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ABSTRACT
Efficient RDF data management systems are central to the
vision of the Semantic Web. The enormous increase in both
user and machine generated content dictates for scalable so-
lutions in triple data stores. Current systems manage to
decentralize some or all the stages of RDF data manage-
ment, scaling to arbitrarily large numbers of triples. Yet,
these systems prove highly inflexible in adjusting their be-
havior relative to the query in hand. Queries over triple data
include multiple joins with varying degrees of selectivity and
cost. In many cases, a join performed on a single centralized
computer node is highly preferable. Thus, both informed
query planning and adaptive join execution are necessary to
gain optimal performance in both selective and non selective
queries. Towards that direction, we describe H2RDF+, an
RDF store that efficiently performs distributed joins over a
multiple index scheme. H2RDF+ materializes 6 RDF in-
dexes and detailed statistics using HBase. In this work, we
emphasize on our novel, scalable and efficient MapReduce
indexing process that allows H2RDF+ to handle arbitrar-
ily large RDF datasets. Aggressive byte-level compression
is also extensively used to reduce the storage space require-
ments of the system. H2RDF+ can also adaptively process
both complex and selective queries by adaptively choosing
the amount of resources allocated for each join, based on
join complexity estimated through index statistics.

1. INTRODUCTION
The Resource Description Framework (RDF) [5] has been

proposed for information representation and exchange in the
context of the Semantic Web [6]. The Semantic Web vision
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realization requires efficient RDF data management systems.
Several centralized RDF triple stores (e.g., [12, 15, 7], etc)
have been proposed, with subsequent research focusing on
creating efficient indexing structures for query processing
[8, 33, 24]. Such approaches materialize a different num-
ber of index combinations that allow for significantly re-
duced response times. However, centralized solutions are
still vulnerable to the growth of the data size [17, 19, 31].
In response, some of the aforementioned systems proposed
distributed solutions (e.g., Virtuoso Cluster Edition, Jena
Clustered TDB), which, together with new approaches (e.g.,
[18, 22]) aim to bring forth the desired scalability.

It is evident that, when the data size keeps increasing,
distributed approaches can achieve better results. Never-
theless, in order to avoid bottlenecks and fully harness a
cluster’s power, the distribution must be performed through-
out the data management life-cycle: from RDF indexing up
till SPARQL query answering. Balance between distributed
and centralized processing is required in order to achieve
the desired scalability. Indeed, for queries with small input
and high selectivity, centralized processing is much more ef-
ficient than distributed processing. Yet, current execution
engines do not flexibly adjust their behavior with respect to
the query in hand. This entails two important aspects: 1)
adjusting the way of performing joins with respect to join’s
complexity, and 2) utilizing only the amount of resources re-
quired for each join. Scalability has to be achieved not only
with respect to data size, but also with respect to query
complexity. Many RDF queries require a large number of
joins over multiple variables. Increasing the number of joins
should not lead to an exponential growth of response times
due to suboptimal join execution order and unnecessary data
transfers. Moreover, as queries are not executed in isolation
but concurrently by multiple users over a cluster, resource
allotment should be fine-grained and match query complex-
ity to maximize query throughput and cluster utilization.

We argue that, in order to gain best-case performance
with queries of varying complexity and size and take full
advantage of cluster resources, an adaptive, elastic approach
is called for. In this paper we present H2RDF+, a fully-



distributed, open-source 1 RDF datastore with full SPARQL
querying functionality. Its strength lies in its adaptive query
planner and execution engine that adjusts the join execution
order, the type of execution (using what join algorithm), the
distribution (single- or many-machine via MapReduce) and
the amount of resources (map-reduce tasks or threads) for
each query. The aforementioned decisions are taken on a per
join basis and assisted by a detailed cost-model that analyzes
the running time of the join algorithms based on their input,
execution type and number of committed resources [26]. The
main contributions of this paper are as follows:
• We devise an indexing scheme for storing RDF data im-

plemented in HBase [3], an open-source implementation
of Bigtable [13], which allows bulk-import of MapReduce
[14] jobs to load and index large RDF data. We thor-
oughly present our highly-efficient and scalable bulk in-
dexing procedure which is able to create all 6 permuta-
tions of RDF indexes along with 12 aggregated indexes
used for statistics. Our system is able to index and query
RDF datasets with more than 14 billion triples using a
cluster of commodity nodes.
• We study the adaptivity and elasticity properties of our

query execution engine. Our system decides, on the fly,
on the exact amount of resources allocated for each join.
If the join is performed over multiple nodes, this corre-
sponds to the number of mapper/reducer tasks. In the
centralized execution case, it regulates the number of de-
ployed threads. In both cases, our system maximizes the
inherent parallelism found in our join algorithms.

2. RELATED WORK
The question of how to efficiently store and query RDF

data has shaped an active research area. Initially, RDBMs
were used as RDF triple stores, directly storing all triples
in a single table. This approach presented serious scala-
bility deficiencies, which Abadi et al. attempted to rectify
[8], proposing to create a separate table for each predicate.
The rationale behind this approach is that, as the number
of distinct predicates is usually small, the maintenance cost
of this approach is not prohibitive. However, this scheme
is still unsuitable for queries with unbound predicate, and
its performance can deteriorate as input data grows [33].
Thereafter, research has made significant efforts towards ef-
ficient RDF indexing and querying. We distinguish exist-
ing systems in two categories: centralized engines, and dis-
tributed solutions that utilize a cluster for managing large
RDF datasets. While distributed approaches have great per-
formance on non selective queries, they are outperformed in
selective queries by efficient centralized systems.

2.1 Centralized Systems
Hexastore [33] is one of the most prominent RDF index-

ing solutions. It materializes six different indices, one for
each possible permutation of subject-predicate-object values;
these permutations are spo, pso, pos, ops, osp and sop. For
instance, the spo index contains a list of predicates for each
subject, while each predicate p in the list points to a table
that contains all objects associated with s by p. The avail-
ability of these indices allows for the retrieval of any triple
query pattern at minimal cost. The existence of all possible
orderings of triples also enables the extensive use of efficient
merge joins. A similar approach is followed in RDF-3X [24,

1http://h2rdf.googlecode.com

25] along with query optimization strategies. RDF-3X em-
ploys six lexicographic indices, similar in spirit to the ones
in Hexastore, as well as additional aggregated indices that
collect statistical information for pairs (instead of triples)
of entities and for alone-standing entities, amounting to a
total of 15 indices. RDF-3X is used as the state-of-the-art
prototype centralized system for querying RDF data.

BitMat [10], proposed a new RDF indexing mechanism
that uses the notion of a 3-dimensional 〈subject, predicate,
object〉 bit matrix. Each matrix element is a bit denoting the
presence or absence of the corresponding triple. This 3-d bit
matrix is flattened to 2-d matrices creating multiple indices
for all possible combinations of subject-predicate-object. A
novel query execution approach is also employed. It uses effi-
cient vector-matrix operations to perform a semi-join based,
query execution. However, this approach is effective only in
a main-memory environment and due to its semi-join nature
cannot handle complex graph query patterns that contain
cycles.

Other frequently-used, efficient centralized systems include
Virtuoso [15], Jena [12] and OWLIM [23]. Still, all aforemen-
tioned approaches run on a single machine, limiting their
storage and processing capacity.

2.2 Distributed Systems
The vast increase of publicly available RDF data has di-

rected research towards distributed RDF data management
systems. A first attempt in this direction, 4store [18], dis-
tributes a single POS index over the nodes of a cluster, and
employs distributed join algorithms to execute SRARQL
queries. However, apart from the deficiency ensuing from
having a single index, 4store does not adapt its performance
for multiple join queries of various selectivity.

An elementary attempt to utilize HBase and MapReduce
for RDF data management was made in [32]. However, the
work in [32] does not examine the question of adapting the
execution strategy to a centralized or distributed one de-
pending on the nature of the workload. In addition, the
system is not aware of query pattern selectivity and thus
relies only on joins that process large amounts of data even
for selective queries. Furthermore, this approach does not
exploit the power of MapReduce to perform multi-way joins
and its experimental study is limited to small datasets.

Subsequently, [22] proposed HadoopRDF, a Hadoop-based
RDF storage system; HadoopRDF uses HDFS files named
after predicate values to partition the input RDF data, thereby
creating a POS index; this is not a fully functional POS in-
dex, as it can only retrieve subject-object combinations for a
given predicate, but not, e.g., subjects for a given predicate-
object combination. HadoopRDF performs SPARQL joins
in the MapReduce framework, employing an algorithm that
greedily reduces the total number of remaining MapReduce
joins at each step. Remarkably, this greedy planner does
not take into consideration the join’s selectivity. Finally,
joins are executed only with MapReduce jobs inducing large
overheads for selective queries.

Two recent works propose NoSQL indexing for RDF data
[29, 30]. Both of them use a similar NoSQL indexing scheme
stored in HBase[3] for the first and in Accumulo[1] for the
later. In [29], MAPSIN, a selectivity aware MapReduce join
algorithm is proposed to handle SPARQL joins. This algo-
rithm reads input only from the selective pattern of the join
and uses HBase API in order to evaluate all remaining pat-



terns. In [30], a centralized join approach is implemented
using Accumulo’s batch scanners. Our system uses both se-
lectivity aware MapReduce and centralized join algorithms.
As we show in our experimental evaluation, no single algo-
rithm is better for all kinds of joins. Thus, a decision module
is required in order to achieve best case performance for all
types of joins.

H2RDF [27] uses a three-index scheme and depends on
the Partial Input Hash-join. This algorithm exploits HBase
indexing and checks whether the join contains small input
patterns. If this is the case, only those are read from the
indexes during the map phase. The remaining patterns are
joined using get operations on the reduce phase of the join.
H2RDF also uses adaptive centralized and distributed exe-
cution. The main differences with H2RDF+, can be found
in the join algorithms, the number of maintained indexes
(3 vs. 6), the more detailed statistics, the type and size of
IDs and the result grouping used in H2RDF+ during query
execution [26]. Furthermore, H2RDF offers adaptivity and
elasticity properties [9]. It adaptively chooses between dis-
tributed and centralized execution as well as the amount
of computing resources dedicated for the join processing. It
also allows the elastic allocation and deallocation of comput-
ing resources according to the query workload. As shown in
[9] H2RDF can scale its computing resources to adapt to the
SPARQL query throughput required by the given workload.

An alternative proposal is presented by Huang et al. [21];
this method starts out by partitioning the RDF graph into
distinct subgraphs, each stored in a single node running a
local RDF-3X instance. Moreover, in a replication scheme,
each node keeps information on the graph contents within n
hops from the contents it owns; this provision allows for un-
obstructed parallel processing of SPARQL queries satisfying
an n hop guarantee. In case this guarantee is not satisfied,
Hadoop is invoked for distributed join processing. The pro-
posed system suffers from the following drawbacks:

• It utilizes all cluster resources for every query; thus, even
highly selective queries are executed on the entire cluster,
although a small subset may contain all the relevant data.
• Very slow import: apart from the centralized graph pro-

cessing it also needs a large amount of time to transfer
data to the corresponding nodes, and load them in indi-
vidual RDF-3X instances.
• Last, the replication to satisfy the n-hop guarantee amounts

to replicating data of size exponential in n.

Zeng et al. [34] introduce Trinity.RDF a distributed, in-
memory RDF system. They propose a query execution
model based on graph exploration that can be viewed as
a sequence of semi-joins similar to the approach followed in
BitMat. The main drawback of this system is that its perfor-
mance is bound by the main memory capacity of the cluster,
as the whole set of triples needs to be loaded in main mem-
ory. Yet, this is not the most scalable approach, especially
when a cluster is created by commodity nodes. Moreover,
it is the case that local semi-join results are gathered on a
central node responsible to produce the final results. This
server can be the bottleneck of the query execution when:
1) Handling query graphs that contain cycles. The semi-join
query execution engine employed cannot fully reduce the re-
sult size for these graphs [11], thus overloading the last step
of the execution. 2) The query output is really large the
last server will need to generate and write the whole output.
This process is limited by the sequential iteration over the

result set and the large write I/O requirements.

3. SYSTEM ARCHITECTURE
Figure 1 presents an overview of the H2RDF+ [26, 28]

architecture. The system uses HBase [3] as a distributed in-
dexing substrate for large triple datasets. RDF data is im-
ported in HBase through a bulk import process. Users are
able to pose SPARQL queries parsed by a Jena [12] parser
that checks the query syntax and creates the query graph.
Our Join Planner and Executor modules choose the join
that needs to be executed, the algorithm to be used, the
method of execution (centralized or distributed) and the re-
quired resources on a per-join basis.
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Figure 1: H2RDF+ architecture

In this section, we explain the decisions made about the
number and type of indexes used in our system. Although
most state-of-the-art centralized RDF stores use combina-
tions of Hexastore-like indexes, distributed approaches have
not yet taken advantage of this technique to offer increased
scalability and fast querying. Maintaining all six permuta-
tions of RDF elements, namely spo, pso, pos, ops, osp and
sop, offers the following advantages: (1) All SPARQL triple
query patterns can be answered efficiently using a single in-
dex scan on the corresponding index. For example, a triple
pattern with bound subject and variable predicate/object
can be answered using a range scan on the spo or the sop
index. (2) Merge joins that exploit the precomputed order-
ings can be extensively employed. As stated in [33], the
existence of all six indexes guarantees that every join be-
tween triple patterns can be done using efficient merge joins.
More expensive join algorithms are needed only when join-
ing unordered intermediate results. In the H2RDF+ case,
we maintain both of these properties while moving towards a
distributed and scalable environment. We move from local
disk B+-trees to distributed key-value tables (HBase) and
from centralized to distributed, MapReduce-based, join pro-
cessing. Our system is available as an open-source project
and offers RDF data indexing and SPARQL querying func-
tionality as well as a user friendly web-interface.

4. INDEXING RDF DATA
H2RDF+[26] materializes all six permutations of subject-

predicate-object values of RDF triples; these permutations
are spo, pso, pos, ops, osp and sop. To be able to provide
efficient access to those indexes in a distributed environment
we store them using HBase tables and thus achieve the de-
sired index scan and search capabilities. Compared to the



three index approach followed in H2RDF, the maintenance
of all lexicographic RDF indexes allows for: 1) the replace-
ment of H2RDF’s Hash joins with efficient, scalable Merge
joins for all joins between indexed triple queries, 2)the use of
Sort-Merge joins in cases of joins between both intermediate
non-ordered results and RDF index scans. In both cases the
network overhead of shuffling data introduced in Hash joins
is minimized.

H2RDF+ also features a detailed join cost model that is
required in order to estimate the execution cost of different
joins and decide the amount of computing resources that
need to be dedicated for the processing of each join. To fa-
cilitate the join cost estimation aggregated index statistics
are also materialized and can be used to estimate triple pat-
tern selectivity as well as join output size and join cost. We
introduce two categories of aggregated indexes:

• With two out of the three triple elements bound, namely
sp o, ps o, po s, op s, os p and so p. For example, the
sp o table contains a set of (subject, predicate, count)
records, where the count is the number of triples that
contain the respective combination of subject, predicate.
• With one bound element, namely s po, p so, p os, o ps,

o sp and s op. For example, the p so index contains a set
of (predicate, count, average) key-values, where count is
the number of distinct subjects related to this predicate
and average is the average number of objects related to
each subject.

4.1 Bulk RDF data indexing using MapReduce
In this section, we thoroughly describe our MapReduce

bulk indexing process that can handle the indexing of mas-
sive RDF datasets. It consists of four highly scalable Map-
Reduce jobs that:
• Translate RDF literals to integer IDs with respect to the

literal’s occurrence frequency in the dataset. A very fre-
quent predicate will get an ID with value close to zero.
Both the String-ID and the ID-String dictionaries are stored
in separate HBase tables. The frequency aware ID map-
ping in conjunction with our variable length encoding
scheme for writing IDs inside our indexes achieves great
reductions in storage space requirements.
• Generate and load HBase tables for all 6 RDF triple in-

dexes along with their respective aggregated statistics.
In order to handle web scale RDF datasets our bulk indexing
process needs to minimize the number of I/O and network
operations and avoid unnecessary iterations over the RDF
dataset. It also avoids the execution of HBase API calls for
each tuple insertion; instead, bulk import MapReduce jobs
directly create HFiles (the HBase file format) which are then
loaded directly in HBase tables.

4.1.1 First MapReduce job
In the first MapReduce job each mapper reads one block

of RDF triples and generates a sorted-map that contains
all the unique string labels found in the file followed by a
counter that represents the number of times each string label
was found in the respective RDF block. At the cleanup
phase of each mapper this sorted-map is used to produce
the following information:

• For each RDF block, a file that contains all its distinct
string labels is created. This file will be used in subsequent
steps in order to efficiently retrieve the relevant IDs that
are needed to translate all the triples in the block.

• Each mapper emits all the wordcounts of the sorted-map
in order for the reducers to produce a global string label
wordcount.
• We also use a sampling rate in order to sample the in-

put triples and generate balanced partitions on both the
distinct string label space and the indexing space (for all
possible triple orderings). Concerning the distinct string
label space for each sampled triple the mappers emit three
special key-values one for each of its string labels(s, p, o).
All the sample key-values are sent to a special reducer
that is responsible for generating a load balanced parti-
tioning of the string label space. At this moment, we
cannot yet create the partitioning of the indexing space
because we require the translated IDs that are not yet de-
cided. Therefore, we just generate for each RDF block a
sample file that contains its sampled triples.

The first job issues two types of reducers: 1)the first re-
ducer which handles the sampled key-values and generates
the string-label partition and 2)the wordcount reducers that
sum up all local counters for each distinct label. Each word-
count reducer maintains a sorted list containing its word-
count key-values sorted by their counts. The reducers write
their output at the cleanup phase and thus generate blocks
of locally ordered, according to the count, key-values.

4.1.2 Second MapReduce job
The second job is responsible for giving globally unique

and frequency aware IDs to all distinct string labels present
in the dataset. The mappers of this job read the locally or-
dered, according to the count, wordcount output produced
in the previous step. In order to avoid globally sorting all
the distinct string labels according to their frequency count
we assign IDs using a loose global order that requires no
more communication information. The first MapReduce job
utilized a HashPartitioner to split the labels between the
reducers and therefore we can assume, with high probabil-
ity, that all output blocks will contain labels from all the
frequent and non-frequent classes of string labels. Taking
advantage of this property we assign IDs using the following
formula:

ID =

{
locID ∗R + redID, locID < min

offset[redID] + locID −min, locID >= min

where:
ID : is the global ID assigned to a label
locID : is the local ID inside each block that is assigned
according to the local order of counts
min : is the minimum number of key-values produced by a
wordcount reducer in the first MapReduce job
redID : is the ID of the reducer that produced the respec-
tive output block
offset[] : all reducer IDs will be interleaved until the mini-
mum number of keys is reached. In order to avoid introduc-
ing holes to the assigned ID space we then start assigning
contiguous ID regions to each reducer. This is achieved using
the offset table that contains the first ID of the respective
contiguous region. The offset is computed using the values
numKeys[redID]−min for each reducer.

Both the min number of output key-values and the offset
table can be easily computed by the output of the previous
job. We can observe that this formula interleaves IDs be-
tween the wordcount blocks, generates a loose order of as-



signed global IDs and introduces no holes to the assigned ID
space. We note here that by generating this loose ordering
we avoid resorting and reshuffling the data and introducing
unnecessary overhead.

Using the above formula, the mappers of the second job
can assign independently the global IDs for each string la-
bel. For each string label the mappers emit two key-values
in order to create both the string-to-ID and ID-to-string
HBase dictionaries. This job also takes as input the distinct
string label blocks generated in the first step. The mappers
that read those files emit for each distinct label a key-value
containing as key the label and as value the block ID.

To handle the two indexing spaces we use two separate
partitioners for this job. The first partitioner is the string
label partitioner computed in the previous step. The sec-
ond partitioner handles the ID space and just splits it in
continuous regions of a certain size. The load balancing of
the ID space partitioner is achieved due to the fact that we
used a contiguous ID space that contains no holes. We use
two types of reducers for this job. The ID space reducers
simply create the respective HFiles and directly load them
to HBase tables. The string label reducers both generate
the respective HFiles and also a file that contains for each
string-ID pair a list of blocks that this is required. The sec-
ond file is used in the following job to translate the distinct
string label blocks.

4.1.3 Third MapReduce job
The third job handles the translation of the distinct string

label blocks. It utilizes the files generated in the previous
job. We assign one reducer to each RDF triple block. The
job reads the files that contain for each string-ID pair a
list of blocks that this is required and generates for each
a key-value with key the block ID and value the string-ID
mapping. Each reducer gets all the translations of an RDF
triple block and just outputs them to an HDFS file.

4.1.4 Fourth MapReduce job
The last job parses the RDF triples again. First, each

mapper reads the translation file for the corresponding RDF
block and loads it into a memory hash map. It then parses
the RDF triples, translates the string values and emits key-
values for all 6 different orderings of the RDF triple. This
job also requires the computation of a load balanced total
order partitioner for the hexastore indexing space. Before
starting the job, we translate the sample triple files created
in the first job using our HBase dictionaries and generate a
load-balanced partitioner for the indexing space. Each re-
ducer of this job takes as input a sorted range partition of
the indexing space and, while iterating over it, computes
the aggregated statistics described above and creates the
corresponding HFiles for both the primary and the aggre-
gated indexes. The statistics maintained in the aggregated
indexes, described in the previous section, can be easily com-
puted while iterating over the sorted indexes and thus are
computed without introducing additional network or I/O
overhead.

4.1.5 Indexing storage space
H2RDF+ utilizes an aggressive compression scheme for

storing its indexes using: 1)variable length encoding for
writing IDs in conjunction with frequency based String-ID
mapping, 2)Google Snappy compression [2], also known as

“Zippy”compression to further compress the resulting HBase
tables. Our variable length encoding scheme is presented in
Table 1 and can support IDs with up to 8 byte length.

Positive Prefix Negative Prefix Total Bytes ID Bits
10****** 01****** 1 6+0=6
110***** 001***** 2 5+8=13
1110**** 0001**** 3 4+16=20
11110*** 00001*** 4 3+24=27
111110** 000001** 5 2+32=34
11111100 00000011 6 0+40=40
11111101 00000010 7 0+48=48
11111110 00000001 8 0+56=56
11111111 00000000 9 0+64=64

Table 1: Variable length encoding scheme

Our encoding scheme uses variable length prefixes in order
to encode the length of each ID. The specific selection of
prefixes achieves the following objectives:

• Maintains the byte ordering property of the encoded IDs.
This means that a raw byte comparator would order the
variable length IDs in the same order as a value compara-
tor. This property is really important because our indexes
depend heavily on byte order.
• The variable length prefixes allow more IDs to be encoded

with less bytes. A static prefix definition would require at
least 5 bits to encode all the different cases. This means
that only 23=8 IDs could be encoded using only one byte.
However we can encode 26=64 IDs using only one byte.
The same is true for all IDs that can be encoded with less
than 5 bytes.

5. ADAPTIVE QUERY EXECUTION
H2RDF+ implements the well known multi-way Merge

join and multi-way Sort-Merge join algorithms, utilizing scal-
able MapReduce jobs executed over our distributed HBase
indexes. The major contribution here is the use of the HBase
indexes to generate load balanced total ordered partitions
for the distributed execution of joins. The notion of largest
query triple scan is introduced(i.e., the query scan that spans
the most HBase regions). We use its HBase partitioning as
a total order partition for our join. Furthermore, Merge
joins are executed using Map-only job that process locally
the HBase regions of the largest scan. Both the join exe-
cution methods and their join cost model used in H2RDF+
are thoroughly presented in [26]. In this section, we focus
on the resource adaptivity properties offered by our system.
H2RDF+ is able to decide, on the fly, on the number of
resources required to process each join in hand. In effect,
it is able to automatically estimate the amount of required
resources, be they threads (centralized case) or map/reduce
tasks (distributed case), on a per-join basis. The adaptive
decisions for each join are done during runtime and they
scale according to the estimation of the join cost.

For small join costs we use centralized execution and scale
the resources using a different number of concurrent threads.
Both our merge and sort-merge join algorithms can be exe-
cuted in parallel by partitioning the join variable key space.
Utilizing the statistics held in our aggregated indexes we can
estimate the number of join variable bindings contained in
each of the joined relations. We use the estimation of the
maximum number of bindings contained in a join relation
to decide at runtime how many threads will be launched.



We then greedily split the join variable key space and assign
work to different execution threads. We launch a thread only
if it is estimated to process more than a minimum amount of
input bindings. We also pose a limit to the number of con-
current threads in order to avoid costly context switching
between them.

Larger joins are executed using distributed MapReduce
jobs. The resources required for the MapReduce execution
also scale with the join cost. The resources available on a
MapReduce cluster are the number of concurrent mappers
and reducers. Assuming these are set for a specific cluster,
we want to occupy only the number of mappers and reduc-
ers required for the execution of each join. The cost of a
MapReduce join is proportional to its input data. As dis-
cussed in [26], input data are split in HBase regions, each
region having a configured size. In our implementation, ev-
ery map task handles one HBase region and thus the region
size is configured to contain the amount of data required to
amortize the initialization overhead of launching the task.
If the region had less data, the initialization overhead of a
map task would be greater than the actual processing of the
data. Therefore, the number of resources occupied is pro-
portional to the size of input and, by extension, to the join
cost. If the map tasks launched by the join are less than the
cluster’s concurrent mappers (which we anticipate to be the
case for less costly joins on medium to large size clusters),
the remaining resources will be proportionally allotted to
other users’ joins. In the opposite case, all the mapper slots
and the cluster resources will be occupied.

6. EXPERIMENTS
In this section we present a performance evaluation of the

H2RDF+ system.
Cluster configuration: Our experimental setup consists
of an OpenStack private cluster of 6 VM containers. Each
container has a 2×6-core Intel Xeon R©CPUs at 2.67GHz, 48
GB of RAM and two 2TB disks setup with RAID 0. Worker
VMs feature a 2-virtual core processor, 4GB of RAM and
300GB of storage space, allowing the cluster to support a
total of 36 VMs. The clusters we use for our evaluation
consist of variable numbers of VMs (10 to 35) plus a single
VM in the role of the HDFS, MapReduce and HBase mas-
ter. Each worker VM runs 2 mappers and 2 reducers, each
consuming 512MB of RAM. We utilized Hadoop v1.1.2 and
HBase v0.94.5 respectively.

Compared Systems: We compare the performance of
H2RDF+ against three state-of-the-art RDF stores: RDF-
3X [24], HadoopRDF [22] as well as the first version of our
distributed system H2RDF [27]. We evaluate version 0.3.7
of the centralized RDF-3X system. HadoopRDF was built
from source using SVN rev. 158 from the project repository.

Data Sets Used: To test the system under web-scale, re-
alistic conditions we utilize two datasets. The Yago2 dataset
[20] consists of real data gathered from various resources
such as Wikipedia, WordNet, GeoNames, etc, and contains
more than 120 million triples. This dataset is relatively
small; we use it to show that distributed query execution
can perform better even for small datasets when large non-
selective queries are required. The LUBM dataset generator
[16] creates datasets with academic domain information, en-
abling a variable number of triples by controlling the number
of university entities. By varying this parameter between 1K
to 100K, we create datasets ranging from 1.4 million (25GB)

to 13.8 billion triples (2.5TB). This dataset is widely used
to compare performance of triple stores especially when ar-
bitrarily large datasets are required. Lehigh university has
also published a suite of test queries [4] that offer a good
mixture of SPARQL queries.

6.1 Indexing storage space requirements
As mentioned in section 4, H2RDF+ uses aggressive com-

pression to reduce the storage space required for storing all
6 hexastore indexes along with aggregated statistics indexes
in HBase. Table 2 registers the storage requirements of dif-
ferent RDF storage systems for the LUBM [16] and Yago2
[20] datasets.

Dataset Raw Size RDF-3X H2RDF H2RDF+
H2RDF+
(Snappy)

LUBM1k 28 GB 9 GB 25 GB 27 GB 7 GB
LUBM10k 276 GB 77 GB 214 GB 241 GB 62 GB
LUBM20k 549 GB 135 GB 529 GB 545 GB 121 GB
Yago2 26 GB 12 GB 33 GB 35 GB 10 GB

Table 2: Comparison of storage requirements

The “Raw Size” column contains the size of the dataset
serialized using the N-Triples format. Although storing 6
rather than 3 indexes and more detailed statistics, H2RDF+
manages to have smaller space requirements than its previ-
ous version due to: 1) the smaller ID values, as H2RDF
uses the 8-byte MD5-hash of the string values as ID, 2) the
byte-level variable length encoding in conjunction with the
frequency-aware ID mapping, 3) the block level Snappy com-
pression. RDF-3X also offers a highly compressed storage
scheme due to its gap compression [24] (stores only the dif-
ference between subsequent triples in the index). The dif-
ference between the storage requirements of RDF-3X and
H2RDF+ results mainly from the frequency-aware ID map-
ping and the block-level Snappy compression used in H2RDF+.

6.2 Bulk RDF indexing
In this section we evaluate the performance of the H2RDF+

bulk indexing process. As described in section 4 H2RDF+
indexing process is consisted of 4 MapReduce jobs that ma-
terialize all 6 combinations of RDF indexes. To test the effi-
ciency of our indexing method we compare it using RDF-3X,
HadoopRDF as well as the first version of our distributed
system H2RDF.

We first test the scalability properties of all the compared
systems regarding the RDF dataset size. To do so we uti-
lize the LUBM dataset generator that can generate RDF
datasets with variable size. We import LUBM datasets con-
taining 1K to 20K universities, i.e., 0.14 to 2.7 billion triples
(28 to 549GB of data respectively). H2RDF+, H2RDF and
HadoopRDF were executed using a cluster of 25 worker and
1 master nodes, while RDF-3X uses a 4×16-Core server with
128 GB RAM and 1TB disk. Total import times are pre-
sented in Figure 2. This is the time needed for all systems
to load the full dataset according to their indexing scheme.

RDF-3X, being a centralized system, parses all triples se-
quentially in order to create its indexes. It doesn’t exploit
the parallelism capabilities offered by the modern multicore
architecture of CPUs. It also reads the input data several
times in order to generate the various different orderings of
the triples. This iterative scan of input data results in an
increasing import complexity. As we can see in Figure 2,
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RDF-3X introduces the slowest, among the compared sys-
tems, import times for loading RDF datasets.

HadoopRDF needs to execute four different MapReduce
jobs which take as input the whole dataset. This means
that it needs to scan the data four times resulting in low
import performance. Additionally, some of these jobs do not
equally partition the reduce input data and thus overload
some reducers while leaving others idle. The load balance
between the available computing resources is one of the most
important properties that need to be handled in order for
distributed systems to offer good scalability properties. We
can observe that HadoopRDF, while materializing only one
ordering of the triples in raw HDFS files, requires 2× more
time than H2RDF+ for loading the LUBM20k dataset.

We also compare H2RDF+ to our previous H2RDF sys-
tem. H2RDF used 2 MapReduce jobs to materialize 3 of the
6 RDF triple indexes. The first job was a sampling job that
created a load balanced partitioning of the indexing space,
while the second one used the partitioning to generate and
load the 3 materialized HBase RDF indexes. In Figure 2 we
can observe that H2RDF+ manages to import 3 additional
indexes and keep more detailed statistics than H2RDF at a
mere 10-20% overhead. This is mainly attributed to:

• Our optimized indexing procedure that minimizes the times
that the raw dataset is read. While requiring 4 Map-
Reduce jobs to import the dataset, only 2 of them read
the raw dataset while the rest process output files that
are quite smaller than the original dataset. This greatly
reduces the I/O time needed for executing our import pro-
cess.
• The aggressive compression used in all the indexing steps.

We use our variable length encoding to write all interme-
diate and final results of our indexing process and thus
save both storage space and I/O time.
• The extensive use of sampling to generate load balanced

partitions for all our MapReduce computation steps.

Another important point is the indexing scalability to the
number of available computing resources. We import the
LUBM10k dataset (1.3 billion triples) using clusters with
different number of worker nodes. We use clusters with
10, 15, 20, 25, 30 worker nodes. The corresponding results
are presented in Figure 3. We can observe that H2RDF+
manages to maintain the scalability properties of H2RDF
while introducing a more complex RDF indexing process.
Using the MapReduce framework we can gain almost linear
speedup when we increase the number of worker nodes: At
10 workers we achieve an import speed of 49 Ktriples/sec,
while using 30 nodes we almost triple the import speed at

142 Ktriples/sec. We also observe that H2RDF+ introduces
only a small time overhead (10-20%) compared to H2RDF
in all tests.

6.3 Join Planner and Elastic Execution
In this section, we compare the performance of our join al-

gorithms and test our planner’s decisions over different input
queries. Moreover, we demonstrate the adaptive execution
properties of our system. In order to test the scalability of
our algorithms we generate the following benchmark setup:
We use a cluster of 25 VMs and the ud:takesCourse prop-
erty from the LUBM20k dataset which contains 515 mil-
lion triples that describe connections between students and
courses. We randomly sample the corresponding data us-
ing variable sampling rates and store the sampled triples
in a new HBase index. Figure 4 shows the ammount of
computing resources occupied by our join algorithms to ex-
ecute a merge join of the full ud:takesCourse relation of
the LUBM1k dataset(25 million triples) with the sampled
ones using different join algorithms. We range the sampled
triples from 10 to 500 million.

Our merge join algorithm can be executed either in a cen-
tralized or a distributed environment. In Figure 4 we depict
the number of dedicated resources for every join execution.
We can see the amount of resources committed to the join
scale proportional to the join cost. For centralized joins, the
planner scales the number of concurrent threads while for
MapReduce joins it scales the number of mappers. For our
cluster configuration, threads were launched only when they
had a minimum amount of 100 binding to process. We also
set the maximum amount of concurrent threads to 60.

Regarding distributed joins our join planner can decide
on the fly for the amount of map tasks required to execute
the join according to its cost. This is done by finding the
maximum join input scan as mentioned in section 5, i.e.
the join relation scan that spans the most HBase regions.
When finding the maximum scan, one map task is assigned
to each of its regions. As the size of the sampled triples range
from 10 to 500 million triples the size of the largest scan
varies. When the sampled triples are less than the 25 million
of the ud:takesCourse relation the maximum scan is the
ud:takesCourse relation of LUBM1k that spans 4 regions
and thus 4 map tasks are launched. When the sampled
triples get bigger they become the larger scan and then on
the utilized map tasks scale proportionally to their size.

7. CONCLUSIONS
In this paper we presented H2RDF+, a fully distributed

RDF store capable of storing and querying arbitrarily large



amounts of triples. We thoroughly presented the indexing
MapReduce procedure used to materialize all 6 permuta-
tions of RDF triples using HBase tables. Our experiments
show that the presented indexing process is scalable with
respect to both the dataset size and the number of available
computing resources. Our system is able to load large scale
RDF datasets using a cluster of computing resources and
achieves an indexing throughput of 142 Ktriples/sec while
utilizing a cluster of 30 small-sized VM nodes. We have
also presented the aggressive compression used in our No-
SQL, HBase indexes. Another contribution of H2RDF+ is
its adaptive query execution engine. The amount of com-
puting resources dedicated to the execution of a query are
shown to be proportional to the query cost and range from
centralized threads to distributed map tasks. This prop-
erty allows H2RDF+ to occupy, in a per-join basis, only
the required computing resources and leave the rest cluster
resources available to process multiple concurrent queries.
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