pointless repetition). In the case of real datasets, we pick
value n that maximizes the performance of kdANN+ since kdANN presents
a bad algorithmic behavior regardless of value n, as shown in the majority of
experiments that follow.

Fig. 8. Effect of n (Synthetic Dataset 2D)

6.2 Effect of k and Effect of Dimensionality

In this experiment, we evaluate both methods using real and synthetic datasets
and record the execution time as k increases for each dimension. Finally, we

study the effect of dimensionality on the performance of kdANN and kdANN+.
Based on the findings of Section 6.1, for the rest of our experiments we set the
value n as summarized below:

1. Real Dataset
(a) 1D: n = 18
(b) 2D: n = 9
(c) 3D: n = 7
(d) 4D: n = 6

2. Synthetic Dataset
(a) 1D: n = 16
(b) 2D: n = 7
(c) 3D: n = 5
(d) 4D: n = 4

Effect of k for Different Dimensions. Figure 9 presents the results for
kdANN and kdANN+ by varying k from 5 to 20 on real and synthetic datasets.
In terms of running time, kdANN+ always perform better, followed by kdANN
and each method behave in the same way for both datasets, real and synthetic.
As the value of k grows, the size of each intermediate record becomes larger
respectively. Consequently, the data processing time increments. Moreover, as
the number of neighbors we need to estimate each time augments, we need to
search into more intervals for possible k-NN points as the boundary interval
grows larger.

Fig. 9. Effect of k for d = 1

In Fig. 10, we demonstrate the outcome of the experimental procedure for
2-dimensional points when we alter k value from 5 to 20. First of all, note
that we do not include the results of kdANN for the real dataset. The reason
is that the method only produced results for k = 5 and needed more than 4

hours. Beyond this, the merging step of kdANN derived extremely sizeable cells.
Consequently, during the primitive computation phase a bottleneck was created
to some nodes that strangled their resources, thus preventing them to yield any
results. Observing the rest of the curves, we notice that the processing times are
a bit higher than the previous ones due to larger records, as we impose one more
dimension. Furthermore, the search area now overlaps more partitions of the
target space than in case of 1-dimensional points. Consequently, the algorithm
produces more instances of the k-NN lists and the time requirement to merge
them is bigger. Overall, in the case of power law distribution, kdANN+ behaves
much better than kdANN since the last one fails to process the AkNN query as
k increases. Also, kdANN+ is faster and in case of synthetic dataset that follows
a uniform distribution, especially as k increases.

Fig. 10. Effect of k for d = 2

Figure 11 displays the results generated from kdANN and kdANN+ for the
3-dimensional points when we increase k value from 5 to 20. Once again, in case
of kdANN we could not get any results for any value of k when we provided the
real dataset as input. The reasons are the same we mentioned in the previous
paragraph for d = 2.

Table 2 is pretty illustrative in the way the merging step affects the AkNN
process. First of all, its computational cost is far from negligible if performed
in a node (in contrary with the claim of the authors as stated in [28]). Apart
from this, the ratio of cubes that participate in the merging process is almost
40% and the largest merged cube consists of 32,768 and 262,144 initial cubes for
k = 5 and k > 5 respectively.

In the case of kdANN+, when given the real dataset as input, it is obvious
that the total computational cost is much larger compared to the one shown in
Figures 9 and 10. This happens for 3 reasons: 1) we have larger records in size,
2) some cubes are quite denser compared to others (since the dataset follows a
power law distribution) and we need to perform more computations for them in
the primitive computation phase and 3) a significant amount of overlaps take

Fig. 11. Effect of k for d = 3

Table 2. Statistics of merging step for kdANN

k = 5 k = 10 k = 15 k = 20

Time (s) 271 675 962 1,528

of merged cubes 798,032 859,944 866,808 870,784

% of total cubes 38% 41% 41.3% 41.5%

Max merged cubes 32,768 262,144 262,144 262,144

place, thus the update step of the k-NN lists needs more time than before.
Finally, kdANN+ performs much better than kdANN, in the case of synthetic
dataset, and the gap between the curves of running time tends to be bigger as
k increases.

Finally, Fig. 12 demonstrates the total running cost for both kdANN and
kdANN+ in the case of 4-dimensional datasets. Our method kdANN+, contin-
ues to overrun kdANN when our input follows a uniform distribution and the
variance between the curves is a bit bigger than the previous cases. As expected,
kdANN flunks in producing results for the real dataset while our method answers
the AkNN query requiring much more processing time than the 3-dimensional
case. The curve has a tendency to increase exponentially (we explained the rea-
sons in the previous paragraph) and for k = 20 the time taken to export the
outcome of the AkNN query is almost double compared to the running time of
Fig. 11.

Effect of Dimensionality. In this subsection, we evaluate the effect of dimen-
sionality for both real and synthetic datasets. Figure 13 presents the running
time for k = 20 by varying the number of dimensions from 1 to 4.

From the outcome, we observe that kdANN is more sensitive to the number of
dimensions than kdANN+ when we provide a dataset with uniform distribution
as input. In particular, when the number of dimensions varies from 2 to 4 the
divergence between the two curves starts growing faster. In the case of power
law distribution, we only include the results for kdANN+ since kdANN fails to

Fig. 12. Effect of k for d = 4

process the AkNN query for dimensions 2 to 4 when k = 20. We notice that the
execution time increases exponentially when d > 2. This results from the curse of
dimensionality. As the number of dimensions increases, the number of distance
computations as well as the number of searches in neighboring ICCHs increases
exponentially. Nevertheless, kdANN+ can still process the AkNN query in a
reasonable amount of time in contrast to kdANN.

Fig. 13. Effect of dimensionality for k = 20

6.3 Phase Breakdown.

In Figures 14(a)-14(c) we present the results of running time for different stages
of kdANN and kdANN+, in case of 3-dimensional datasets, as k increases. We
observe, that in all figures, the running time of distribution phase is the same (it
runs only once since it is a preprocessing step). On the other hand, the running

(a) kdANN+

(b) kdANN+

(c) kdANN

Fig. 14. Phase breakdown vs k

time of primitive computational and classification phase slightly increase as k
grows. Since the k-NN list gets bigger, the algorithm takes more time to process
the input records. Considering update and integrate phase, the running time
increases notably. The bigger the value of k, the bigger the cardinality of derived
instances of the k-NN lists due to larger area coverage by the boundary ICSH.
Consequently, the algorithm needs more time to derive the final k-NN lists. The
cumulative cost of these two phases is the one that mostly affects the total
running time of the AkNN query in the majority of the experiments. Finally,
the execution time of the merging phase remains the same (in case of kdANN
in Fig. 14(c)). Apart from the merging phase, whose running cost may increase
significantly (Table 2), the execution time for the rest phases follow the same
trend as d varies.

6.4 Power Law vs Uniform Distribution.

In this subsection, we perform a comparative analysis of the results exported
by our method for datasets with different distributions and argue about the
performance of methods kdANN and kdANN+ as k and d increments.

At first, we observe that as k increases kdANN+ prevails kdANN for all
dimensions and for both dataset distributions (based on results from Figs. 9 - 12).
It is clear that our contribution presented in Section 3.4, speeds up the solution
presented in [28]. Under the perspective of dimensionality, in case of uniform
distribution the divergence between the curves is not very big. Nevertheless,
the running time of kdANN+ increases linearly whilst kdANN’s running time
grows exponentially for d > 2 (see Fig. 13). On the other hand, in case of power
law distribution, for d > 1 kdANN+ outperforms kdANN. The last one either
fails to derive results in a reasonable amount of time or cannot produce any
results at all (again see Fig. 13). As shown in Table 2, the merging step has
major deficiencies. It can cumber with notable computational burden the total
AkNN process and can produce quite large merged ICCHs. As a consequence,
the workload is badly distributed among the nodes and some of them end up
running out of resources, thus causing kdANN to fail to produce any results.
Despite the superiority of kdANN+, its execution time increases exponentially
when the number of dimensions varies from 2 to 4.

Overall, the experimental evaluation shows that our solution (kdANN+)
scales better than kdANN for uniform distributions and dominates it for power
law distributions. However, it is clear that both kdANN and kdANN+ are more
sensitive to power law distributions. As a result, their performance degrades
faster than the case of uniform distributions.

6.5 Scalability

In this experiment, we investigate the scalability of the two approaches. We
utilize the 3D datasets, since their size is quite big, and create new chunks
smaller in size that are a fraction F of the original datasets, where F ∈ {0.2,
0.4, 0.6, 0.8}. Moreover, we set the value of k to 5.

Figure 15 presents the scalability results for real and synthetic datasets. In the
case of power law distribution, the results display that kdANN+ scales almost
linearly as the data size increases. In contrast, kdANN fails to generate any
results even for very small datasets since the merging step continues to be an
inhibitor factor in kdANN’s performance. In addition, we can see that kdANN+
scales better than kdANN in the case of synthetic dataset and the running time
increases almost linearly as in the case of power law distribution. Regarding
kdANN, the curve of execution time is steeper until F = 0.6 and after that it
increases more smoothly.

Fig. 15. Scalability

Table 3 shows the way the merging step affects kdANN as the data size
varies. The ratio of cubes that are involved in the merging process remains high
and varies from 36.6% to 39.3% and the largest merged cube comprises of 32,768
cubes of the initial space decomposition. Interestingly, the time to perform the
merging step is not strictly increasing proportionally to the data size. In particu-
lar, the worst time is achieved when F = 0.2, then it reaches its minimum value
for F = 0.4 and beyond this value augments again. Below, we explain why this
phenomenon appears. The merging process takes into account the distribution
information of dataset T . As the size of the input dataset decreases, respec-
tively the size of the training dataset also mitigates. Since both datasets follow
a power law distribution, the ICCHs that include training set points decrease
also in number and this may result in more merging steps (i.e. F = 0.2).

6.6 Speedup

In our last experiment, we measure the effect of the number of computing
nodes. We test four different cluster configurations and the cluster consist of
N ∈ {11, 18, 25, 32} nodes each time. We test the cluster configurations against
the 3-dimensional datasets when k = 5.

Table 3. Statistics of merging step for kdANN and different data sizes

F = 0.2 F = 0.4 F = 0.6 F = 0.8

Time (s) 598 223 279 300

of merged cubes 825,264 767,768 768,256 802,216

% of total cubes 39.3% 36.6% 36.6% 38.2%

Max merged cubes 32,768 32,768 32,768 32,768

Fig. 16. Speedup

From Fig. 16, we observe that total running time of kdANN+, in the case
of power law distribution, tends to decrease as we add more nodes to the clus-
ter. Due to the increment of number of computing nodes, the amount of dis-
tance calculations and update steps on k-NN lists that undertakes each node
decreases respectively. Moreover, since kdANN fails to produce any results using
3-dimensional real dataset when the cluster consists of 32 nodes, it is obvi-
ous that it will fail with less nodes too. That is the reason for the absence of
kdANN’s curve from Fig. 16. In the case of synthetic dataset, we observe that
both kdANN and kdANN+ achieve almost the same speedup as the number of
nodes increases; still kdANN+ performs betters than kdANN. We behold that
in the case of real dataset the curve of running time decreases steeper as the
number of nodes varies from 11 to 18 and becomes smoother beyond this point.
On the other hand, in case of synthetic dataset the curves decrease smoother
when the number of nodes varies from 25 to 32. The conclusion that accrues
from this observation is that the increment of computing nodes has a greater ef-
fect on the running time of both approaches when the datasets follow a uniform
distribution. This happens because the workload is distributed better among the
nodes of the cluster.

6.7 Classification Performance

In this section, we present the performance results of our classification method for
kdANN+, when the 3D real dataset is provided as input and k = 10. We define

a set CT = {A,B,C,D,E} of 5 classes over the target space, but only 3 of them
(A,B,C) contain points of T . The class where a point t ∈ T belongs, depends
on its coordinate vector. In Table 4, we measure the classification performance
using four metrics for each class, True Positive, False Negative, False Positive
and True Negative and give an average on the performance of each metric for all
the classes. Among the classes, class C has the worst accuracy but the overall
results show that our classification method performs well.

Table 4. Classification performance of kdANN+

Class A Class B Class C Average

True Positive 99.97% 99.91% 94.14% 98%

False Negative 0.03% 0.09% 5.86% 2%

False Positive 0.13% 0.06% 0.06% 0.08%

True Negative 99.87% 99.94% 99.94% 99.92%

7 Conclusions

In the context of this work, we presented a novel method for classifying multidi-
mensional data using AkNN queries in a single batch-based process in Hadoop.
To our knowledge, it is the first time a MapReduce approach for classifying mul-
tidimensional data is discussed. By exploiting equal-sized space decomposition
techniques we bound the number of distance calculations we need to perform
for each point to reckon its k-nearest neighbors. We conduct a variety of experi-
ments to test the efficiency of our method on both, real and synthetic datasets.
Through this extensive experimental evaluation we prove that our system is
efficient, robust and scalable.

8 Future Work

In the near future, we plan to extend and improve our system in order to boost
its efficiency and flexibility. At first, we want to relax the condition of decom-
posing the target space into equal-sized splits. We have in mind to implement
a technique that will allow us to have unequal splits, containing approximately
the same number of points. This is going to decrease the number of overlaps
and calculations for candidate k-NN points. Moreover, the method will become
distribution independent leading to better load balancing between the nodes.

In addition, we intend to apply a mechanism in order for the cluster to be used
in a more elastic way, by adding (respectively removing) nodes as the number
of dimensions increase (respectively decrease) or the data distribution becomes
more (respectively less) challenging to handle.

Finally, we plan to use indexes, such as R-trees or M-trees, along with HBase,
in order to prune any points that are redundant and cumber additional cost to
the method.

Acknowledgements. This research has been co-financed by the European
Union (European Social Fund ESF) and Greek national funds through the Op-
erational Program ”Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program: Thales. Investing
in knowledge society through the European Social Fund.

References

1. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.: Hadoop GIS:
A High Performance Spatial Data Warehousing System over Mapreduce. Proc.
VLDB Endow. 6, 1009–1020 (2013)

2. Afrati, F.N., Ullman, J.D.: Optimizing Joins in a Map-Reduce Environment. In:
Proceedings of the 13th International Conference on Extending Database Technol-
ogy, pp. 99–110. ACM, New York, NY, USA (2010)

3. Böhm, C., Krebs, F.: The k-Nearest Neighbour Join: Turbo Charging the KDD
Process. Knowl. Inf. Syst. 6, 728–749 (2004)

4. Chatzimilioudis, G., Zeinalipour-Yazti, D., Lee, W.-C., Dikaiakos, M. D.: Contin-
uous All k-Nearest-Neighbor Querying in Smartphone Networks. In: Proceedings
of the 2012 IEEE 13th International Conference on Mobile Data Management, pp.
79–88. IEEE Computer Society, Washington, DC, USA (2012)

5. Chang, J., Luo, J., Huang, J.Z., Feng, S., Fan, J.: Minimum Spanning Tree Based
Classification Model for Massive Data with MapReduce Implementation. In: Pro-
ceedings of the 10th IEEE International Conference on Data Mining Workshop,
pp. 129–137. IEEE Computer Society, Washington, DC, USA (2010)

6. Chen, Y., Patel, J.M.: Efficient Evaluation of All-Nearest-Neighbor Queries. In:
Proceedings of the 23rd IEEE International Conference on Data Engineering, pp.
1056–1065. IEEE Computer Society, Washington, DC, USA (2007)

7. Coxeter, H.S.M.: Regular Polytopes. Dover Publications (1973)

8. Cromwell, P.R.: Polyhedra. Cambridge University Press (1999)

9. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, pp. 137–150. USENIX Association, Berkeley, CA, USA (2004)

10. Dunham, M.H.: Data Mining, Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River, NJ, USA (2002)

11. Eldawy, A.: SpatialHadoop: Towards Flexible and Scalable Spatial Processing Us-
ing Mapreduce. In: Proceedings of the 2014 SIGMOD PhD Symposium, pp. 46–50.
ACM, New York, NY, USA (2014)

12. Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: Optimizing All-
Nearest-Neighbor Queries with Trigonometric Pruning. In: Scientific and Statistical
Database Management. LNCS, vol. 6187, pp. 501–518. Springer-Verlag, Berlin,
Heidelberg (2010)um, pp. 46–50. ACM, New York, NY, USA (2014)

13. Gkoulalas-Divanis, A., Verykios, V.S., Bozanis, P.: A Network Aware Privacy
Model for Online Requests in Trajectory Data. Data Knowl. Eng. 68, 431–452
(2009)

14. He, Q., Zhuang, F., Li, J., Shi, Z.: Parallel implementation of classification algo-
rithms based on MapReduce. In: Proceedings of the 5th International Conference
on Rough Set and Knowledge Technology, pp. 655–662. Springer-Verlag, Berlin,
Heidelberg (2010)

15. Ioup, E., Shaw, K., Sample, J., Abdelguerfi, M.: Efficient AKNN spatial network
queries using the M-Tree. In: Proceedings of the 15th annual ACM International
Symposium on Advances in Geographic Information Systems, pp. 46:1–46:4. ACM,
New York, NY, USA (2007)

16. Lee, K., Ganti, R.K., Srivatsa, M., Liu, L.: Efficient spatial query processing for
big data. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 469–472. ACM, New York,
NY, USA (2014)

17. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient Processing of k Nearest Neighbor
Joins using MapReduce. Proc. VLDB Endow. 5, 1016–1027 (2012)

18. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press (2011)

19. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: Proceed-
ings of the 1995 ACM SIGMOD International Conference on Management of Data,
pp. 71–79. ACM, New York, NY, USA (1995)

20. Samet, H.: The QuadTree and Related Hierarchical Data Structures. ACM Com-
put. Surv. 16, 187–260 (1984)

21. Stupar, A., Michel, S., Schenkel, R.: RankReduce - Processing K-Nearest Neighbor
Queries on Top of MapReduce. In: Proceedings of the 8th Workshop on Large-Scale
Distributed Systems for Information Retrieval, pp. 13–18. (2010)

22. The apache software foundation: Hadoop homepage, http://hadoop.apache.org/
23. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-

mated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. In:
Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, pp. 34–41. (2013)

24. Vernica, R., Carey, M.J., Li, C.: Efficient Parallel Set-Similarity Joins Using
MapReduce. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 495–506. ACM, New York, NY, USA (2010)

25. White, T.: Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media / Yahoo
Press (2012)

26. Xia, C., Lu, H., Chin, B., Hu, O.J.: Gorder: An efficient method for knn join
processing. In: VLDB, pp. 756–767. VLDB Endowment (2004)

27. Yao, B., Li, F., Kumar, P.: K Nearest Neighbor Queries and KNN-Joins in Large
Relational Databases (Almost) for Free. In: Proceedings of the 26th International
Conference on Data Engineering, pp. 4–15. IEEE Computer Society, Washington,
DC, USA (2010)

28. Yokoyama, T., Ishikawa, Y., Suzuki, Y.: Processing All k-Nearest Neighbor Queries
in Hadoop. In: Proceedings of the 13th International Conference on Web-Age In-
formation Management. LNCS, vol. 7418, pp. 346–351 (2012)

29. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based KNN join processing for
high-dimensional data. Information & Software Technology 49, 332–344 (2007)

30. Zhang, C., Li, F., Jestes, J.: Efficient Parallel kNN Joins for Large Data in MapRe-
duce. In: Proceedings of the 15th International Conference on Extending Database
Technology, pp. 38–49. ACM, New York, NY, USA (2012)

31. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-Nearest-Neighbors Queries in
Spatial Databases. In: Proceedings of the 16th International Conference on Scien-
tific and Statistical Database Management, pp. 297–306. IEEE Computer Society,
Washington, DC, USA (2004)

