
SART: Speeding up Query Processing in Sensor Networks
with an Autonomous Range Tree Structure

Spyros Sioutas
Department of Informatics,

Ionian University
49100 Corfu, Greece
sioutas@ionio.gr

Alexandros Panaretos
Department of Informatics,

Ionian University
49100 Corfu, Greece

alex@ionio.gr

Ioannis Karydis
Department of Informatics,

Ionian University
49100 Corfu, Greece
karydis@ionio.gr

Dimitrios Tsoumakos
Department of Informatics,

Ionian University
49100 Corfu, Greece
dtsouma@ionio.gr

Giannis Tzimas
Dept. of Applied Informatics in
Management and Economy,

Techn. Educ. Institute
30200 Messolonghi, Greece

tzimas@teimes.gr

Dimitrios Tsolis
Cult. Herit. Management and

New Technologies Dept.,
University of Western Greece

30100 Agrinio, Greece
dtsolis@upatras.gr

ABSTRACT
We consider the problem of constructing efficient P2P over-
lays for sensornets providing “Energy-Level Application and
Services”. In this context, assuming that a sensor is respon-
sible for executing some program task but unfortunately it’s
energy-level is lower than a pre-defined threshold. Then,
this sensor should be able to introduce a query to the whole
system in order to discover efficiently another sensor with
the desired energy level, in which the task overhead must
be eventually forwarded. In this way, the “Life-Expectancy”
of the whole network could be increased. Sensor nodes are
mapped to peers based on their energy level. As the energy
levels change, the sensor nodes would have to move from
one peer to another and this operation is very crucial for
the efficient scalability of the proposed system. Similarly,
as the energy level of a sensor node becomes extremely low,
that node may want to forward it’s task to another node
with the desired energy level. The method presented in [15]
presents a novel P2P overlay for Energy Level discovery in
a sensornet. However, this solution is not dynamic, since re-
quires periodical restructuring. In particular, it is not able
to support neither join of sensor nodes with energy level
out of the ranges supported by the existing p2p overlay nor
leave of empty overlay peers to which no sensor nodes are
currently associated. On this purpose and based on the ef-
ficient P2P method presented in [16], we design a dynamic
P2P overlay for Energy Level discovery in a sensornet, the
so-called SART (Sensors’ Autonomous Range Tree) 1. The
adaptation of the P2P index presented in [16] guarantees the
best-known dynamic query performance of the above oper-
ation. We experimentally verify this performance, via the
D-P2P-Sim simulator 2.

1This work is based on an earlier work: SAC ’12 Pro-
ceedings of the 2012 ACM Symposium on Applied Com-
puting, Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2245442.
2D-P2P-Sim is publicly available at
http://code.google.com/p/d-p2p-sim/

Categories and Subject Descriptors
H.2 [Database Management]: [Emergent Systems]; D.2
[Software Engineering]: [P2P Simulators for Sensornets,
QoS]

General Terms
Distributed Data Structures, Indexing

Keywords
Peer-to-Peer Overlays, Sensor Networks

1. INTRODUCTION
In the last years sensornet research primarily focused on
data collection, finding applications in ecology (e.g., envi-
ronmental and habitat monitoring [13]), in precision agri-
culture (e.g., monitoring of temperature and humidity), in
civil engineering (e.g., monitoring stress levels of buildings
under earthquake simulations), in military and surveillance
(e.g., tracking of an intruder [7]), in aerospace industry (e.g.,
fairing of cargo in a rocket), etc.

Traditionally, sensors are used as data gathering instruments,
which continuously feed a central base station database. The
queries are executed in this centralized base station database
which continuously collates the data. However, given the
current trends (increase in numbers of sensors, together col-
lecting gigabits of data, increase in processing power at sen-
sors) it is not anymore feasible to use a centralized solution
for querying the sensor networks. Therefore, there is a need
for establishing an efficient access structure on sensor net-
works in order to contact only the relevant nodes for the
execution of a query and hence achieve minimal energy con-
sumption, minimal response time, and an accurate response.
We achieve these goals with our peer-to-peer query process-
ing model on top of a distributed index structure on wireless
sensor networks.

In sensor networks any node should be able to introduce
a query to the system. For example, in the context of a
fire evacuation scenario a firefighter should be able to query
a nearby sensor node for the closest exit where safe paths
exist. Therefore, a peer-to-peer query processing model is
required. A first P2P program for spatial query execution

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 60

presented in [8].

According to [1], the benefits of the P2P overlays in sen-
sornets are the following: Efficient Data Lookup, Guar-
anties on Lookup Times, Location Independence, Overlay
Applications and Services, Elimination of proxies/sinks with
undesirable central authority, Limited Broadcast. P2P de-
sign, for Internet-like environments, has been a very active
research area and there are many P2P Internet protocols
and systems available like CAN [3], Pastry [3], and Chord
[3]. The main arguments against P2P designs in sensor-
nets were the following: Logical Topology=Physical Topol-
ogy, Route Maintenance Overhead, Sensor Nodes are Not
Named, DHTs are Computationally Intensive. By overcom-
ing the arguments above (for details see [1], [2] and [4]), in
[2] and [4] the first DHT (Distributed Hash Table) based
protocols for sensornets were presented, the CSN and VRR
respectively. In [1] the Tiered Chord (TChord) protocol
was proposed, which is similar to, and inspired by, CSN.
TChord is a simplified mapping of Chord onto sensornets.
Unlike CSN the design of TChord is more generic (to sup-
port a variety of applications and services on top instead
of just serving incoming data queries). Gerla et al. argue
for the applicability and transfer of wired P2P models and
techniques to MANETs [9].

Most existing decentralized discovery solutions in practice
are either DHT based, like Chord or hierarchical cluster-
ing based, like BATON [3], NBDT [14], ART [16] or Skip-
Graphs [3]. The majority of existing P2P overlays for sen-
sornets were designed in a DHT fashion and the best current
solution is the TChord. On the contrary, ELDT [15] is the
only existing P2P protocol for sensornets, which combines
the benefits of both DHT and hierarchical [14] clustering
fashions. In this solution, sensor nodes are mapped to peers
based on their energy level. As the energy levels change, the
sensor nodes would have to move from one peer to another
and this oparation is very crucial for the efficient scalability
of the proposed system. Similarly, as the energy level of a
sensor node becomes extremely low, that node may want
to forward it’s task to another node with the desired en-
ergy level. However, the ELDT solution is not dynamic,
since requires periodical restructuring. In particular, it is
not able to support neither join of sensor nodes with energy
level out of the ranges supported by the existing p2p overlay
nor leave of empty overlay peers to which no sensor nodes
are currently associated. On this purpose and based on the
efficient P2P method presented in [16], we design a dynamic
P2P overlay for Energy Level discovery in a sensornet, the
so-called SART (Sensors’ Autonomous Range Tree). The
adaptation of the P2P index presented in [16] guarantees
the best-known dynamic query performance of the above
operation.

The main functionalities of SART attempt to increase the
“Life-Expectancy” of the whole sensor network in dynamic
way, providing support for processing: (a) exact match queries
of the form“given a sensor node with low energy-level k′, lo-
cate a sensor node with high energy-level k, where k >> k′”
(the task will be forwarded to the detected sensor node) (b)
range queries of the form“given an energy-level range [k, k′],
locate the sensor node/nodes the energy-levels of which be-
long to this range” (the task will be forwarded to one of

the detected sensor nodes) (c) update queries of the form
“find the new overlay-peer to which the sensor node must
be moved (or associated) according to it’s current energy
level” (the energy level of each sensor node is a decreas-
ing function of time and utilization) (d) join queries of the
form “join a new overlay-peer to which the new (inserted)
sensor node is associated” and (e) leave queries of the form
“leave (delete) the overlay-peer to which no sensor nodes are
currently associated”. The SART overlay adapts the novel
idea of ART P2P infrastructure presented in [16] providing
functionalities in optimal time. For comparison purposes,
an elementary operation’s evaluation is presented in table
1 between ART, NBDT, Skip-Graphs [3], Chord [3] and its
newest variation (F-Chord(á) [3]), BATON and its newest
variation (BATON* [3]).

The rest of this paper is structured as follows. Section 2
and 3 describe the SART system while section 4 presents an
extended experimental verification via an appropriate simu-
lator we have designed for this purpose. Section 5 concludes
the work.

2. THE SART PROTOCOL
SART, is a simplified mapping of ART [16] onto sensornets.
Like ART, at the heart of SART, lookup and join/leave re-
spectively are the two main operations. Given a set of sensor
nodes, we hash the unique address of each sensor node to
obtain node identifiers. Meta-data keys, generated from the
data stored on the nodes, are hashed to obtain key identi-
fiers.

The SART protocol (see figure 1) is an hierarchical arrange-
ment of some sensor nodes (master nodes). The master
node of level i maintains information (in its local finger ta-

ble) about all its slave nodes and 22
i−1

other master nodes
(you can find more details about master and slave nodes in
[15]). All queries are resolved in a distributed manner with
a bound of O(log2b logN) messages. When a master node re-
ceives a query it first checks its own keys to resolve the query,
if the lookup is not successful the master node then checks
its local finger table. The finger table contains information

about 22
i−1

other master nodes and if the key can be located
according to the information stored in the finger table, the
query is directly forwarded to the master node storing the
data. If the lookup on the local finger table also fails then
the master node routes the query to the master node closest
to the target according to the finger table. We handle the
master node joins/leaves and fails according to join/leave
and fail operations respectively presented in [16]. Thus, all
the above operations are bounded by O(log logN) expected
w.h.p. number of messages. Slave nodes do not store in-
formation about their neighbors. If a slave node directly re-
ceives a query, it checks its own data and if the lookup fails it
simply forwards the query to its master node. For simplicity,
in the SART proposal we opt for not connecting the slave
nodes in a ART arrangement and lookups are not imple-
mented in slave nodes. The master nodes could be thought
as“virtual sinks”with an ART overlay between these virtual
sinks. Unlike IP in the Internet, the sensornet protocol SP is
not at the network layer but instead sits between the network
and data-link layer (because data-processing potentially oc-
curs at each hop, not just at end points). Figure 2 shows

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 61

P2P Architectures Lookup/update key
Data Overhead-Routing

information
Join/Depart Node

Chord O(logN) O(logN) nodes O(logN) w.h.p.
H-F-Chord(a) O(logN/loglogN) O(logN) nodes O(logN)
LPRS-Chord O(logN) O(logN) nodes O(logN)
Skip Graphs O(logN) O(1) O(logN) amortized
BATON O(logN) Two (2) nodes O(logN) w.h.p.
BATON* O(logmN) m nodes O(mlogmN)

NBDT O(loglogN) O(loglogN) or 22
i−1

for nodes at
level i of left spine

periodical restructuring

ART O(log2b logN) O(N1/4/ logc N) nodes O(log logN) expected w.h.p.

Table 1: Performance Comparison between ART, NBDT, Chord, BATON and Skip Graphs

how P2P overlays can be implemented on top of SP. The
P2P overlay (shown as P2P Overlay Management) could be
built on top of any generic network protocol. An underly-
ing DHT or Hierarchical Clustering routing protocol (e.g.,
VRR, CSN, TChord or SNBDT or SART) is recommended
as it simplifies the job of overlay management. In particu-
lar, it is more efficient to build routing directly on top of the
link layer instead of implementing it as an overlay on top of
a routing protocol [4]. P2P Services and Applications (e.g.
event notification, resource allocation, and file systems) can
then be built on top of the P2P overlay and sensornet appli-
cations could either use these services or communicate with
the P2P overlay themselves.

Figure 1: The SART protocol

3. THE SART P2P OVERLAY
Let G a network graph of n sensor nodes and SART the
respective overlay of N peers. With each overlay peer p
(1 ≤ p ≤ N) we associate a set of pairs Sp = {(g, L[g])},
where g is a sensor node (1 ≤ g ≤ n) and L[g] its current

Physical Architecture� sensing� carrier sense� Transmit� Receive�

Data Link� Media Access� Time Stamping� ACK�

Sensor - Net Protocol (SP)�

Po
w

er
 M

an
ag

em
en

t�

Sy
st

em
 M

an
ag

em
en

t�

M
ob

ili
ty

 M
an

ag
em

en
t�

D
is

co
ve

ry
�

Se
cu

rit
y�

Ti
m

in
g�

DHT && Hierarchical Network�
Protocols (e.g. VRR, CSN,�
TChord, SNBDT,SART)�

Address Free�
Protocols�

Named - Based�
Protocols�

P2P Overlay Management�
(e.g. route maintenance,�

resource discovery)�

P2P Services and�
Applications�

(e.g.storage, naming,�
event notification e.t.c.)�

Sensor - Net Application�

Figure 2: P2P Overlay in SP Architecture

energy level. The criterion of associating the sensor node g
to peer p depends on it’s current energy level. Obviously, it
holds that N << n. Let’s explain more the way we structure
our whole system.

One of the basic components of the final SART structure is
the LRT (Level Range Tree) [16] structure. LRT will be
called upon to organize collections of peers at each level of
SART.

3.1 The LRT structure: An overview
LRT [16] is built by grouping nodes having the same ancestor
and organizing them in a tree structure recursively. The in-
nermost level of nesting (recursion) will be characterized by
having a tree in which no more than b nodes share the same
direct ancestor, where b is a double-exponentially power of
two (e.g. 2,4,16,...). Thus, multiple independent trees are
imposed on the collection of nodes. Figure 3 illustrates a
simple example, where b = 2.

The degree of the overlay peers at level i > 0 is d(i) = t(i),
where t(i) indicates the number of peers at level i. It holds
that d(0)=2 and t(0)=1. Let n be w-bit keys. Each peer
with label i (where 1 ≤ i ≤ N) stores ordered keys that
belong in the range [(i− 1) lnn, i lnn–1], where N = n/lnn
is the number of peers. Each peer is also equipped with a
table named Left Spine Index (LSI), which stores pointers to
the peers of the left-most spine (see pointers starting from

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 62

9�

8�

10�

11�

1� keys in range [0, lnn - 1]�

2� 3�
.�

.�

.�

LSI�

CI�

CI�

LSI� LSI�

4� 6� 7�
CI�

5�.� .� .� .�
LSI� LSI� LSI�LSI�

8� 9� 10� 11�

CI�

12� 13� 14� 15�

 [lnn, 2lnn - 1]� [2lnn, 3lnn - 1]�

13�

12�

14�

15�

Figure 3: The LRT structure

peer 5). Furthermore, each peer of the left-most spine is
equipped with a table named Collection Index (CI), which
stores pointers to the collections of peers presented at the
same level (see pointers directed to collections of last level).
Peers having the same father belong to the same collection.

Lookup Algorithm: Assume we are located at peer s and
seek a key k. First, the algorithm finds the range where
k belongs. If k ∈ [(j − 1) lnn, j lnn − 1], it has to search
for peer j. The first step of algorithm is to find the LRT
level where the desired peer j is located. For this purpose,
it exploits a nice arithmetic property of LRT. This property
says that for each peer x located at the left-most spine of
level i, the following formula holds:

label(x) = label(father(x)) + 22
i−2

(1)

For each level i (where 0 ≤ i ≤ log logN), it computes
the value x of its left most peer by applying Equation (1).
Then, it compares the value j with the computed value x.
If j ≥ x, it continues by applying Equation (1), otherwise it
stops the loop process with current value i. The latter means
that node j is located at the i-th level. Then, it follows the
i-th pointer of the LSI table located at peer s. Let x the
destination peer, that is the leftmost peer of level i. Now,
the algorithm must compute the collection in which the peer
j belongs to. Since the number of collections at level i equals
the number of nodes located at level (i − 1), it divides the
distance between j and x by the factor t(i − 1) and let m
the result of this division. Then, it follows the (m + 1)-th
pointer of the CI table. Since the collection indicated by the
CI[m+1] pointer is organized in the same way at the next
nesting level, it continues this process recursively.

Analysis: Since t(i) = t(i−1)d(i−1), it gets d (i) = t (i) =

22
i−1

for i ≥ 1. Thus, the height and the maximum num-
ber of possible nestings is O(log logN) and O(logb logN) re-
spectively. Thus, each key is stored in O(logb logN) levels at
most and the whole searching process requires O(logb logN)
hops. Moreover, the maximum size of the CI and RSI ta-
bles is O(

√
N) and O(log logN) in worst-case respectively.

Each overlay peer stores tuples (g, L[g]), where L[g] is a
k − bit key belonging in universe K = [0, 2k − 1], which
represents the current energy-level of the sensor node g.

We associate to ith peer the set Si = {(g, L[g])}, where
Lg ∈ [(i − 1)lnK, ilnK − 1]. Obviously, the number of
peers is N = K/lnK and the load of each peer becomes
Θ(polylogN) in expected case with high probability (for
more details see[1]). Each energy-level key is stored at most
in O(loglogN) levels. We also equip each peer with the ta-
ble LSI (Left Spine Index). This table stores pointers to the
peers of the left-most spine (for example in figure 3 the peers
1, 2, 4 and 8 are pointed by the LSI table of peer 5) and
as a consequence its maximum length is O(loglogN). Fur-
thermore, each peer of the left-most spine is equipped with
the table CI (Collection Index). CI stores pointers to the
collections of peers presented at the same level (see in figure
3 the CI table of peer 8). Peers having same father belong
to the same collection. For example in the figure 2, peers
8,9,10 and 11 constitute a collection of peers. It’s obvious
that the maximum length of CI table is O(

√
N).

3.2 The ART structure: An Overview
The backbone of ART [16] is exactly the same with LRT.
During the initialization step the algorithm chooses as clus-
ter peer representatives the 1st peer, the (lnn)-th peer, the
(2 lnn)-th peer and so on.

This means that each cluster peer with label i′ (where 1 ≤
i′ ≤ N ′) stores ordered peers with energy-level keys be-
longing in the range [(i′ − 1) ln2 n, . . . , i′ ln2 n − 1], where
N ′ = n/ ln2 n is the number of cluster peers.

ART stores cluster peers only, each of which is structured
as an independent decentralized architecture. Moreover, in-
stead of the Left-most Spine Index (LSI), which reduces
the robustness of the whole system, ART introduces the
Random Spine Index (RSI) routing table, which stores point-
ers to randomly chosen (and not specific) cluster peers (see
pointers starting from peer 3). In addition, instead of using
fat CI tables, the appropriate collection of cluster peers can
be accessed by using a 2-level LRT structure.

Load Balancing: The join/leave of peers inside a clus-
ter peer were modeled as the combinatorial game of bins
and balls presented in [12]. In this way, for a µ(·) random
sequence of join/leave peer operations, the load of each clus-
ter peer never exceedsΘ(polylog N ′) size and never becomes
zero in expected w.h.p. case.

Routing Overhead: The 2-level LRT is an LRT structure
over log2c Z buckets each of which organizes Z

log2c Z
collec-

tions in a LRT manner, where Z is the number of collec-
tions at current level and c is a big positive constant. As
a consequence, the routing information overhead becomes
O(N1/4/ logc N) in the worst case (even for an extremely
large number of peers, let say N=1.000.000.000, the routing
data overhead becomes 6 for c = 1).

Lookup Algorithms: Since the maximum number of nest-
ing levels is O(logb logN) and at each nesting level i the

standard LRT structure has to be applied in N1/2i col-
lections, the whole searching process requires O(log2b logN)
hops. Then, the target peer can be located by searching
the respective decentralized structure. Through the poly-
logarithmic load of each cluster peer, the total query com-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 63

G = Sensornet Graph�A�

C�

K�

G�

SART Overlay�

1�

2� 3�

RSI�

RSI� RSI�

4� 6� 7�5�.� .� .�
RSI� RSI� RSI�RSI�

8� 9� 10� 11�

Cluster_Peer 1�

12� 13� 14�.� 15� i�

Decentralized Architecture of�
Peer_Node�1�,Peer_Node �2�,......,Peer_Node � lnn�

Cluster_Peer i�

Decentralized Architecture of�
Peer_Node�(i-1)lnn+1�Peer_Node�(i-1)lnn+2�

,......,Peer_Node� ilnn�

i�
9� 10�

11�

8�

13�

12�

14�

15�

2-level LRT�

Energy Color: Red�

Energy Color: yellow�

S1={(A,L[A]),(C,L[C])}�

Si={(K,L[K]),(G,L[G])}�

L[A] and L[C] belong in range� [0, ln�2�n-1]�

L[K] and L[G] belong in range� [(i-1)ln�2�n, iln�2�n-1]�

(A,L[A])�

(C,L[C])�

(K,L[K])�
(G,L[G])�

S�i�=S�i,�1� �U� S�i,�2� �U�....�U� S�i,�lnn�

S�
i,j�

={ }�

IF S�i,j� �= empty then LEAVE (Peer�i,j�)�

(see the blue node of cluster_peer i)� S�
i,m�

={ }�

B�

IF a new_sensor_node B JOIN G�
AND L[B] belong in Range of S�i,m�

THEN JOIN Peer�i,m�

(see the peer with the GREEN energy color)�

Figure 4: Building the SART Bipartite P2P Overlay

plexity O(log2b logN) follows. Exploiting now the order of
keys on each peer, range queries require O(log2b logN + |A|)
hops, where |A| the answer size.

Join/Leave Operations: A peer u can make a join/leave
request at a particular peer v, which is located at clus-
ter peer W . Since the size of W is bounded by a polylogN
size in expected w.h.p. case, the peer join/leave can be car-
ried out in O(loglogN) hops.

Node Failures and Network Restructuring: Obviously,
node failure and network restructuring operations are ac-
cording to the decentralized architecture used in each clus-
ter peer.

3.3 Building the SART Overlay
Let Pi,j the jth peer of cluster peer i. Each overlay peer
Pi,j , stores a set Si,j = {(g, L[g])}, where L[g] is a k − bit
key belonging in universe K = [0, 2k − 1], which represents
the current energy-level of the sensor node g. In particular
(and based on design analysis of previous section) it holds
that L[g] ∈

[
(i− 1)ln2n, iln2n− 1

]
. Thus, the total set of

Cluster Peer i becomes Si = Si,1∪Si,2∪ . . .∪Si,Θ(polylogN),
where |Si,j | ≤ n.

For example in Figure 4, S1 = {(A,L[A]), (C,L[C])} is
the set of cluster peer 1, which stores the energy-level keys
of red (energy color) sensors A and C as well as Si =
{(K,L[K]), (G,L[G])} is the set of cluster peer i, which stores
the energy-level keys of yellow sensors K and G. Tuples
(A,L[A]) and (C,L[C]) are located in different peers of the

decentralized structure associated to cluster peer 1. The
same holds for the tuples (K,L[K]) and (G,L[G]) in the
decentralized structure associated to cluster peer i.

According to the complexity analysis of ART structure, the
theorem 1 follows:

Theorem 1: Assume a SART lookup P2P system for the
sensor network G. The queries of the form (a), (b) and (c)
require O(log2b logN) expected w.h.p. number of messages.
The queries of the form (d) and (e) require O(log logN)
expected w.h.p. number of messages.

Let G the sensor network and T the SART overlay. We are
located at sensor node S ∈ G with low energy level k′ and
we are looking for a sensor node R ∈ G with the desired
energy level k. Algorithm 1 depicts the pseudocode for the
Sensor Net Exact Match Search routine.

Let G the sensor network and T the SART overlay. We are
located at sensor node S ∈ G with low energy level k′ and we
are looking for a sensor node R ∈ G the desired energy level
of which belongs in the range [k1, k2]. Algorithm 2 depicts
the pseudocode for the Sensor Net Range Search routine.

Let G the sensor network and T the overlay structure. We
are located at sensor node S ∈ G, the energy level of which
has been decreased from k1 to k2. We have to find the
new overlay peer to which the update node S is going to
be associated. Algorithm 3 depicts the pseudocode for the
update overlay peer routine.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 64

Let G the sensor network and T the overlay structure. If
a new sensor node B joins G and L[B] ∈ Si,m then JOIN
Pi,m (see the peer with the green energy color). Algorithm
4 depicts the respective pseudocode.

Let G the sensor network and T the overlay structure. If
Si,j = ⊘ then LEAVE Pi,j (see the blue node of cluster peer
i). Algorithm 5 depicts the respective pseudocode.

Algorithm 1 Sensor Net Exact Match Search(G,S,T ,k′,k,
R)

1: Find the peer node to which sensor S (of energy level k’)
is associated;

2: Let p ∈ T the respective overlay peer;
3: r = send overlay search(T, p, k); {it is the basic lookup

routine of ART structure T}
4: Let r ∈ T the peer node which stores sensor nodes with

the desired energy-level k and let say R a randomly cho-
sen one;

5: Return R

Algorithm 2 Sensor Net Range Search(G,S,T ,k′,k1,k2,R)

1: Find the peer to which sensor S (of energy level k’) is
associated;

2: Let p ∈ T the respective overlay peer;
3: r = send overlay range search(T, p, k); {it is the range

searching routine of ART structure T}
4: Let A the set of peers the desired energy-level of which

belong in range [k1, k2] and let say R a randomly chossen
one;

5: Return R

Algorithm 3 Update Overlay Peer(G,T ,S,k1,k2)

1: Find the peer to which S is associated according to old
energy level k1;

2: Let p ∈ T the respective overlay peer;
3: Delete (S, k1) from p;
4: r = send overlay search(T, p, k2);
5: Insert the tuple (S, k2) into r;

4. EXPERIMENTS
The Admin tools of D-P2P-Sim GUI (see Figure 5) have
specifically been designed to support reports on a collec-
tion of wide variety of metrics including, protocol opera-
tion metrics, network balancing metrics, and even server
metrics. Such metrics include frequency, maximum, mini-
mum and average of: number of hops for all basic operations
(lookup-insertion-deletion path length), number of messages
per node peer (hotpoint-bottleneck detection), routing table
length (routing size per node-peer) and additionally detec-
tion of network isolation (graph separation). All metrics can
tested using a number of different distributions (e.g. normal,
weibull, beta, uniform etc). Additionally, at a system level
memory can also be managed in order to execute at low or
larger volumes and furthermore execution time can also be
logged. The framework is open for the protocol designer to
introduce additional metrics if needed. Furthermore, XML
rule based configuration is supported in order to form a large
number of different protocol testing scenarios. It is possible
to configure and schedule at once a single or multiple ex-
perimental scenarios with different number of protocol net-
works (number of nodes) at a single PC or multiple PCs and

Algorithm 4 Join Overlay Peer(G,T ,B,L[B])

1: Let L[B] ∈ Si,m and the mth peer of cluster peer i does
not exist;

2: send join peer(T, Pi,m); {it is the Join routine of ART
structure T}

3: Let Si,m = ⊘ the initial empty set of the new inserted
peer Pi,m;

4: Insert the tuple (B,L[B]) into Si,m;

Algorithm 5 Leave Overlay Peer(G,T ,Pi,j)

1: Let Si,j = ⊘ the empty set of peer Pi,j ;
2: send Leave peer(T, Pi,j); {it is the Leave routine of

ART structure T}

servers distributedly. In particular, when D-P2P-Sim simu-
lator acts in a distributed environment (see Figure 6) with
multiple computer systems with network connection delivers
multiple times the former population of cluster peers with
only 10% overhead.

Our experimental performance studies include a detailed
performance comparison with TChord, one of the state-of-
the-art P2P overlays for sensor networks. Moreover, we im-
plemented each cluster peer as a BATON* [10], the best
known decentralized tree-architecture. We tested the net-
work with different numbers of peers ranging up to 500,000.
A number of data equal to the network size multiplied by
2000, which are numbers from the universe [1..1,000,000,000]
are inserted to the network in batches. The synthetic data
(numbers) from this universe were produced by the follow-
ing distributions: beta3, uniform4 and power-law5. The dis-
tribution parameters can be easily defined in configuration
file6. Also, the predefined values of these parameters are
depicted in the figure 7.

For evaluation purposes we used the Distributed Java D-
P2P-Sim simulator presented in [16]. The D-P2P-Sim simu-
lator is extremely efficient delivering > 100, 000 cluster peers
in a single computer system, using 32-bit JVM 1.6 and 1.5
GB RAM and full D-P2P-Sim GUI support. When 64-bit
JVM 1.6 and 5 RAM is utilized the D-P2P-Sim simulator
delivers > 500, 000 cluster peers and full D-P2P-Sim GUI
support in a single computer system.

For each test, 1,000 exact match queries and 1,000 range
queries are executed, and the average costs of operations
are taken. Searched ranges are created randomly by getting
the whole range of values divided by the total number of
peers multiplies α, where α ∈ [1..10]. The source code of
the whole evaluation process is publicly available 7.

In the first tab (see Figure 8) the user can set the number of
peers which will constitute the overlay and select the energy

3http://goo.gl/ltQXY
4http://goo.gl/Y1fEB
5http://goo.gl/lqp91
6http://goo.gl/dHZ6D
7http://code.google.com/p/d-p2p-sim/

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 65

Figure 5: D-P2P-Sim GUI

Figure 6: The Distributed Environment

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 66

 �<distribution>� �
 �<random>� �
 �<seed>1</seed>� �
 �</random>� �
 �<beta>� �
 �<alpha>2.0</alpha>� �
 �<beta>4.0</beta>� �
 �</beta>� �
 �<powerLaw>� �
 �<al�pha>0.5</alpha>� �
 �<beta>1.0</beta>� �
 �</powerLaw>� �
 �</distribution>� �

Figure 7: Snippet from config.xml with the pre-
defined distribution’s parameters setup

Figure 8: The tab “SetUp”

level distribution over these nodes. The available distribu-
tions are: uniform, normal, beta, and pow-law. After the
user has set these two fields then the system’s initialization
can begin.

In the same tab there is a progress bar so the user can obtain
the overall process due to the fact that this process may
take several minutes. Also there is a button, which resets

Figure 9: The tab “Operations”

Figure 10: The tab “Experiments”

the system without the need of closing and reopening the
simulator if we want to carry out several experiments with
different number of peers and energy level distribution.

The second tab (see Figure 9) provides the ability to search,
insert(join) / delete (leave) and update the energy level of a

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 67

Figure 11: Lookup Performance Graph

Figure 12: Load balance after 200 updates with uniform distribution.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 68

Figure 13: Average Messages per Level

sensor starting the procedure from any peer in the overlay.
While one of these operations is being executed, appropriate
messages are appearing at the bottom of this tab.

In the third tab (see Figure 10) the user can prosecute ex-
periments to evaluate the efficiency of the lookup/update
operations. There are two panels one for each operation
where the user sets the number of the experiments and se-
lects the distribution according to the energy-level keys of
the sensors picked up for the experiments. After the termi-
nation of the experiments the user can see and save the chart
that has been generated. In the forth tab - statistics - the
user can see the current number of peers into the system,
the number of sensors that have been stored over the peers
and the range of sensors’ energy level that we can store in
the overlay. This tab represents also performance statistics
such as the minimum, the maximum and the average path
of the total operations that have been performed. Further-
more, this tab generates a chart with the load-balancing over
the peers (see Figure 12), the number of messages that have
been forwarded by each peer (see Figure 11)and the number
of messages per tree level (see Figures 13).

In the most of cases, SART outperforms TChord by a wide
margin. As depicted in Figures 14, 15 and 16 our method
is almost 2 times faster for b = 2, 4 times faster for b = 4
and 5 times faster for b = 16. As a consequence we have
a performance improvement from 50% to 80%. The results
are analogous with respect to the cost of range queries as

depicted in Figures 17, 18, 19, 20, 21 and 22.

In case Query Range Length < Cluster Peer Key Range
and b = 2, we have an 25% improvement, however, when
Query Range Length > Cluster Peer Key Range, SART
and TChord have almost similar performance behaviour.

In case Query Range Length < Cluster Peer Key Range
and b = 4, we have an 50% improvement, however, when
Query Range Length > Cluster Peer Key Range the im-
provement of our method downgrades to 13.15%.

In case Query Range Length < Cluster Peer Key Range
and b = 16, we have an 52.7% improvement, however, when
Query Range Length > Cluster Peer Key Range the im-
provement of our method downgrades to 21.05%.

Figures 23, 24 and 25 depict the cost of update queries.
In particular, for b = 2, 4, 16, we have an improvement of
37.5%, 75% and 87.5% respectively.

Finally, Figure 26 depicts the cost of updating the routing
tables, after peer join/leave operations. For bad or non-
smooth distributions, like powlow, we have an 23.07% im-
provement. However, for more smooth distributions like
beta, normal or uniform the improvement of our method
increases to 38.46%.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 69

Cost of exact match operation in case b=2: �
Queries of Type (a)�

0�
5�

10�
15�
20�
25�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�
SART (powlow)�

Figure 14: Cost of Exact Match Queries in Case b=2

Cost of exact match operation in case b=4:�
 Queries of Type (a)�

0�
5�

10�
15�
20�
25�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�
SART (powlow)�

Figure 15: Cost of Exact Match Queries in Case b=4

Cost of exact match operation in case b=16:�
 Queries of Type (a)�

0�
5�

10�
15�
20�
25�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�
SART (powlow)�

Figure 16: Cost of Exact Match Queries in Case
b=16

0�

10�

20�

30�

40�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Cost of Range Searching in case b=2 and�
|range|<ln�2�n : Queries of type(b)�

Figure 17: Cost of Range Queries in Case b=2 and
Query Range Length < Cluster Peer Key Range

0�
10�
20�
30�
40�
50�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Cost of Range Searching in case b=2 and�
|range|>ln�2�n : Queries of type(b)�

Figure 18: Cost of Range Queries in Case b=2 and
Query Range Length > Cluster Peer Key Range

0�

10�

20�

30�

40�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Cost of Range Searching in case b=4 and�
|range|<ln�2�n : Queries of type(b)�

Figure 19: Cost of Range Queries in Case b=4 and
Query Range Length < Cluster Peer Key Range

0�

10�

20�

30�

40�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Cost of Range Searching in case b=4 and�
|range|>ln�2�n : Queries of type(b)�

Figure 20: Cost of Range Queries in Case b=4 and
Query Range Length > Cluster Peer Key Range

5. CONCLUSIONS
We considered the problem of constructing efficient P2P
overlays for sensornets providing “Energy-Level Application
and Services”. On this purpose we designed SART, the best-
known dynamic P2P overlay providing support for process-
ing queries in a sensornet. We experimentally verified this
performance via the D-P2P-Sim framework.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 70

0�

10�

20�

30�

40�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Cost of Range Searching in case b=16 and�
|range|<ln�2�n : Queries of type(b)�

Figure 21: Cost of Range Queries in Case b=16 and
Query Range Length < Cluster Peer Key Range

0�

10�

20�

30�

40�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Cost of Range Searching in case b=16 and�
|range|>ln�2�n : Queries of type(b)�

Figure 22: Cost of Range Queries in Case b=16 and
Query Range Length > Cluster Peer Key Range

Cost of update operation in case b=2: �
Queries of Type (c)�

0�
10�
20�
30�
40�
50�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�
SART (powlow)�

Figure 23: Cost of Update Queries in Case b=2

Cost of update operation in case b=4: �
Queries of Type (c)�

0�
10�
20�
30�
40�
50�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�
SART (powlow)�

Figure 24: Cost of Update Queries in Case b=4

Cost of update operation in case b=16: �
Queries of Type (c)�

0�
10�
20�
30�
40�
50�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
routing hops�

Tchord�

SART (normal, beta,�
uniform)�
SART (powlow)�

Figure 25: Cost of Update Queries in Case b=16

Cost of updating routing tables after peer join/leave �
operations: Queries of type (d) and (e)�

0�

10�

20�

30�

40�

0� 200000� 400000� 600000�

Number of nodes�

Number of �
messages�

Tchord�

SART (normal, beta,�
uniform)�

SART (powlow)�

Figure 26: Cost of updating routing tables, after
peer join/leave operations: The Cost is independed
on parameter b

6. REFERENCES
[1] Muneeb Ali and Koen Langendoen, A Case for

Peer-to-Peer Network Overlays in Sensor Networks,
International Workshop on Wireless Sensor Network
Architecture(WWSNA’07), pages 56-61, Cambridge,
Massachusetts, USA, 2007.

[2] M. Ali and Z. A. Uzmi., CSN: A network protocol for
serving dynamic queries in large-scale wireless sensor
networks. In 2nd CNSR’04, pages 165-174, Fred-
ericton, N.B, Canada, 2004.

[3] J. F. Buford, H. Yu, and E. K. Lua. P2P Networking
and Applications. Morgan Kaufman Publications,
California, 2008.

[4] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron., Virtual Ring Routing: Network
routing inspired by DHTs. In ACM SIGCOMM’06,
pages 351-362, Pisa, Italy, 2006.

[5] Crainiceanu, A., Linga, P., Gehrke, J. and
Shanmugasundaram, J., P-Tree: A P2P Index for
Resource Discovery Applications, WWW’04, pages
390-391, New York, NY, USA, 2004.

[6] D. Clark, C. Partridge, R. T. Braden, B. Davie, S.
Floyd, V. Jacobson, D. Katabi, G. Minshall, K. K.
Ramakrishnan, T. Roscoe, I. Stoica, J. Wroclawski, and
L. Zhang., Making the world (of communications) a
different place. ACM SIGCOMM’05 CCR, 35(3):91-96,
Philadelphia, PA, 2005.

[7] M.Demirbas, A.Arora, and M.Gouda., A
pursuer-evader game for sensor networks. Sixth
Symposium on Self- Stabilizing Systems(SSS’03), pages

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 71

1-16, San Francisco, CA, USA, 2003.

[8] Murat Demirbas, Hakan Ferhatosmanoglu, Peer-to-Peer
Spatial Queries in Sensor Networks, IEEE Proceedings
of the 3rd International Conference on Peer-to-Peer
Computing, pp. 32-40, Linkoping, Sweden, 2003.

[9] M. Gerla, C. Lindemann, and A. Rowstron., P2P
MANET’s - new research issues. In Dagstuhl Seminar
Proceedings, number 05152, Germany, 2005.

[10] H. V. Jagadish, B. C. Ooi, K. L. Tan, Q. H. Vu and R.
Zhang., Speeding up Search in P2P Networks with a
Multi-way Tree Structure, ACM SIGMOD’06, pages
1-12, Chicago, Illinois, 2006.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu., Baton: A
balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st VLDB’05 Conference, pages
661-672, Trondheim, Norway, 2005.

[12] A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis,
K. Tsichlas, and C. Zaroliagis. Improved Bounds for
Finger Search on a RAM. Algorithms,
Vol. 2832:325-336, 2003.

[13] A.Mainwaring, J.Polastre, R.Szewczyk, D.Culler, and
J. Anderson. Wireless sensor networks for habitat
monitoring. ACM Int. Workshop on Wireless Sensor
Networks and Applications, September 2002.

[14] S.Sioutas, NBDT: An efficient p2p indexing scheme
for web service discovery, Journal of Web Engineering
and Technologies, Vol. 4 (1), pp 95-113, 2008.

[15] S. Sioutas, K. Oikonomou, G. Papaloukopoulos, M.
Xenos, Y. Manolopoulos, “An Optimal Bipartite P2P
Overlay for Energy-Level Queries in Sensor Networks”,
Proceedings of the ACM international Conference on
Management of Emergent Digital Ecosystems - ACM
Special Interest Group on Applied Computing
(ACM-SIGAPP MEDES 2009), Lyon, France,
pp.361-368.

[16] S.Sioutas, G. Papaloukopoulos, E. Sakkopoulos, K.
Tsichlas, Y. Manolopoulos and P. Triantafillou “Brief
Announcement: ART:Sub-Logarithmic Decentralized
Range Query Processing with Probabilistic
Guarantees”, In Proceedings of Twenty-Ninth Annual
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (ACM PODC 2010), Zurich,
Switzerland July 25-28, pp. 118-120, 2010.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 72

ABOUT THE AUTHORS:

Spyros Sioutas was born in Greece, in 1975. He graduated from the Department of
Computer Engineering and Informatics, School of Engineering, University of Patras,
in December 1997. He received his Ph.D. degree from the Department of Computer
Engineering and Informatics, in 2002. He is now an Assistant Professor in
Informatics Department of Ionian University. His research interests include Data
Structures and Databases, P2P Data Management, Data Warehouses and Data
Mining, Computational Geometry, GIS and Advanced Information Systems. He has
published over 100 papers in various scientific journals and refereed conferences.

Alexandros Panaretos is currently a PhD Student at the Department of Informatics,
Ionian University. He obtained his BEng in Software Engineering from the
Computer Science Department, University of Wales Aberystwyth in 2001 and his
MSc in E-Commerce Technology from the Computer Science Department ,
University of Essex in 2002. His research interests focuses on P2P Data
Management, GIS Systems and Social Networks.

Ioannis Karydis was born in Athens, Greece in 1979. He received a BEng (2000) in
Engineering Science & Technology from Brunel University, UK, an MSc (2001) in
Advanced Methods in Computer Science from Queen Mary University, UK and a
PhD (2006) in Mining and Retrieval Methods for Acoustic and Symbolic Music
Data from the Aristotle University of Thessaloniki, Greece. He has contributed to
more than 35 academic publications and currently is a contract lecturer at the Ionian
University, Greece. His research interests include Networking Data Management,
Music Databases, Music Information Retrieval (indexing & searching), Music Genre
Classification, Musical Similarity using Contextual Information, Continuous
Querying in musical streams, Cultural Information Systems and Privacy Issues in
Databases.

Dimitrios Tsoumakos is an Assistant Professor in the Department of Informatics of
the Ionian University. He is also a senior researcher at the Computing Systems
Laboratory of the National Technical University of Athens (NTUA). He received his
Diploma in Electrical and Computer Engineering from NTUA in 1999, joined the
graduate program in Computer Sciences at the University of Maryland in 2000,
where he received his M.Sc. (2002) and Ph.D. (2006).
His research interests lie in the area of distributed data management, particularly in
designing and implementing adaptive and scalable schemes for big data storage and
indexing. He is also involved in Database research, especially in designing
distributed indexing schemes for sharded databases. His most recent projects relate
to automatic elasticity provisioning for NoSQL engines and scalable RDF query
processing using NoSQL and MapReduce.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 73

Giannis Tzimas is currently an Assistant Professor in the Department of Applied
Informatics in Management & Economy of the Technological Educational Institute
of Mesolonghi. Since 1995, he is also an adjoint researcher in the Graphics,
Multimedia and GIS Lab, Department of Computer Engineering & Informatics of
the University of Patras. He graduated from the Computer Engineering and
Informatics Department in 1995 and has participated in the
management and development of many Research and Development projects funded
by national and EU resources, as well as the private sector. His research activity lies
in the areas of Computer Networks, Web Engineering, Web Modelling and
Bioinformatics. He has published a considerable number of articles in prestigious
national and international conferences and journals.

Dimitrios Tsolis is a lecturer of the Cultural Heritage Management and New
Technologies Department of the University of Western Greece. He is responsible for
the courses for Introduction to Informatics and Networks, Internet and Semantic
Web Technologies and Human Computer Interaction. His Ph.D. was focusing on
Software Development and Engineering for Advanced Information Systems and
Networks especially focusing on Digital Rights Management. He has over 70
publications in scientific and international Journals, Conferences and Technical
Reports. He has also supervised or participated to more than 30 R&D Projects in the
area of Computer Science.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 74

