
Maintaining Wavelet Synopses for Sliding-Window Aggregates
Ioannis Mytilinis

Computing Systems Laboratory,

National Technical University of

Athens

gmytil@cslab.ece.ntua.gr

Dimitrios Tsoumakos

Department of Informatics, Ionian

University

dtsouma@ionio.gr

Nectarios Koziris

Computing Systems Laboratory,

National Technical University of

Athens

nkoziris@cslab.ece.ntua.gr

ABSTRACT
The IoT era has brought forth a computing paradigm shift from

traditional high-end servers to “edge” devices of limited process-

ing and memory capabilities. These devices, together with sensors,

regularly produce very high data volumes nowadays. For many real-

time applications, storing and indexing an unbounded stream may

not be an option. Thus, it is important that we design algorithms

and systems that can both work at the edge of the network and be

able to answer queries on distributed, streaming data. Moreover,

in many streaming scenarios, fresh data tend to be prioritized. A

sliding-window model is an important case of stream processing,

where only the most recent elements remain active and the rest

are discarded. In this work, we study the problem of maintaining

basic aggregate statistics over a sliding-window data stream under

the constraint of limited memory. As in IoT scenarios the avail-

able memory is typically much less than the window size, queries

are answered from compact synopses that are maintained in an

on-line fashion. For the efficient construction of such synopses,

in this work, we propose wavelet-based algorithms that provide

deterministic guarantees and produce almost exact results. Our

algorithms can work on any kind of numerical data and do not

have the positive-numbers constraint of techniques such as the ex-

ponential histograms. Our experimental evaluation indicates that,

in terms of accuracy and space-efficiency, our solution outperforms

the exponential histograms and deterministic waves techniques.

1 INTRODUCTION
A significant part of the digital information currently produced

comes in the form of data streams, i.e., continuous sequences of

items of unbounded size. Since unbounded streams cannot be

wholly stored in bounded memory, streaming applications usually

work in an on-line fashion. The requirement of real-time process-

ing of continuous data in high-volumes has triggered a flurry of

research activity in the area. Some typical applications include sen-

sor networks [5, 27, 38], datacenter monitoring [12], financial data

trackers [39], and real-time analysis of various transaction logs

[10].

Unlike conventional database query processing that allows sev-

eral passes over static data, streaming algorithms are generally

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6216-0/19/07. . . $15.00

https://doi.org/10.1145/3335783.3335793

restricted to allow only a single pass. In order to achieve this, they

often rely on building, in real-time, concise synopses of the underly-

ing streams. These synopses typically need small space, update and

query time (sub-linear to the input size), and can be used to provide

approximate, yet accurate answers. Due to the exploratory nature

of many data-analytics tasks, there exist a number of scenarios in

which we are interested in discovering statistical patterns rather

than obtain answers precise to the last decimal.

Furthermore, as for most applications there is more value in

real-time information, recent data tend to be prioritized; statistics

in fresh data items should be represented with higher precision

than in older ones. For this purpose, various time-decay models

have been proposed in the literature [8]. The sliding-window model

[11] is one of the most intuitive ones as it only considers the most

recent data items seen so far. Several algorithms have been proposed

for maintaining different types of statistics over sliding-windows

while requiring time and space poly-logarithmic to the window

size [11, 15, 32, 37].

While a lot of work has been done for estimating basic aggregates

in the sliding-window setting, the problem has not attracted much

attention when using wavelets. Wavelet decomposition [35] pro-

vides a very effective data reduction tool, with applications in data

mining [25], selectivity estimation [29], approximate and aggre-

gate query processing of massive relational tables [6, 36] and data

streams [9, 17]. In simple terms, a wavelet synopsis is extracted by

applying the wavelet decomposition on an input collection (consid-

ered as a sequence of values) and then summarizing it by retaining

only a selected subset of the produced wavelet coefficients. The

original data can be approximately reconstructed based on this

compact synopsis. Previous research has established that reliable

and efficient approximate query processing can then be performed

solely over such concise synopses [6].

In this work, we investigate the capacity of wavelets to efficiently

approximate basic aggregates over a data stream under the sliding-

window model. We focus on queries like COUNT, SUM and AVG,

since more complex queries in sliding-windows [31] usually need

to compute such basic aggregates under the hood. In order to pro-

vide theoretical guarantees, traditional techniques for the problem,

like exponential histograms [11] and deterministic waves [15] are

restricted to work only on streams of positive numbers. Moreover,

they can only support a very specific type of queries: range queries

where the end of the range is always the end of the active window.

In this work, we opt for a more generic and practical solution that is

able to handle streams of arbitrary numerical values and supports

more generic query types. To the best of our knowledge, we are

the first to investigate the use of wavelets for range queries over

sliding-window streams.We present efficient algorithms for answer-

ing point and range queries in a single stream and experimentally

https://doi.org/10.1145/3335783.3335793

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

evaluate them against state-of-the-art techniques. In summary, we

make the following contributions:

• We investigate the efficiency of wavelets for summarizing a slid-

ing window stream. While we consider workloads of both point

and range queries, we put particular emphasis on basic aggre-

gates like COUNT, SUM and AVG. This is the most common

query type in the sliding window context and the performance

of wavelets in such queries has not been studied before.

• We propose a new wavelet-based algorithm for answering range

queries over a single stream in the sliding-windowmodel and pro-

vide deterministic guarantees. The complexity of our algorithm

is theoretically analyzed.

• We apply and validate our approach in a distributed setting,

where multiple streams compute individual synopses and a single

coordinator merges them in real-time to produce global answers.

• We experimentally evaluate our approach in both synthetic and

real data and show that it outperforms, in terms of accuracy,

state-of-the-art techniques such as exponential histograms and

deterministic waves.

The remainder of this paper is organized as follows: Section

2 makes a literature review for the applications of wavelets in

approximate query processing and for sliding-window techniques.

Section 3 provides formal definitions and theoretical background on

the problem. In Section 4, we present our algorithms formaintaining

the synopsis in real-time and in Section 5 we show how basic

statistics are computed. In Section 6 we present an extension for

distributed environments. Section 7 demonstrates the experimental

evaluation of our work and Section 8 concludes the paper.

2 RELATEDWORK
Wavelets. In the seminal work of [6], the authors show how re-

lational operators can be computed directly on wavelet synopses.

For constructing a synopsis that optimizes the L2-error, the authors
retain a set of B wavelet coefficients, where B is a user-defined

space budget.

While computationally efficient, a L2-optimal synopsis cannot

provide strong guarantees for individual queries. For this reason,

a lot of prior work has focused on designing algorithms which

target maximum error metrics. The construction of an optimal

synopsis with respect to a non-Euclidean error is a cumbersome and

computationally intensive process. Many dynamic programming

algorithms [13, 14, 19, 23, 24, 30] have been proposed for this task. In

order to alleviate the complexity burden, greedy algorithms [22, 28]

have also been proposed.

All approaches discussed thus far refer to batch jobs, where

algorithms are applied to static data. In [17, 18], the authors compute

L2-optimal wavelets on streams. As they find it more challenging,

they put more emphasis on handling the unordered cash register

streammodel. In [9], a similar sketching technique, that allowsmore

efficient updates, is presented for the same problem. Streaming

techniques have also been proposed for the optimization of the

L∞ norm. In [20, 21], the authors present optimal algorithms for

computing the optimal error in a streamingway for a broad category

of non-Euclidean errors. Nevertheless, as dynamic programming

needs a recursive top-down procedure in order to construct the

final synopsis, these algorithms are not suitable for the scenario

of an unbounded stream where inactive elements are permanently

discarded. For L∞-minimization, a greedy streaming algorithm has

appeared in [22]. However, it does not support sliding-window

queries.

The only wavelet-based algorithm that exists in the literature

and considers the sliding-window model is the work presented in

[26]. This work mainly covers point queries and it does not take

into account range queries like COUNT and SUM, which are the

most basic and common queries in sliding-window streams.

Sliding-Window Stream Queries. The bulk of existing work

on the sliding-window model has focused on algorithms for effi-

ciently maintaining simple statistics, such as COUNT and SUM.

By efficiently, we mean sub-linear space and time (typically, poly-

logarithmic) in the window sizeW . Exponential histograms [11]

are a state-of-the-art deterministic technique for maintaining ϵ-

approximate counts and sums over slidingwindows, usingO
(
1

ϵ loд
2W

)
space. Deterministic waves [15] solve the same basic aggregates

problem with the same space complexity as exponential histograms,

but improve the worst-case update time complexity toO (1). In the

same work [15], Gibbons also presents randomized waves to tackle

COUNT-DISTINCT queries. Randomized waves, as most random-

ized sketching techniques, are easily parallelizable and composable

(in distributed settings), but come with increased space require-

ments. In [37], the authors describe a randomized, sampling-based

synopsis, very similar to randomized waves, for tracking sliding-

window COUNT and SUM queries with out-of-order arrivals. As in

randomized waves, the space requirements are also quadratic in the

inverse approximation error. To address the high cost associated

with randomized data structures, Busch and Tirthapura propose a

deterministic structure for handling out-of-order arrivals in sliding

windows [4]. Similar to other deterministic structures, this struc-

ture does not allow composition and focuses only on basic counts

and sums. Finally, Chan et al. [7] investigate continuous monitor-

ing of exponential-histogram aggregates over distributed sliding

windows. The main contribution of their work lies in the efficient

scheduling of the propagation of the local exponential-histogram

summaries to a coordinator, without violating prescribed accuracy

guarantees.

Work has also been done on sketching techniques that are suit-

able to answer more complex queries like k-medians [3], heavy

hitters, inner products and self-joins [31, 33, 34]. However, as the

majority of these techniques employ under the hood algorithms for

computing basic aggregates, in this work we focus only on point

queries and basic aggregates like COUNT, SUM and AVG. We de-

velop wavelet-based algorithms that support these query types and

evaluate them against other state-of-the-art techniques.

3 PRELIMINARIES
In this Section, we formally define the problemwe solve, the stream-

ing model we work on, and provide the theoretical background

needed for understanding the proposed ideas.

3.1 Definitions and Problem Statement
Our goal is to evaluate the ability of wavelets to accurately compute

point queries and basic range statistics (SUM, COUNT, AVG) in

a data stream that follows the time-based sliding-window model

and where data elements are expected to arrive in the stream-order.

Maintaining Wavelet Synopses for Sliding-Window Aggregates SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

Such a stream is formally defined in Definition 3.1. Henceforth, we

are going to simply use the term stream in order to describe such a

data sequence.

Definition 3.1 (Ordered Time-based Stream). An ordered, time-

based data stream is an infinite sequence of tuples in the form:

S = {(t1,v1) , (t2,v2) , ...} ,t1 ≤ t2 ≤ ..., where ti denotes the arrival
time of tuple i and vi its value.

Both the sliding-window point and range queries we tackle are

defined in Definition 3.2. A point query can ask for the stream value

at any time moment lying within the active window. Similarly, a

range query has always the current time as the end of its interval,

while the start of it can be any time moment within the window.

Definition 3.2. Let S be a stream, t the current time andW the

window size.

• A sliding-window point query P
(
tq

)
on S returns an

estimation for the value vq that arrived at time tq , tq ∈
[t −W ,t].

• A sliding-window range queryAGG
(
tq

)
on S returns an

estimation for an aggregate

AGG ∈ {SUM ,COUNT ,AVG} computed over the time range:[
tq ,t

]
, where tq ∈ [t −W ,t].

While we mainly consider range queries of the described form,

in order to demonstrate the general applicability of our approach,

in Section 7, we also investigate queries of the form [s,e], where
t −W ≤ s ≤ e ≤ t .

3.2 Wavelets
Wavelet analysis is a major mathematical technique for hierarchi-

cally decomposing functions. The wavelet decomposition of a func-

tion consists of a coarse overall approximation together with detail

coefficients that influence the function at various scales [35]; it is

computationally efficient and has excellent energy compaction and

decorrelation properties, which can be used to effectively generate

compact representations that exploit the structure of data.

Haar wavelets constitute the simplest possible orthogonal wavelet

system. Assume a one-dimensional data vector A containing N = 8

data values A = [8,6,7,7,12,12,−1,−3]. The Haar wavelet trans-

form of A can be considered as a sequence of pairwise averaging

and differencing operations. We first average the values in a pair-

wise fashion to get a new “lower-resolution” representation of the

data with the following average values: [7,7,12,−2]. The average

of the first two values (i.e., 8 and 6) is 7, the average of the next

two values (i.e., 7 and 7) is 7, etc. It is obvious that, during this

averaging process, some information has been lost and thus the

original data values cannot be restored. To be able to restore the

original data array, we need to store some detail coefficients that
capture the missing information. In Haar wavelets, the detail coef-

ficients are the half-difference of the corresponding data values. In

our example, for the first pair of values, the detail coefficient is 1

(since (8 − 6) /2 = 1) and for the second is 0 ((7 − 7) /2 = 0). After

applying the same process recursively, we generate the full wavelet

decomposition that comprises a single overall average followed by

three hierarchical levels of 1, 2, and 4 detail coefficients respectively

(see Table 1). In our example, the wavelet transform (also known

as the wavelet decomposition) of A isWA = [6,1,0,7,1,0,0,1]. The

Table 1: Wavelet decomposition example

Resolution Averages Detail Coef.
3 [8,6,7,7,12,12,−1,−3] –

2 [7,7,12,−2] [1,0,0,1]

1 [7,5] [0,7]

0 [6] [1]

complete Haar wavelet decompositionWA of a data arrayA is a rep-

resentation of equal size as the original array. Each entry inWA is

called a wavelet coefficient. The main advantage of usingWA instead

of A is that, for vectors containing similar values, most of the detail

coefficients tend to have very small values. Therefore, eliminating

such small coefficients from the wavelet transform (i.e., treating

them as zeroes) introduces only small errors when reconstructing

the original array and thus results to a very effective form of lossy

data compression. Given a budget constraint B < N , the problem

of wavelet thresholding is to select a subset of at most B coefficients

that minimize an aggregate error measure in the reconstruction of

data values.

8 6 7 7 12 12 -1 -3

6

1

0 7

1 0 0 1

Figure 1: An error tree that illustrates the hierarchical struc-
ture of the Haar wavelet decomposition

The error-tree, introduced in [29], is a hierarchical structure that

illustrates the key properties of the Haar wavelet decomposition.

Figure 1 depicts the error-tree for our simple example data vector

A. Each internal node ci (i = 0, ...,7) is associated with a wavelet

coefficient value, and each leaf di (i = 0, ...,7) is associated with

a value in the original data array. Given an error-tree T and an

internal node ck of T, we let leavesk denote the set of data nodes in

the sub-tree rooted at ck . This notation is extended to leftleavesk
(rightleavesk) for the left (right) sub-tree of ck . We denote pathk as

the set of all nodes with non-zero coefficients in T which lie on the

path from a node ck (dk) to the root of the tree T. We also denote

path
[l,h] = pathl ∪ pathh .

Given the error-tree representation of a one-dimensional Haar

wavelet transform, we can reconstruct any data value di using only
the nodes that lie on pathi . That is

di =
∑

c j ∈pathi

δi j · c j ,δi j =



1 di ∈ leftleavesj

−1 otherwise

For example, in Figure 1, value d5 = 6 − 1 + 7 − 0 = 12. A range

sum d (l : h) can be computed using only nodes c j ∈ path[l,h], by
d (l : h) =

∑
c j ∈path[l ,h] c j · x j , where:

x j =



(h − l + 1) j = 0(
|leftleavesj,l :h | − |rightleavesj,l :h |

)
otherwise

(1)

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

Here, leftleavesj,l :h = leftleavesj ∩ {dl ,dl+1, ..,dh } and
rightleavesj,l :h = rightleavesj ∩ {dl ,dl+1, ..,dh }. That means that

node c j contributes to the range sum d (l : h) positively as many

times as there are leaf nodes of the left sub-tree of c j in the summa-

tion range, and negatively as many times as there are leaf nodes

of the right sub-tree of c j , while the value of c0 contributes posi-
tively for each leaf node in the summation range. In our example,

d (3 : 6) = −1 · 0 + (−1) · 0 + (−2) · 1 + 4 · 6 + 1 · 7 + 1 = 30.

Thus, reconstructing a single data value involves summing at

most loдN + 1 coefficients and reconstructing a range sum involves

summing at most 2loдN + 1 coefficients, regardless of the width of

the range.

4 DYNAMIC SYNOPSIS MAINTENANCE
In this Section, we present our efficient algorithms for the compu-

tation and online maintenance of a wavelet synopsis on a single

stream. The construction process should be constrained to a limited

memory budget, that is usually much smaller than the window

size (B << W). This is a realistic requirement in many real-life

applications. For example, embedded devices that are often met in

IoT scenarios, have a memory capacity of only a few MB. Keeping

track of the average value, in a stream of 8 byte long numbers and

a window size ofW = 100M data elements, needs 800 MB which

may not be available. Thus, a space budget B should be defined

and cap the number of retained wavelet coefficients. In the anal-

ysis of this Section, we consider synopses of logarithmic size, i.e.,

B = O (loдW).
In the following, we describe our algorithm for supporting sliding-

windows and theoretically analyze its complexity. The requirements

we need to cover are:

• Support for sliding-windows.

• Deterministic error guarantees for both point and range queries.

• Real time
1
query and update operations.

Data Stream

{v1, level = 3} {v2, level = 2} {v3, level =1}front
nodes
array

(1,1) (1,2) (1,3) (1,4)(1,5) (1,6) (1,7)

(2,1) (2,2) (2,3)

(3,1)

Figure 2: Error-tree for streaming data.

Streaming Error-Tree. Similarly to previous works, we operate

on the streaming version of an error-tree [22, 26]. Each pair of newly

arrived items is subjected to the wavelet transform and inserted into

the error-tree. During this construction process, at some time t , the
number of stream data that have arrived may be unequal to a power

of two. That means that the error-tree has not formed a full binary

tree as in the static case and unconnected sub-trees of different

heights may exist. That means that there can be at most one such

1
As common practice in the literature, by real time, we mean at most O (loдW) cost.

sub-tree rooted at each error-tree level (thus, ⌊loдW ⌋ sub-trees).
Figure 2 depicts an example, where there are three unconnected

sub-trees of height one, two and three respectively. In order to avoid

information loss and be able to continue the decomposition process,

we need to keep track of all sub-trees in the active window. For this

purpose, we use the front nodes array structure and its elements

fnodes. For each sub-tree, that we want to track, we create a fnode

annotated with: (i) the timestamp of the first supported item, (ii)

the level of the sub-tree and (iii) the average value of its data. We

then set the created fnode to point to the sub-tree and append it in

the front nodes array, as shown in Figure 2.

Indexing Coefficients. In the streaming error-tree, a wavelet

coefficient ci is indexed by a tuple (li ,oi), where li is the level of
the coefficient in the error-tree and oi its order in the specific level.

Figure 2 illustrates the indexing scheme for our example. Given

two coefficients ci , c j , where ci is an ancestor of c j , c j belongs to

the left sub-tree of ci if: 2 · oj − 1 < (2 · oi − 1) · 2
li−lj

.

In this work we exploit the sliding-window and propose an

efficient representation that minimizes the space overhead for a

coefficient. The key observation is that we do not have to index an

infinite stream but, at any given time, the synopsis approximates a

single window of sizeW . As the level of a coefficient can be at most

loдW , for li we need at most loдloдW bits. For reducing the size of

the oi values, which are infinite in an unbounded stream, we use a

wrap around counter o′i =
[
(oi − 1)mod 2W

2
li
+ 1

]
that uses loд 2W

2
li

bits for a coefficient in level li . With this scheme and for a window

of size 1 billion, a coefficient needs at most 35 bits for storing both

li and oi .
AlgorithmOutline.Algorithm 1 shows the outline of the stream-

ing algorithm for the construction of a wavelet synopsis. Each pair

of newly arrived data is transformed into a wavelet coefficient and

inserted into the error-tree. The addition of a new coefficient may

trigger the creation of more coefficients in higher levels. In Figure

2, when two more items arrive, a new wavelet coefficient will be

inserted in the first level of the error-tree. As there is already one

node in the first level, the two coefficients will be averaged and dif-

ferenced and create a new coefficient in level two. The process will

be recursively repeated and new wavelet coefficients are expected

to be also added in levels three and four. In general, every new item

in the stream can fire up to ⌈loдW ⌉ insert-updates in the wavelet

structure.

Algorithm 1: Streaming Algorithm for Constructing a Sliding-

Window Wavelet Synopsis

input : Stream S , Budget B, Window sizeW
1 currTime = 0;wSynopsis = new WaveletSynopsis();

2 for data items in S do
3 currTime = currTime + 2; d1, d2 = read(S);

4 wSynopsis .deleteExpired(currentTime ,W);

5 wSynopsis .insert(currTime ,W ,d1, d2);

6 while wSynopsis.size > B do
7 wSynopsis .discardNext();

In line 4, we first check whether there are coefficients that lie

outside the active window and thus have expired. If such coefficients

exist, we can safely discard them releasing this way space without

Maintaining Wavelet Synopses for Sliding-Window Aggregates SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

compromising accuracy (they support a range we are no longer

interested in).

Next, we insert the new elements. Depending on the data distri-

bution, the wavelet transform may produce some zero coefficients.

These coefficients are never inserted in the structure we maintain.

If after the insert-step, the size of the synopsis still exceeds B, we
discard coefficients according to a greedy criterion (will be later dis-

cussed) until the size of the synopsis respects the available budget.

Algorithm 2: Insert
input :Number of arrived items N , window sizeW , item

d1,item d2
1 f = fnode with lowest level; tmp = null; l = 0

2 maxLevel = loд
(

W
loдW

)
3 while N > 0 and N mod 2 = 0 do
4 N = N / 2; l = l + 1

5 if l > maxLevel then break

6 if tmp = null then
7 avg = (d1 + d2) / 2; v = (d1 - d2) / 2

8 minCf = maxCf = v

9 else
10 avg = (avg + tmp) / 2; v = tmp - avg

11 minCf =min (prevFnode.minCf, tmpMin,v)

12 maxCf =max (prevFnode.maxCf, tmpMax,v)

13 ci = new WaveletCoef(li = l, oi = N, value = v)

14 ci .maxCoefInSubtree = maxCf

15 ci .minCoefInSubtree = minCf

16 if ci , 0 then put ci in min-heap

17 delete fnode below f

18 if no fnode in level l then
19 f = new Fnode(level = l , value = avg)

20 f.minCf = minCf; f.maxCf = maxCf

21 if l < maxLevel then frontNodesArray.add(f)

22 else topLevelFnodes.add(f)

23 else
24 tmp = f.value

25 tmpMin = f.minCf; tmpMax = f.maxCf;

26 if f.pointer = null then f.pointer = ci
27 f = fnode at next level

We now delve into the internals of each of the insert, deleteExpired
and discardNext functions.

Insert. The algorithm for the insertion of new coefficients in the

synopsis is presented in Algorithm 2. For each pair of arrived items

d1, d2, we perform averaging and differencing (line 7) and create a

new wavelet coefficient ci . If ci is non-zero, we add it to a min-heap

(line 16) in order to specify its order of deletion. In line 18, we check

if ci is the only node at level l . If this is the case, we create a new
fnode (line 19) that points to ci , else we continue the process at the
next level of the error-tree, as explained in the example of Figure 2.

According to our algorithm, all fnodes that support a part of the

active window are retained in the synopsis. This is the reason why

fnodes are not inserted into the min-heap. As we will explain in

Section 5, this design choice improves the approximation quality

of range queries.

Moreover, in line 5 of the algorithm, we notice that a cap is

enforced on the maximum level of a sub-tree; the wavelet decom-

position is not allowed to continue further than maxLevel levels.
This decision permits the existence of more than one fnodes with

maxLevel levels. We store these fnodes in a separate structure called

topLevelFnodes (line 22). We claim that a limit on the maximum level

of the error-tree offers two advantages: i) lower bounded update

times, and ii) allows for the accurate computation of range queries.

Our first claim can be trivially verified. From the while condition
of Algorithm 2, we can see that an insert operation can trigger up

to loдW updates. For a maxLevel < loдW , we directly restrict the

number of updates at every time unit. The impact ofmaxLevel in
the accuracy of range queries will be discussed in Section 5, where

we describe the query answering mechanism.

Now, we are going to investigate what is an appropriate value for

maxLevel. A small value offers the advantages we just mentioned.

Nevertheless, as all fnodes are retained in the synopsis, a cap on the

maximum level increases the space we need to dedicate to the front

nodes array. Thus, we need to set a value such that we enjoy the

benefits of a short tree without significantly increasing space com-

plexity. The value we select is loд
(

W
loдW

)
. The following Lemma

shows that with this choice we only require poly-logarithmic space

in the window size for storing the front nodes array.

Lemma 4.1. Consider a wavelet error-tree T built overW data
points. Setting the constraint that each sub-tree ofT cannot have more

than loд
(

W
loдW

)
levels, results in storing at most loд

(
W 2

loдW

)
− 1 =

O (loдW) fnodes.

Proof. Let k denote the maximum permitted size for a sub-tree.

Thus, within a window of sizeW there can be up to ⌈Wk ⌉ such

sub-trees, and thus ⌈Wk ⌉ fnodes. As the given budget B is usually

poly-logarithmic inW , we want to store at most O (loдW) fnodes.

So, it should hold:
W
k ≤ c · loдW ,c ≥ 1 ⇒ k ≥ W

c ·loдW . Thus,

the minimum sub-tree size we can tolerate without violating the

constraint ofO (loдW) fnodes is W
c ·loдW and hasM = loд

(
W

c ·loдW

)
levels. However, the construction process of a wavelet tree is such

that is impossible to cover the whole window only with sub-trees

of levelM . As it is known that Σn−1i=0 2
i = 2

n − 1, we can substitute

a sub-tree of size k with up toM sub-trees of levels l = 1, ..,M − 1.

This way, there are at most
W
k − 1 +M = c · loдW − 1 + loдW − c ·

loдloдW = (c + 1) loдW −c · loдloдW − 1 sub-trees and thus fnodes
in the window. As we want to save space, we set c = 1 which

is the minimum possible value, and get: 2loдW − loдloдW − 1 =

loд
(

W 2

loдW

)
− 1 = O (loдW). □

The cost for inserting new elements in the wavelet synopsis is

given by Lemma 4.2.

Lemma 4.2 (Insertion Time). Considering a synopsis size of B =
O (loдW), an arriving pair of data items leads to a worst case insertion

time of O
(
loд W

loдW · loдloдW
)
and

Θ
((
1 − 1

W

)
loдW − loдloдW

)
in the average case.

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

Proof. The cost of an insert-update consists of the cost of creat-

ing new coefficients and the cost of re-configuring the binary heap.

The proof for the worst-time case is straightforward: As we dis-

cussed, an insert-update can lead to the creation of L new wavelet

coefficients, where L is the size of the tree. Since our algorithm per-

mits only sub-trees of height up to loд
(

W
loдW

)
, it follows that this

is also the maximum number of operations that an insert-update

can cause. Moreover, since the synopsis should occupy only poly-

logarithmic space, we assume a min-heap of size B = O (loдW).
Thus, the worst-case insertion in the heap isO (loдloдW). It follows
that the total needed worst-case time for updating the synopsis

when two new data items arrive is O
(
loд W

loдW · loдloдW
)
.

We now compute Θ complexity. The insertion in a binary heap

needs Θ (1) time on average. The question is how many wavelet

coefficients are created with every new arrival in the average case.

Without loss of generality, we assume a tree of size N , where N
is a power of two. Each arriving item can trigger the creation of

1 ≤ i ≤ loдN coefficients. Since there are N items within the

window, we first compute how many of them create 1 coefficient,

how many 2, etc. Let a (j) denote the number of coefficients within

a window that lead to the creation of paths of length loдN − j. We

observe that only the last element can create a path of length loдN ,

i.e., a (0) = 1. The same holds for a path of length loдN − 1. There
are two paths in the window that have length at least loдN − 1.

However, the one of them has length loдN and thus, a (1) = 1. With

similar reasoning, we observe that the following recursion holds:

a (0) = 1 and a (j) =
∑j−1
i=0 a (i). As the first two elements of the

a (j) sequence add up to 2, it is easy to derive that:

a (j) =



1 j = 0

2
j−1 j , 0

Since it is known that

∑n−1
i=0 2

i = 2
n − 1, we observe that:

loдN−1∑
j=0

a (j)

N
=

1 +
∑loдN−1
j=0 2

j

N
=

1 + 2loдN − 1

N
= 1

and thus the term
a (j)
N can represent the probability of creating

a path of length loдN − j. Let the random variable X express the

number of updates a newly arriving data pair yields. The expected

value of X can be expressed as:

E(X) =

loдN−1∑
j=0

a (j)

N
· (loдN − j) =

loдN

N
+
loдN

N

loдN−1∑
j=1

2
j−1 −

1

N

loдN−1∑
j=1

j · 2j−1 =

loдN

N
*.
,
1 +

loдN−1∑
j=1

2
j−1+/

-
−

1

N

loдN−1∑
j=1

j · 2j−1 (2)

We use again the fact that

∑n−1
i=0 2

i = 2
n − 1 in order to com-

pute the first term. For k = j − 1, we have:

∑loдN−1
j=1 2

j−1 =∑loдN−1−1
k=0 2

k = 2
loдN−1 − 1 = N

2
− 1 and the first term of Equa-

tion 2 is equal to
loдN
2

. For the second term, it is easily proven that

when n is a finite number, it holds:∑n
j=1 j · x

j−1 = 1 − xn

(1−x)2
+ nxn

1−x . For x = 2 and n = loдN − 1, we

get that:

loдN−1∑
j=1

j · 2j−1 = 1− 2loдN−1 − (loдN − 1) · 2loдN−1 = 1−
NloдN

2

Thus, Equation 2 becomes:

E(X) =
loдN

2

−
1

N

(
1 −

NloдN

2

)
= loдN −

1

N

Thus, the total update time for every arrived pair in the stream is

Θ (1) · Θ
(
loдN − 1

N

)
. As our sub-trees have a size of N = W

loдW ,

Θ complexity becomes: loд
(

W
loдW

)
−

loдW
W =

(
1 − 1

W

)
loдW −

loдloдW . □

Delete Expired. We first check if all fnodes still support the

active window. As an fnode f supports 2
f .level

data points be-

ginning from f .start, we have to discard all fnodes with: f .start

+ 2
f .level

< currTime −W . If a fnode is deleted, so is the whole

sub-tree underneath it.

We then scan all the remaining elements to check if there are

coefficients that also need to be removed. The criterion for removing

a coefficient ci is: oi · 2
li − 1 < currTime −W . As we require B =

O (loдW), the cost of this scan operation is also O (loдW).
Discard Next. When budget is exceeded, we need to discard

some coefficients. The heuristic for selecting coefficients to discard

depends on the error metric we need to optimize. If L2-norm is the

targeted metric, we should always keep the B largest coefficients

in normalized value. If the minimization of L∞ is required, we

select each time the coefficient ck with the minimum maximum
potential absolute error MAk [22]. The MAk value is defined as:

maxdj ∈leavesk {|err j − δjk · ck |}, where err j is the signed error for

item j , and shows the maximum error that the removal of ck would

produce. In either case, for efficiently identifying the node that

should be discarded and assist the greedy selection, the synopsis

is organized as a min-heap structure. In our work, we use the L∞
norm and implement min-heap as a binary heap.

Lemma 4.3 gives the cost of deletions either due to expiration or

budget excess.

Lemma 4.3 (Deletion Time). The time spent in delete operations
every time the synopsis is updated is O (loдW) in both worst and
average case.

Proof. Delete operations occur due to either window sliding or

a manual coefficient removal in order to respect the budget con-

straint. We observe that in the permanent state of the algorithm

(more than B data items have already arrived) the synopsis size

increases by at most two elements with every new arrival. Thus,

there are at most two deletions that we need to make. As the delete-
Expired function can delete at most one coefficient, the discardNext
function is called at most twice. The manual removal of a coefficient

results in the extraction of the minimum element of a binary heap.

Considering B = O (loдW), this operation has a worst-case com-

plexity O (loдloдW) and average time Θ (1). As for identifying an

Maintaining Wavelet Synopses for Sliding-Window Aggregates SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

expired coefficient we need to scan the whole synopsis, aO (loдW)
operation is needed for both the worst and average case. □

Error Guarantees. Regardless of which error-metric is opti-

mized, the constructed synopsis should be able to provide queries

with deterministic guarantees. As shown in [22], providing guaran-

tees for point queries demands each node to maintain the maximum

and minimum signed errors of its left and right sub-trees.

In this work, we also provide deterministic guarantees for range

queries. As mentioned in Section 3, the value of a SUM query

over a range [t1,t2] can be exactly reconstructed, by only using

the coefficients c j ∈ path[t1,t2], according to Equation 1. Here, we

observe that under the sliding-window model, the sum can be

computed solely based on the coefficients c j ∈ patht1 , i.e., the ones
that belong to the left path of the queried interval. As we explain in

detail in Section 5, in the sliding-window model, we expect some

sub-trees to be fully-contained in the query-range and one last

sub-tree to partially overlap with it. Let us consider that [t1,t2]
is the range of overlap with the last sub-tree. Thus, by definition,

patht2 is the rightmost path of a full binary tree. As such, every

coefficient c j in patht2\patht1 is expected to have x j = 0 and does

not contribute to the sum, either it is contained in the synopsis or

not. Thus, SUM
[t1,t2] =

∑
c j ∈patht

1

c jx j .

For providing error guarantees, we need to bound this sum. No

matter if we have deleted a coefficient c j or not, the x j value is

always known since it only depends on the coefficient’s position in

the error-tree and the query range. So, if we had some bounds for the

deleted (and thus, unknown) coefficients c j , such that lj ≤ c j ≤ hj ,
it would hold:

• x j ≥ 0⇒ ljx j ≤ c jx j ≤ hjx j
• x j < 0⇒ hjx j ≤ c jx j ≤ ljx j

By summing up these inequalities for all deleted coefficients c j ,
we obtain deterministic guarantees for the SUM

[t1,t2]. The idea for

bounding c j values is to keep track of the minimum and maximum

coefficients in each sub-tree. In Algorithm 2, we annotate with blue

color all required modifications for tracking minimum/maximum

coefficients in each sub-tree.

5 QUERY ANSWERING
Point queries P

(
tq

)
are answered as explained in Section 3, i.e.,

P
(
tq

)
= Σc j ∈pathqδqj ·c j + f .value , where f is the corresponding

fnode of the sub-tree where tq belongs. We are now going to focus

on the query answering mechanism for range queries.

Data Stream

{v1, level = 3} {v2, level = 2} {v3, level =1}front
nodes
array

Query Range

ts

tq

tnow

TP

Figure 3: Range query answering

Figure 3 depicts a range query AGG
(
tq

)
. The range of interest[

tq ,tnow
]
is highlighted with grey color. We observe that there are

sub-trees which are fully-contained in the range and a last sub-tree

Tp that partially overlaps with it. Let us denote ts the moment in

time that separates Tp with the leftmost fully-contained sub-tree.

For the part of the query that corresponds to fully-contained sub-

treeswe can provide an exact answer. Thus,AGG
(
tq

)
= AGGapprox⊕

AGGexact = AGG
[tq,ts] ⊕ AGGt>ts , where ⊕ is a function that

combines partial aggregates. This function is a simple addition for

the case of COUNT and SUM queries, while for AVG Lemma 5.1

holds.

Lemma 5.1. Letavд (·) andn (·) denote the averaging and counting
functions respectively. The average value of region X =

⋃
xi , i =

1,2, ..,k with xi ∩ x j = ∅ can be computed as:

AVG (X) = ⊕ (avд (x1) , ...,avд (xk)) =
∑ n (xi) · avд (xi)

n (X)

We first show how to compute the exact part of the aggregate

and then discuss how to approximate the range that intersects with

the last sub-tree Tp . Recall that each fnode fi keeps information

about the level of its sub-tree Ti and the average value of the corre-

sponding data elements. Thus, an aggregate of Ti can be computed

solely based on fi . Considering that a data item arrives at each

time unit, a COUNT query can be computed as 2
fi .level

, the an-

swer to an AVG query is fi .value and the SUM can be derived by

fi .value · 2
fi .level

. So, AGGt>ts = ⊕
(
AGGTi , ...,AGGTj

)
, where{

Ti , ...,Tj
}
are all the sub-trees that are fully-contained in the range

query AGG
(
tq

)
.

For approximating AGG
[tq,ts] we use the wavelet coefficients

that lie inpathtq .We remind that for coefficients c j inpathts \pathtq
we expect x j = 0. As there is exactly one item that arrives at each

time unit, we know that there are ts−tq+1 items in the range. A SUM

query can be approximated as: SUM
[tq,ts] =

∑
c j ∈pathtq c jx j +

fp .value ·
(
ts − tq + 1

)
and an AVG query can then be easily an-

swered as:

SUM
[tq ,ts]

(ts−tq+1)
. Guarantees for the approximate AGG

[tq,ts]
are provided as follows: we traverse pathtq in a bottom-up fashion.

For each position j of the error-tree, we check if coefficient c j exists
in the synopsis. If it does, we compute its contribution c jx j . If it
does not, we buffer the x j value that corresponds to the missing co-

efficient until we find the next coefficient that exists in the synopsis.

Then, we use the minimum and maximum coefficients stored in this

node, in order to bound the contribution of the missing coefficients.

Thus far, we have assumed that an item arrives at each time unit.

However, in reality, streams may be bursty and arrival rates do not

follow a regular pattern. In order to handle the general case and be

able to answer all COUNT, SUM and AVG queries, we maintain two

distinct wavelet structures. The first one keeps track of a bit-stream

{(t ,b) ,b ∈ {0,1}} that indicates whether a tuple has appeared at

time t . The second one approximates the value distribution of the

actual input stream. Let BW denote the wavelet synopsis of the

bit-stream andVW the synopsis of the value-stream. The procedure

for updating BW ,VW is presented in Algorithm 3. Every time t a
data item (t ,v) appears, we insert it in VW exactly as explained in

Section 4. Moreover, we insert the tuple (t ,1) in BW . On the other

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

hand, if the stream is idle at t and no data arrives, we insert the tuple:
(t ,0) to both BW and VW . This mechanism ensures that a direct

mapping between the time and wavelet domains always exists.

Let us also note that keeping two structures does not constitute a

deficiency of our approach. Exponential histograms and waves do

the same in order to support both COUNT and SUM queries.

Algorithm 3: BW-VW updates

1 Initialize BW ,VW ;

2 for every time unit t do
3 (t ,v) = listenToStream();

4 if (t ,v) , null then
5 BW .insert ((t ,1)); VW .insert ((t ,v));

6 else BW .insert ((t ,0)); VW .insert ((t ,0)) ;

Answering COUNT queries on the stream is translated into SUM

queries on the BW structure. For instance, if we need to know the

number of measurements that a sensor produced between times t1
and t2, we have to add the 1-bits that exist in the corresponding

time range. SUM queries on the input stream are answered by the

VW structure. Since in the absence of arrived data we insert zero-

values to VW , we do not affect the result of additive operations.

For AVG and point queries, we have to “touch” both structures. For

an AVG query, we compute the sum from VW , the count from BW
and divide the results. For point queries, we issue the same query

to both structures; BW checks the existence of an item at time t
and VW approximates its value.

At this point, we discuss the choice of limiting the maximum

level of a sub-tree. From the described query answering mechanism,

we see that an error is introduced only due to the range [tq ,ts].
Intuitively, the higher is the TP wavelet sub-tree, the larger this

range can be. By keeping sub-trees short, we increase the possibility

to have more sub-trees fully-contained in the query-range and

thus, increase the exact part of the answerAGGt>ts . The following

Lemma shows how the maximum level we allow for sub-trees

affects the relation between the [tq ,ts] and [ts+1,tnow] ranges.

Lemma 5.2. Let Q a range query, E =[ts+1,tnow] ⊆ Q the sub-
range of Q for which our structure provides an exact result and
A the sub-range of Q that we need to approximate. It holds that:

1

2(loдW −1) ≤
|A |
|E | ≤

1

2

Proof. We distinguish two cases depending on whether A over-

laps with a sub-tree of size
W

loдW or not. Let us initially assume

that A overlaps with a sub-tree of size 2
k
smaller than

W
loдW nodes.

The maximum length of the range we need to approximate is 2
k−1

.

By the wavelet construction, it is guaranteed that there are k − 1

trees in E of sizes 2,4, ..,2k−1 and thus |E | =
∑k−1
i=2 2

i = 2
k
. It

follows that
|A |
|E | =

2
k−1

2
k = 1

2
. We now consider the case where

A overlaps with a sub-tree of size
W

loдW . The maximum length

of the range we have to approximate in this case is
W

2loдW . Since

there are 1 ≤ s ≤ loдW − 1 such sub-trees in the active win-

dow, the size of E will be:
W

loдW ≤ |E | ≤ W
loдW (loдW − 1) and

1

2(loдW −1) ≤
|A |
|E | ≤

1

2
. □

5.1 Discussion
Lemma 5.2 implies that for range queries of lengthW , our method

has to approximate only a small part of
1

2(loдW −1) of the query. The

larger the window size, the larger the portion of the query we can

exactly compute. For windows larger than 1 million items, we have

to approximate less than 3% of the submitted query. This is a direct

consequence of limiting the maximum level a sub-tree can have.

The corresponding ratio in classic wavelets is always
1

2
.

As factor
1

2(loдW −1) restricts a query range but does not contain

information on data values distribution, it favors mostly COUNT

queries but no theoretical guarantees can be given for SUM andAVG.

However, our experiments in Section 7 show that our approach is

very robust and that for queries of lengthW high quality results

are achieved for all examined datasets, both real and synthetic.

According to Lemma 5.2, for aggregate queries of length less

thanW , the range our scheme needs to approximate is half the

query range, as in the classic wavelet structure. In that case, result

quality becomes highly dependent on the available budget B and

data distribution. Nevertheless, as our method dedicates a larger

portion of its budget for keeping fnodes than simple wavelets, we

guarantee that at every time moment, we maintain the average

value of all sub-trees in the active window. Our experiments show

that the proposed algorithm outperforms classic wavelets in range

queries in all examined cases.

Other methods, such as exponential histograms (EH), provide

theoretical guarantees by tracking query results over time. Instead

of approximating the data distribution of the stream, as we do in

this work, they approximate the distribution of a query over time.

For example, in the case of a SUM query, they maintain a struc-

ture that tracks the SUM at different time intervals. The benefit of

wavelet-based techniques compared to such approaches is flexibility

to handle more generic query types and underlying data distribu-

tions. EH-like techniques are restricted to only handle streams of

positive integers and answer a single query. While due to Lemma

5.2, our method performs better when applied to positive num-

bers, in Section 7, we show that it can also be efficiently applied

to streams of arbitrary numerical data. Moreover, we show that

the same structure can be used to also answer point queries and

more general range queries, where the end of the query range is

not equal to the current time.

6 DISTRIBUTEDWAVELETS FOR STREAMS
We also address the problem of tracking basic sliding-window ag-

gregates over the union of local streams in a large-scale distributed

system. By union, we mean a linear combination (e.g., average)

of the remote streams. In our setting, the remote sites are not al-

lowed to exchange information with each other but communicate

through the network with a centralized coordinator node. Let us

consider a linear function F applied on a set ofN distributed streams

Si ,i = 1, ..,N . Our goal is to answer COUNT, SUM and AVG queries

on F , i.e., AGG (F (S1, ..,SN)), while minimizing communication;

collecting all streaming data is too costly to afford in many real

use-cases. Therefore, similarly to [16], each remote site computes a

wavelet synopsis (WS) on its local stream (S) and it is only the syn-

opses that are sent to the coordinator. This way, the communication

cost is reduced.

Maintaining Wavelet Synopses for Sliding-Window Aggregates SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

The coordinator computes the requested aggregate directly in

the wavelet domain. As Haar wavelets are linear functions of the

original streams and F is also a linear function, if we apply F on the

individual synopsesWSi , we are going to get a wavelet synopsis of
F (S1, ..,SN). Thus,WS (F (S1, ..,SN)) = F (WS1, ..,WSN) and we

can approximate the query AGG (F (S1, ..,SN)) as
AGG (F (WS1, ..,WSN)).

s21 s22 s23 s24 s25 s26 s27 s28s11 s12 s13 s14 s15 s16 s17 s18

c1i c2i

F(c1i,c2i)

F(s11,s21) F(s12,s22) … F(s18, s28)

Stream1 Stream2

Coordinator

Figure 4: Composition of individual wavelet synopses.

Figure 4 illustrates an example. Sites 1,2 monitor their local

streams s1i ,s2i and construct the corresponding wavelet synopses.

At the coordinator node, we want to track the stream F (s1i ,s2i). In-
stead of collecting the s1i ,s2i values, applying F on them, computing

the wavelet transform and constructing the synopsis, we observe

that for each coefficient with index i , it holds that cmi = F (c1i ,c2i),
where cmi is the corresponding coefficient in the error-tree of the

coordinator. Thus, it suffices to aggregate by index the coefficients

and compute F function. The following Lemma shows that the

maximum error guarantees in the wavelet synopsis of the coordi-

nator also follow the F function. Therefore, we are able to provide

deterministic guarantees to queries on the union of the streams.

Lemma 6.1. Let S1,S2, ..,SN be N streams and ϵ
1k ,ϵ2k , ..,ϵNk

the corresponding maximum absolute errors for the reconstruction
of the data value at t = k . The corresponding error in the stream
F (S1, ..,SN), where F is a linear function, is F (ϵ

1k ,ϵ2k , ..,ϵNk).

Proof. Since the reconstruction error of stream Si for t = k
is ϵik , it holds: |

∑
δk jci j − dik | ≤ ϵik , where ci j are the wavelet

coefficients of Si that have been retained in the synopsis. Let F =
a1x1 + .. + aN xN . By applying F on the above inequalities we get:

−aiϵik ≤
∑
δk jci jai − aidik ≤ aiϵik . Summing up for all streams

yields:

|
∑

δk jF
(
c1j , ..,cN j

)
− F (d

1k , ..,d2k) | ≤ F (ϵ
1k , ..,ϵNk)

□

7 EXPERIMENTAL EVALUATION
In this Section, we present the experimental evaluation of our work.

We compare our wavelet-based approach against other state-of-the-

art techniques for range queries in sliding windows. Algorithms

are compared in terms of accuracy and memory consumption. As

accuracy we measure the real observed relative error, i.e.,

Real Error =
|precise answer − approximate answer|

precise answer

· 100%

Algorithms. The techniques we compare to our work are: (i)

Exponential Histograms (EH) [11], (ii) Deterministic Waves (DW)

[15] and (iii) the classic wavelet structure (WVLT) as discussed in

[26] for sliding-windows. EH and DW are deterministic structures

that provide theoretically ϵ-approximate results in COUNT and

SUM queries for positive integers. However, it is proven [11] that for

general SUM queries that also include negative numbers, providing

theoretical guarantees requires Ω (W) bits and these methods cease

to work. As the guarantees of our method are computed while

constructing the synopsis and are not theoretical, we demonstrate

that our approach provides near optimal results even for the case of

arbitrary data values. Henceforth, SW2G (SlidingWindowWavelets

with Guarantees) denotes the approach proposed in this work.

We have implemented all single-stream algorithms in Java 8,

except for the exponential histograms where we use the Scala im-

plementation of [1]. For the distributed part of our work, we use

the Apache Flink 1.6 stream processing framework. Our Flink im-

plementation for distributed exponential histograms is based on

the Java code of [31].

Queries. The workloads we consider are mainly range queries

(COUNT, SUM, AVG) in the formwe describe in Section 3. This is the

most common query type in the sliding-window context. Moreover,

the performance of wavelets in sliding-window aggregates has not

been studied before. In order to demonstrate the generality of our

approach, in Section 7.3, we also consider aggregates over arbitrary

ranges within the active window as well as point queries. In all

experiments, we apply workloads of 50 queries each and report the

average accuracy and memory utilization in each workload.

Datasets. For the assessment of the proposed algorithms, we

use both synthetic and real data. Synthetic data is used for experi-

menting with various data distributions. The generated data values

lie in the range [0 − 1000] and follow a uniform, normal or highly

biased (s = 2) zipf distribution. As real data, we use the sensor

measurements provided by NOAA [2]. For our experiments we use

temperature (noaaTemp) and wind-speed (noaaSpeed) time-series.

NOAA time-series consist of both positive and negative numerical

data.

Platform. All single-stream algorithms are executed on top of

a server with 8 Intel(R) Xeon(R) CPU E5405 @ 2.00GHz processors

and 8 GB of main memory. For the experiments on distributed

streams, we use a cluster of 4 machines with the same processing

and memory capabilities.

7.1 Positive Integers
In our first experiment, we evaluate the proposed method over a

single stream of positive integers. As this is the only case where

EH and DW can be applied, we can directly compare them with

our approach.

In Figure 5, we present accuracy results for various data distribu-

tions and window sizes. We consider streams of 400 millions data

points and window sizes in the range of [10k,100M]. At random

time moments, we query each structure for the COUNT, SUM or

AVG of the stream elements in the lastW time units. In the case of

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

 0

 2

 4

 6

 8

 10

 12

 14

0.01 0.1 1 10 100

R
e
l
E
rr

o
r

%

Window (millions)

DW

EH

WVLT

SW2G

(a) COUNT-uniform

 0

 2

 4

 6

 8

 10

 12

 14

0.01 0.1 1 10 100

R
e
l
E
rr

o
r

%

Window (millions)

DW

EH

WVLT

SW2G

(b) SUM-uniform values

 0

 2

 4

 6

 8

 10

 12

 14

0.01 0.1 1 10 100

R
e
l
E
rr

o
r

%

Window (millions)

DW

EH

WVLT

SW2G

(c) SUM-zipfian values

 0

 10

 20

 30

 40

 50

 60

 70

0.01 0.1 1 10 100

R
e
l
E
rr

o
r

%

Window (millions)

DW

EH

WVLT

SW2G

(d) AVG-noaaTemp

Figure 5: Relative error in streams of positive integers (query length =W).

 0

 0.5

 1

 1.5

 2

0.01 0.1 1 10 100

M
e
m

 (
kb

)

Window (millions)

DW

EH

WVLT

SW2G

(a) COUNT-uniform

 0

 0.5

 1

 1.5

 2

0.01 0.1 1 10 100

M
e
m

 (
kb

)

Window (millions)

DW

EH

WVLT

SW2G

(b) SUM-uniform values

 0

 0.5

 1

 1.5

 2

0.01 0.1 1 10 100

M
e
m

 (
kb

)

Window (millions)

DW

EH

WVLT

SW2G

(c) SUM-zipfian values

 0

 0.5

 1

 1.5

 2

0.01 0.1 1 10 100

M
e
m

 (
kb

)

Window (millions)

DW

EH

WVLT

SW2G

(d) AVG-noaaTemp

Figure 6: Memory consumption in streams of positive integers (query length =W).

the noaaTemp dataset, we compute a more complex query, where

we filter the stream on the fly and compute the average temperature

only for tuples having a temperature larger than 86F . In favor of

a fair comparison, we tune each algorithm to use approximately

the same amount of memory. In EH and DW, the tuning knob of

memory consumption is the guaranteed error ϵ and for the wavelet-
based techniques, the available budget B. We set ϵ = 0.1 for EH and

ϵ = 0.2 for DW.

EH and DW respect the theoretical guarantees and both achieve

an average error near 4% for all datasets. The vanilla wavelet

method, while performing well in uniform distributions, it presents

considerably large errors for the other two datasets. Particularly

for noaaTemp, as WVLT can reach up to a 60% relative error, it

cannot provide an acceptable solution to the problem. By being

near precise in all demonstrated cases, SW2G appears to be the best

alternative for approximating the examined datasets. As Lemma

5.2 indicates, larger windows favor our method since due to the

factor
1

2(loдW −1) , we have to approximate only a tiny part of the

active window. Moreover, in all four datasets, the guarantees SW2G

provides are tighter than 10%.

We remind that in sliding window range queries, an error is

introduced only due to the overlap of the query range with the

last bucket of the active window. Techniques like EH and DW

control the size of the last bucket in a way that provides theoretical

guarantees. By putting a constraint on the maximum level of a

sub-tree, SW2G also controls the size of the last bucket. WVLT is

not designed with range queries in mind; the whole window can

be covered by a single tree of sizeW . Thus, WVLT presents an

unstable behavior where quality highly depends on the current

state and structure of the error-tree.

The overlap with the last bucket is also the cause for the high

quality results of SW2G compared to EH and DW. Both these tech-

niques assume that half of the last bucket’s items lie in the range

of interest. On the other hand, wavelet-based techniques can more

accurately approximate the number of items that should be con-

sidered. By combining the powerful wavelet structure and the idea

of limiting the maximum size of an error-tree, SW2G manages to

present the best results in all cases.

Figure 6 illustrates the corresponding memory consumption. We

observe that as window size increases, we need to consume more

memory in order to preserve error guarantees. We see that DW is

the most expensive among the evaluated methods. Moreover, we

observe that COUNT queries use slightly less memory than SUM

ones and AVG queries need the largest amount of memory since we

have to maintain two structures for each algorithm: one that keeps

track of counts and one for sums. However, in all cases, memory

consumption is negligible. In the case ofW = 100M , the footprint

of the exact solution is 400 MB, while all approximation techniques

need only around a single kilobyte. Especially in the case of SW2G,

1 Kb is enough for achieving a relative error lower than 1% in all

demonstrated cases.

 0

 2

 4

 6

 8

 10

Uniform Zipf noaaTemp

M
e
m

 (
kb

)

Dataset

DW EH WVLT SW2G

Figure 7: Memory for ϵ = 0.01

In Figure 7, we present the memory EH and DW need in order

to achieve the same performance as SW2G whenW = 10M . For

this purpose, we set ϵ = 0.01 for both EH and DW and issue SUM

queries to all datasets. In the case of noaaTemp, we notice that DW

needs 7× and EH 4× the memory that SW2G requires.

Maintaining Wavelet Synopses for Sliding-Window Aggregates SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

As window size does not affect accuracy, in all subsequent ex-

periments we setW to 10M .

7.2 Streams of generic numerical data
In the case of positive numbers, we demonstrated that our approach

outperforms existing techniques. In this Section we examine the

applicability and efficiency of SW2G in more general cases, where

the stream also includes negative values. We experiment with SUM

queries in real and synthetic data. As synthetic distributions we use

uniform and zipf, where each data point di is drawn from range

[0,1000] and is converted to the corresponding negative value −di
with a probability of

1

2
. Since EH and DW do not work for negative

numbers, they are not considered for these experiments.

 0

 20

 40

 60

 80

 100

8 270 2k 30k

R
e
l
E
rr

o
r

%

Mem (Kb)

SW2G-Uni

SW2G-Zipf

WVLT-Uni

WVLT-Zipf

(a) Query length =W

 0

 20

 40

 60

 80

 100

 120

8 270 2k 30k

R
e
l
E
rr

o
r

%

Mem (Kb)

SW2G-Uni

SW2G-Zipf

WVLT-Uni

WVLT-Zipf

(b) Query length =W /8

Figure 8: Relative error in streams of arbitrary numerical
data.

First, we compute queries of lengthW andW /8 on the noaaTemp

and noaaSpeed datasets. As the value distribution of the NOAA

datasets does not present a great variance, it can be easily approx-

imated by wavelets. As such, both SW2G and WVLT achieved

relative errors less than 1% in both workloads.

In order to stress wavelet algorithms, we use the synthetic dis-

tributions we described. As each subsequent data point can vary

from −1000 to 1000 large discontinuities appear and the distribution

becomes hard to approximate.

Figure 8 illustrates relative error with respect to the amount of

memory we use for the synopsis. We observe that for both distri-

butions and query lengths, SW2G converges better than WVLT as

we increase memory. In the case where the query is applied over

the whole window, a budget size ofW /10 is enough to achieve an

error less than 10% both for the uniform and the zipfian data.

7.3 General range and point queries
We also evaluate SW2G and WVLT in other query types such as

aggregates over arbitrary ranges and point queries.

Table 2 shows the results for a workload of random AVG queries

where the limits of the queried ranges are selected at random. For

this experiment, we use a 200kb synopsis. Moreover, all datasets

contain both positive and negative values.

Depending on the data distribution, the performance of both

algorithms varies. However, SW2G consistently outperformsWVLT,

demonstrating this way our contribution to the wavelet structure

for tackling range queries.

Figure 9 demonstrates the results for point queries. The workload

we apply in this case is the following: EveryW time units, we ask for

the value of every item in the range [t −W ,t], where t is the current
time. Both algorithms achieve the same accuracy in all examined

Table 2: Relative error for AVG queries with random ranges

Dataset SW2G WVLT % Gain
uniform 27 126 78

zipf 53 61 13

noaaTemp 0.12 1.04 88

noaaSpeed 0.75 5.4 86

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F

Relative Error %

WVLT
SW2G

(a) noaaSpeed, B =W /100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F

Relative Error %

WVLT
SW2G

(b) noaaSpeed, B =W /10

Figure 9: CDF of relative error in point queries.
cases. Thus, while optimizing for range queries, the performance

of our algorithm in point queries is not compromised. As noticed

in Figure 9a, the distribution of the noaaSpeed dataset needs more

space thanW /100 in order to be accurately represented. However,

error drops as space budget is increased. Having availableW /10 of
memory leads to an error less than 20% for the 70% of the workload.

7.4 Distributed Streams
We examine the behavior of SW2G in a distributed environment

of multiple streams. In this scenario, we track range queries in the

average of the streams. Each stream maintains a local synopsis;

a coordinator node collects wavelet coefficients from all streams

and composes a global synopsis which is used to answer queries.

We compare SW2G with the distributed version of EH which is

described in [31]. For distributed exponential histograms we set an

error of ϵ = 0.1 both for the coordinator and all remote streams.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16

R
e
l
E
rr

o
r

%

Streams

SW2G-uniform
SW2G-normal

EH-uniform
EH-normal

(a) Error

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

C
o
m

m
u
n
ic

a
ti

o
n
 (

K
b
)

Streams

SW2G-uniform
SW2G-normal

EH-uniform
EH-normal

(b) Communication

Figure 10: Relative error and communication cost in dis-
tributed streams.

Figure 10 shows the real relative error and the communication

cost for synthetic data of uniform and normal distributions. We

present results for 2 up to 16 streams. For each setup we plot the av-

erage error of the issued workload and the total bytes sent over the

network each time the streams emit their local synopses. Although

EH are configured with ϵ = 0.1 and according to [31] are expected

to have an error up to 2ϵ +ϵ2 = 21%, they present a maximum error

of only 2%. SW2G performs even better and is almost exact in all

cases. Furthermore, the guarantees it provides do not exceed 9%.

As expected, communication increases linearly to the number of

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA Ioannis Mytilinis, Dimitrios Tsoumakos, and Nectarios Koziris

streams for both techniques. Moreover, EH present slightly better

communication cost than SW2G for the uniform distribution.

8 CONCLUSION
In this work we investigate the usability of wavelets for approxi-

mating streams under the sliding-window model. As wavelets have

been extensively studied for point queries, we design algorithms

carefully optimized for the case of range queries. Traditional tech-

niques like exponential histograms and deterministic waves are

restricted to track a single type of query and only workwith streams

of positive numbers. With the use of wavelets we opt for a more

generic solution where the same structure can be used to answer

both aggregates and point queries over arbitrary ranges and data.

Moreover, we show that our algorithm can be also applied to dis-

tributed environments where multiple streams produce information

and the computation of an aggregate is requested over their union.

Our experiments show that by yielding near precise results, the

proposed method outperforms other state-of-the-art techniques for

computing basic aggregates, while it preserves the quality of classic

wavelet algorithms for point queries.

9 ACKNOWLEDGMENT
This work has been supported by the European Commission in

terms of the H2020 E2Data Project (780245).

REFERENCES
[1] [n. d.]. Abstract Algebra for Scala. https://twitter.github.io/algebird/.

[2] [n. d.]. National Oceanic and Atmospheric Administration.

https://www1.ncdc.noaa.gov/pub/data/noaa/.

[3] Brain Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. 2003.

Maintaining variance and k-medians over data stream windows. In Proceedings
of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 234–243.

[4] Costas Busch and Srikanta Tirthapura. 2007. A deterministic algorithm for

summarizing asynchronous streams over a sliding window. In Annual Symposium
on Theoretical Aspects of Computer Science. Springer, 465–476.

[5] Don Carney, UÇğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon

Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2002.

Monitoring streams: a new class of data management applications. In Proceedings
of the 28th international conference on Very Large Data Bases. VLDB Endowment,

215–226.

[6] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim.

2001. Approximate query processing using wavelets. The VLDB JournalâĂŤThe
International Journal on Very Large Data Bases 10, 2-3 (2001), 199–223.

[7] Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. 2012. Contin-

uous monitoring of distributed data streams over a time-based sliding window.

Algorithmica 62, 3-4 (2012), 1088–1111.
[8] Edith Cohen and Martin Strauss. 2003. Maintaining time-decaying stream ag-

gregates. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 223–233.

[9] Graham Cormode, Minos Garofalakis, and Dimitris Sacharidis. 2006. Fast ap-

proximate wavelet tracking on streams. In International Conference on Extending
Database Technology. Springer, 4–22.

[10] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, and Anne Rogers. 2000. Han-

cock: a language for extracting signatures from data streams. In Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 9–17.

[11] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Main-

taining stream statistics over sliding windows. SIAM journal on computing 31, 6

(2002), 1794–1813.

[12] Sumit Ganguly, Minos Garofalakis, Rajeev Rastogi, and Krishan Sabnani. 2007.

Streaming algorithms for robust, real-time detection of ddos attacks. InDistributed
Computing Systems, 2007. ICDCS’07. 27th International Conference on. IEEE, 4–4.

[13] Minos Garofalakis and Phillip B Gibbons. 2002. Wavelet synopses with error

guarantees. In Proceedings of the 2002 ACM SIGMOD international conference on
Management of data. ACM, 476–487.

[14] Minos Garofalakis and Amit Kumar. 2004. Deterministic wavelet thresholding

for maximum-error metrics. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM, 166–176.

[15] Phillip B Gibbons and Srikanta Tirthapura. 2002. Distributed streams algorithms

for sliding windows. In Proceedings of the fourteenth annual ACM symposium on
Parallel algorithms and architectures. ACM, 63–72.

[16] Anna C Gilbert, Ioannis Kotidis, Shanmugavelayutham Muthukrishnan, and

Martin J Strauss. 2007. Method and apparatus for using wavelets to produce data

summaries. US Patent 7,296,014.

[17] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin Strauss. 2001.

Surfing wavelets on streams: One-pass summaries for approximate aggregate

queries. In Vldb, Vol. 1. 79–88.
[18] Anna CGilbert, Yannis Kotidis, S Muthukrishnan, andMartin J Strauss. 2003. One-

pass wavelet decompositions of data streams. IEEE Transactions on Knowledge &
Data Engineering 3 (2003), 541–554.

[19] Sudipto Guha. 2005. Space efficiency in synopsis construction algorithms. In

Proceedings of the 31st international conference on Very large data bases. VLDB
Endowment, 409–420.

[20] Sudipto Guha and Boulos Harb. 2005. Wavelet synopsis for data streams: minimiz-

ing non-euclidean error. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. ACM, 88–97.

[21] Sudipto Guha and Boulos Harb. 2008. Approximation algorithms for wavelet

transform coding of data streams. IEEE Transactions on Information Theory 54, 2

(2008), 811–830.

[22] Panagiotis Karras and Nikos Mamoulis. 2005. One-pass wavelet synopses for

maximum-error metrics. In Proceedings of the 31st international conference on
Very large data bases. VLDB Endowment, 421–432.

[23] Panagiotis Karras and Nikos Mamoulis. 2007. The Haar+ tree: a refined synopsis

data structure. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, 436–445.

[24] Panagiotis Karras, Dimitris Sacharidis, and Nikos Mamoulis. 2007. Exploiting

duality in summarization with deterministic guarantees. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 380–389.

[25] Tao Li, Qi Li, Shenghuo Zhu, and Mitsunori Ogihara. 2002. A survey on wavelet

applications in data mining. ACM SIGKDD Explorations Newsletter 4, 2 (2002),
49–68.

[26] Ken-Hao Liu, Wei-Guang Teng, and Ming-Syan Chen. 2010. Dynamic wavelet

synopses management over sliding windows in sensor networks. IEEE Transac-
tions on Knowledge and Data Engineering 22, 2 (2010), 193–206.

[27] Samuel Madden and Michael J Franklin. 2002. Fjording the stream: An architec-

ture for queries over streaming sensor data. InData Engineering, 2002. Proceedings.
18th International Conference on. IEEE, 555–566.

[28] Yossi Matias and Leon Portman. 2003.Workload-based wavelet synopses. Technical
Report. Technical report, Department of Computer Science, Tel Aviv University.

[29] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. 1998. Wavelet-based histograms

for selectivity estimation. In ACM SIGMoD Record, Vol. 27. ACM, 448–459.

[30] S Muthukrishnan. 2005. Subquadratic algorithms for workload-aware haar

wavelet synopses. In International Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science. Springer, 285–296.

[31] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. 2012.

Sketch-based querying of distributed sliding-window data streams. Proceedings
of the VLDB Endowment 5, 10 (2012), 992–1003.

[32] Lin Qiao, Divyakant Agrawal, and Amr El Abbadi. 2003. Supporting sliding

window queries for continuous data streams. In Scientific and Statistical Database
Management, 2003. 15th International Conference on. IEEE, 85–94.

[33] Nicoló Rivetti, Yann Busnel, and Achour Mostefaoui. 2015. Efficiently Sum-
marizing Distributed Data Streams over Sliding Windows. Ph.D. Dissertation.

LINA-University of Nantes; Centre de Recherche en Économie et Statistique;

Inria Rennes Bretagne Atlantique.

[34] Zubair Shah, Abdun Naser Mahmood, Zahir Tari, and Albert Y Zomaya. 2017.

A technique for efficient query estimation over distributed data streams. IEEE
Transactions on Parallel & Distributed Systems 10 (2017), 2770–2783.

[35] Eric J Stollnitz, Tony D DeRose, and David H Salesin. 1996. Wavelets for computer
graphics: theory and applications. Morgan Kaufmann.

[36] Jeffrey Scott Vitter and Min Wang. 1999. Approximate computation of multi-

dimensional aggregates of sparse data using wavelets. In Acm Sigmod Record,
Vol. 28. ACM, 193–204.

[37] Bojian Xu, Srikanta Tirthapura, and Costas Busch. 2008. Sketching asynchronous

data streams over sliding windows. Distributed Computing 20, 5 (2008), 359–374.

[38] Yong Yao, Johannes Gehrke, et al. 2003. Query Processing in Sensor Networks..

In Cidr. 233–244.
[39] Yunyue Zhu and Dennis Shasha. 2002. StatStream: Statistical Monitoring of

Thousands of Data Streams in Real Time** Work supported in part by US NSF

grants IIS-9988345 and N2010: 0115586.. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 358–369.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions and Problem Statement
	3.2 Wavelets

	4 Dynamic synopsis maintenance
	5 Query Answering
	5.1 Discussion

	6 Distributed Wavelets For Streams
	7 Experimental Evaluation
	7.1 Positive Integers
	7.2 Streams of generic numerical data
	7.3 General range and point queries
	7.4 Distributed Streams

	8 Conclusion
	9 ACKNOWLEDGMENT
	References

