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Abstract—The focus of this work is the on-demand resource
provisioning in cloud computing, which is commonly referred
to as cloud elasticity. Although a lot of effort has been invested
in developing systems and mechanisms that enable elasticity,
the elasticity decision policies tend to be designed without
quantifying or guaranteeing the quality of their operation.
We present an approach towards the development of more
formalized and dependable elasticity policies. We make two
distinct contributions. First, we propose an extensible approach
to enforcing elasticity through the dynamic instantiation and
online quantitative verification of Markov Decision Processes
(MDP) using probabilistic model checking. Second, various
concrete elasticity models and elasticity policies are studied.
We evaluate the decision policies using traces from a real
NoSQL database cluster under constantly evolving external
load. We reason about the behaviour of different modeling and
elasticity policy options and we show that our proposal can
improve upon the state-of-the-art in significantly decreasing
under-provisioning while avoiding over-provisioning.

I. INTRODUCTION

Clouds are able to adapt to the actual user require-
ments utilizing on-demand resource provisioning, which
is commonly referred to as elasticity. We adopt the stan-
dard elasticity definition proposed in [1]: “Elasticity is the
degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in
an autonomic manner, such that at each point in time the
available resources match the current demand as closely as
possible.” Elasticity may be manifested in different forms
and can refer to the size, the location or the number of
virtual machines (VMs) employed. Examples of these three
elasticity types are the allocation of more memory to a VM
(vertical scaling), moving a VM to a less loaded physical
machine (migration) and increasing the number of VMs
(horizontal scaling) of an application cluster, respectively.
We exclusively focus on automated elasticity approaches,
and we especially target elasticity in the form of horizon-
tally scaling the number of application VMs. Increasing or
decreasing the number of VMs is a key element in adapting
to dynamically changing volumes of user requests, e.g., as
typically occurs in cloud databases, which is the scenario
we use in our evaluation.

There have been numerous proposals for elasticity, which
differ in several dimensions including the form of the

elasticity they support, the underlying objectives driving
the elasticity actions and the decision making policy (e.g.,
reactive or proactive), such as [2], [3], [4], [5], [6]. However,
elasticity proposals tend to work on a best-effort basis
without being able to guarantee their adequacy under the
expected workload scenarios. The main aim of our proposal
is to make a decisive step towards more formalized and
dependable elasticity decision policies. Dependability refers
to the fact that elasticity actions should be selected according
to the results of continuous verification of elasticity aspects
that are of user interest, including the resulting system utility
and the probability to experience SLA violations. At a higher
level, we view the elasticity problem as a specific instance of
autonomic computing [7], for which the need for coupling
continuous verification when responding to environmental
changes has already been identified [8]. To this end, we
adopt a formal verification approach, as a means to apply
mathematical reasoning for providing correctness guarantees
for the elasticity policy and we employ a mature model-
based verification technique, namely probabilistic model
checking [9].

In brief, our approach is twofold. First, we present expres-
sive models of elasticity actions and second, we leverage
them for devising concrete policies that can take elastic-
ity decisions. The mathematical modeling framework we
build upon is Markov Decision Processes (MDPs), because
MDPs can capture both the non-deterministic and proba-
bilistic aspects of the problem. Given the current state, non-
determinism is due to the applicability of several possible
elasticity actions, which may lead to different future system
states. In addition, the probabilistic behaviour allows us to
take into account the effects of the unpredictable environ-
ment’s evolution, which may result in reaching different
states even for the same action applied under the same
current conditions.

We use the PRISM probabilistic model checker tool
[10], because it supports both the specification of MDP
system models at a high-level and the easy specification
of probabilistic reachability and reward-based properties
via the PCTL logic language [9], which are amenable to
model checking. We introduce properties that, on the model
level, yield optimal decisions for system reconfigurations
aiming to maximize the system utility, under user-specified



probabilistic guarantees. We show how our decision making
policy can be incorporated into existing systems. Finally,
we compare our policy proposals against the policies of the
Amazon’s EC2 manager and the novel Tiramola system1,
which supports elastic scaling of NoSQL databases [2]. In
summary, the main contributions are:2

1) We present a concrete approach to employing continu-
ous online quantitative verification for taking runtime
elasticity decisions, with a view to making them
more dependable. Our approach is well-founded and
is based on extensible, automatically generated and
dynamically instantiated MDP models.

2) We present modeling variations and related elasticity
decision policies that aim to maximize user-defined
utility functions; moreover, our decisions are subject
to quantitative analysis.

3) We conduct elasticity experiments using real log traces
from an elastic NoSQL cluster under constantly evolv-
ing external load, which is a particularly demand-
ing elasticity evaluation scenario [12]. Based on the
results, we show that we can improve on under-
provisioning using probabilistic model checking-based
elasticity policies while avoiding over-provisioning.

The remainder of this paper is structured as follows. In
Section II, we present our approach to elasticity decision
making. We introduce the underlying MDP models and the
elasticity policies that are built on top of their runtime
instantiations. We also explain how the PRISM tool can be
used for this purpose. Next, we discuss how our approach
can be incorporated into existing systems. We evaluate our
decision making solutions in Section IV, we refer to the
related work in Section V and we present future extensions
of our work and conclusions in Section VI.

II. ELASTICITY BASED ON PROBABILISTIC MODEL
CHECKING

Probabilistic model checking is a formal verification tech-
nique for the modeling and analysis of stochastic systems
[10]. In our work, probabilistic models are used in the
decision making process, to specify, drive and analyse cloud
resource elasticity. By utilizing probabilistic models, we are
able to capture the uncertainty in systems’ elasticity. In order
to additionally infuse non-determinism for representing the
multiple possible elasticity actions, we resort to MDP mod-
els, which form the basis of our approach. On top of our
MDP models, we build policies for elasticity decisions with
the help of the PRISM probabilistic model checker [10].
While our main objective is to render elasticity decision
policies more dependable, through the avoidance of under-
provisioning, our principled approach is capable of yielding

1Best-paper award in 2013 IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing.

2A preliminary extended version with fewer modeling and decision
options but complementary experiments is in [11].

higher utility than simple reactive techniques, where higher
utility is linked with lower over-provisioning in our work.

Next we discuss how we model the elasticity actions
and present exact approaches to taking elasticity decisions.
In general, we periodically monitor the incoming load and
the system state; also, we periodically activate the decision
policy, and we call such an activation an elasticity step. The
monitoring frequency is either equal to or higher than the
decision making frequency. An elasticity step is further split
in the following three sub-phases:

1) Dynamically instantiate a model according to the
current incoming load and the log measurements.

2) Verify the model online to reach elasticity decisions.
3) Take elasticity actions. Suspend the run of the next

elasticity step until the system stabilizes.
The first subphase is the most important one. The model

is dynamically instantiated so that, in each step, it can
describe the expected behaviour according to the current
environmental conditions. In our implementation, we assume
that those conditions are defined by the (external) incoming
load λ of requests. We assume that the system that sets the
elasticity decision policy keeps log measurements in order
to be able to evaluate the utility functions given the current
value of λ as explained below. Also, the elasticity loop is
suspended for some period after each action to allow the
system to stabilize. In applications with stateless VMs, this
period is very short; however, for applications running VMs
with partitioned databases, this period can be 5-10 minutes
(or even higher), since each new VM needs to receive data
from running VMs in order to become operational. Finally,
elasticity decisions are typically bounded according to user-
specified limits, so that not too many VMs are added or
removed in a single step. When the upper bound takes into
account the maximum load change in a step (as we do in this
work), there is no compromise regarding elasticity efficiency
[13], while it offers protection from over-reacting; the need
for a lower bound may also stem from the replication factor
in NoSQL databases, which implicitly specifies how many
nodes can be removed in a single step without possible data
loss.

A. Elasticity Models

MDPs provide a mathematical framework for modeling
decision making in situations, where outcomes are partly
random and partly under the control of a decision maker
[14]. This condition fits well into our problem domain,
where we need a) to take decisions by choosing among
multiple options, i.e, adding or removing or maintaining
the number of active VMs and b) to maximize a utility
function that quantifies the value of each system state, which
is constantly evolving and hard, if not impossible, to be
accurately predicted. MDP model verification is used in this
work to guide the elasticity. In the remainder of this section
we present the main rationale of our modeling approach.
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Figure 1: MDP model overview.

MDPs are specified by defining their states, actions,
transition probabilities and rewards. In our model, each
state corresponds to a different cluster size, where the
size equals to the number of active VMs, vms num. For
readability reasons, we denote a state as s[vms num]. There
are three types of possible actions on every state: 1) add
for VM additions, 2) rem for removals, and 3) no op for
no operation. For every distinct number of VM additions
or removals (ex. add1, rem2) there is a separate action, and
the corresponding transitions between two states through the
same action have aggregate probability 1.

The MDP associates a reward value to each state and
action. State and action rewards are calculated based on user-
specified utility functions. When the model is verified at run-
time, the utility at state s[vms num] essentially describes the
expected behaviour of the system when there are vms num
active VMs.

Figure 1(left) illustrates a simplified instance of the
MDP model, where the states represent the number of
active VMs. The edges represent the possible actions: 1)
addnew vms num (blue arrow), 2) remremoved vms num (red
arrow), and 3) no op (black arrow). In this example, the
maximum number of VMs allowed to be added or removed
in every step is 2, while the current number of active VMs
is 3 (s3 state). The action type is labelled on top of every
transition ([addx/remx/no op]).

The model of Figure 1 assumes that each state is asso-
ciated with a single reward value, but it can easily become
more elaborated to reflect additional aspects. Let us now
assume that the reward function depends on system latency
and throughput. However, for the same number of VMs, the
latency and throughput may vary significantly, due to factors
that are external to our model. This leads to an undesirable
situation, where the state reward does not reflect the actual
system behaviour well, and there is a high probability that
the system may end up in a state that significantly diverges
from the expected one. To ameliorate this, we can increase
the number of model states that correspond to a specific

number of VMs, so that, each state corresponds to a distinct
representative expected behaviour for the specific number
of active VMs. Moreover, we extend the model so that
it explicitly covers the probabilities of encountering each
of the new states. As it is presented in Figure 1(right),
there are two model states (sx1

, sx2
) for a single size x,

and the transitions are enriched with the probabilities of
encountering each of those two states through the same
action; prob = prob1 + prob2 in the figure. Thus, when a
MDP solver examines possible actions to maximize the total
reward, it can better capture the fact that the behaviour of the
system is non-deterministic and unpredictable. Nevertheless,
the higher expressivity of the model comes at the expense
of larger state space size, compared to the simpler model.
However, according to Section IV-D, the additional overhead
is negligible. More details about the number of states per
VM number are given in Section II-B2, where the notion of
clusters of log measurements is added to our model.

B. Policies for Elasticity Decisions

There are several options to analyze the MDPs. We dis-
tinguish between indirect (based on reinforcement learning)
and direct methods (based on dynamic programming).

Indirect methods are exemplified by the Tiramola ap-
proach, which relies on online training and convergence
of action-value functions, which, in turn allows to attain
optimal policies through greedy actions and a Q-learning-
based reinforcement learning approach. Exact details are
provided in [2].

The direct methods analyze MDPs per se. In our approach
we use the PRISM tool to this end, because, as will
explained later, we do not only solve it online but we also
perform online property verification.

1) On solving MDPs directly: A challenge in the direct
MDP solutions is to define conditions to terminate the veri-
fication process in order to allow for meaningful quantitative
verification (i.e., ensuring finite rewards). We propose two
distinct ways to perform this task:

• Bounded By Action (BBA): In our model, the verifi-
cation can be terminated on every state if that state is
reached through a no op action, because the latter de-
notes that no change in VMs is beneficial. In addition,
once the first action is an add (resp. rem) one, we
allow only VM additions (resp. removals), i.e., we do
not allow mixed add and remove state transitions, which
are harmful in practice. Consequently, every accessible
state is visited and its reward is computed at most once.

• Bounded By Steps (BBS): According to this option,
when a pre-specified number of transitions (steps) is
reached, the verification terminates. Every possible ac-
tion is allowed in every step, including multiple actions
of the same type (e.g., no op → no op). This is
the most broadly used way to terminate verification in
traditional model checking.



The solution of an MDP consists of finding a sequence
of transitions that lead to reward maximization. In our ap-
proach, we assign rewards only to states; assigning rewards
to actions is left for future work. Based on the selected
verification termination condition presented above, there are
two ways of reward manipulation:

• Instantaneous rewards: if the BBA way is used, then
instantaneous rewards for every distinct reachable state
are computed; those instantaneous rewards imply that
the reward of only the final state reached is of signifi-
cance [9].

• Cumulative rewards: if the BBS way is employed, then
a cumulative state reward is used to derive the total
reward of an examined path. On every step the state
reward of the current state is accumulated to a single
reward. This approach implies that the optimal solution
is a sequence of states and puts emphasis on the whole
transition path.3

2) State Reward Specification and Utility Functions: In
our approach, all state rewards are derived from clustering
log measurements of similar past conditions, where the
similarity is defined according to the external load. More
specifically, we take the approach in [2] as a baseline: in
each elasticity step where we instantiate a model, we group
log measurements for a specific number of active VMs by
their incoming load λ, and then those measurements are
fed into a k-means clusterer, which returns k center points.
The center of the biggest log measurements’ cluster is the
one which is selected as the most representative point for
every state. However, when reaching such a state as a result
of an elasticity action, the real state encountered may be
closer to one of the remaining center points. To overcome
this concern, we can extend the model so that it explicitly
covers all the returned k centers with probabilities that are
proportional to the size of their clusters; this requires the
modeling option in Figure 1(right). Based on the extended
model, we can define one state for each of the k clusters of
log measurements. In this work, k is set to 3.

The next step is to map each such cluster to a reward,
and this is achieved through a user-defined utility function.
To comply with the rest of the model, utility functions are
functions of the number of active VMs and are used to derive
the state rewards in each model instantiation. Numerous
utility functions can be used in elasticity scenarios, see [2]
for a few of them. In this work, we want to focus on a utility
function that penalizes both under- and over-provisioning.
Since our example scenario considers NoSQL data stores,
thr (for throughput) and lat (for latency) variables are two
of the most significant properties to quantify performance.
These two metrics are actually correlated: when lat is kept

3Cumulative rewards without a discount factor cannot be used unless
the number of steps is bounded; otherwise the maximum reward goes to
infinity.
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low, i.e., user requests are answered in time that does not
exceed a given threshold, then thr can closely follow λ.
The current work examines the following utility function
(although the methodology presented above is independent
of specific utility functions):

r =

1 + 1/vms num if lat ≤ x

0 if lat > x.
In this function, x is the user-specified latency threshold,

which should not be exceeded. The above utility func-
tion addresses the need for both under-provisioning and
over-provisioning. Given that latency violations are due
to under-provisioning, r penalizes the fact of activating
fewer VMs than those needed. When the system is not
under-provisioned, by placing the number of VMs to the
denominator, we penalize over-provisioning. The model is
extensible and it can accommodate additional variables (e.g.,
CPU utilization) and utility functions.

Interestingly, the specification of model state rewards can
be further refined taking into account the specific utility
function employed. For example, instead of running k-means
to all log measurements in order to derive the log clusters,
one could map all log measurements that contain latency
violations to a single cluster and then run k-means for
k − 1 clusters on the rest of the log measurements. The
transition probabilities to each of those clusters for a specific
action would be equal to the number of log measurements
contained in that cluster. This type of model states makes a
clearer distinction between desirable and undesirable states
and despite of being utility function-specific, it facilitates to
probabilistically guarantee under-provisioning, as explained
later. A more detailed example is shown in Figure 2, where
the current load is 9.5K, the number of VMs is 10 and the
latency threshold is 45ms; the log entries close to that value
are clustered in three groups, one for each of the three model
states corresponding to 10VMs.

3) Prediction: As explained above, the state rewards are
dynamically computed in each elasticity step according to
the existing log measurements for the current external load
λ. It is straightforward to extend our model states with
information about the time step expected to visit each state
(no diagrams are illustrated due to space limits) and then,



define the reward of model states according to the predicted
external load at that time step. This is beneficial when the
load is rapidly evolving, and as such, the actual reward of
the same model state may be highly different at different
time points. An ARIMA-based predictor can be built to
predict future load values, as in [15]. Note that such a
modeling flavour can also account for the delays in enacting
an elasticity decision. For example, when adding a VM from
a given state, the time step information of the resulting
model state will consider the time overhead incurred to add
a new VM and that VM to become fully operational (i.e.,
to receive data in a NoSQL cluster).

4) Complete Decision Policy Specification and Quanti-
tative Analysis: We propose two decision policies that are
both formalized (as being based to a formal MDP model)
and dependable (as being the result of online verification).
Probabilistic Computation Tree Logic (PCTL), encapsulated
in the PRISM tool, allows for probabilistic quantification of
described properties. The proposed policies differ in the way
PCTL is employed as described below4:

• SIMPLE (direct MDP solution, BBA, Instantaneous
rewards): With the help of PCTL, for each state of an
instantiated model, we extract the maximum expected
instantaneous reward for reaching that state, which is
based on a direct solution of the MDP. Then, we choose
the most profitable state, i.e., the whole problem is a
max-max one. Finally, we either try to move the system
to that state, or if this is not possible, e.g., if the amount
of VMs required to be added exceeds the user-specified
bounds of additions in a single step, we select the action
that leads to the closest state to the target state.

• ADVANCED (direct MDP solution, BBS, Cumulative
rewards, probabilistic guarantees): In this decision
policy, we employ cumulative rewards. Then we ask for
the maximum expected reward after a specified number
of steps l. The result of the model verification process
is a graph of possible sequences of actions. We collect
all the first actions (i.e. the actions that begin from the
current state) and using a second PCTL expression,
we detect the one which has the minimum expected
probability to lead to a latency violation, i.e., to visit
a state with 0 reward according to the utility function
presented earlier. This policy behaves better when we
follow the modeling approach where for each number
of active VMs, there is a single cluster that exclusively
covers all violating log measurements (termed as VC).

Using PCTL formulae, the users can input additional
high-level queries about the probability of the amount of
additional resource metrics taking into consideration applied
actions and reached states. For example, we can pose ques-

4An elasticity policy very close to SIMPLE has been proposed in [11]
as MDP2 along with additional flavours that we omit here for brevity;
ADVANCED is novel.

tions like the following: “What is the maximum probability
of the latency to be less than 30 milliseconds after state
s7 is reached?”, which, in PRISM, can be formulated in
this way: Pmax =? [F latency < 30 & vms num = 7],
where F implies the satisfaction of the reachability property
[9]. Another example question is: What is the probability
that the system will remain in the decided state (assuming
that the current environmental conditions do not change)?
Similarly, we can ask about minimum probabilities and
any other metrics used in the model (e.g., throughput). In
summary, we can pose any query involving maximum and
minimum probabilities and/or rewards. In this way, the user
can be more informed about the reason the selected decision
was taken and has the ability to examine any metrics of
the system, provided that they are employed in the utility
functions and thus are captured by the model.

III. INCORPORATION INTO EXISTING SYSTEMS

Our elasticity decision approach can be encapsulated
in every elastic manager provided that the latter meets
the following requirements: it is capable (i) of collecting
log measurements that are used for the training and the
instantiation of the models and (ii) of enforcing the elasticity
decisions taken.

In our prototype implementation, our PRISM-based de-
cision technique is incorporated within Tiramola,5 which is
a modular, cloud-enabled, open-source system that enables
elastic scaling of NoSQL clusters according to user-defined
policies and incoming load. It allows seamless interaction
with multiple IaaS platforms, requesting/releasing VM re-
sources and orchestrating them inside a NoSQL cluster. Our
approach is also compatible with cloud managers like the
ones used by Amazon. In that case, the log measurements
are provided through Amazon’s EC2 CloudWatch and the
decisions can be enforced through Amazon’s EC2 Auto
Scaling service. Note that the main current elasticity policy
of Amazon is rule-based; in the next section, we compare
the efficiency of rule-based decision policies against ours.

IV. EVALUATION OF DECISION POLICIES

The main purpose of this section is to assess the efficiency
of the decision policies enabled by our approaches. Since
there can be too many combinations of models and decision
policy configurations, we compare only a representative
subset of decision policies:

• RE, which aims to reproduce pure reactive rule-based
decision policies, where elasticity actions are triggered
by constraint violations, like those enabled by Amazon
EC2.

• RL, which employs the model in Figure 1(left), the
Q-learning reinforcement learning approach and the
state’s reward is computed according to the center of the

5Publicly available from http://code.google.com/p/tiramola/

http://code.google.com/p/tiramola/


biggest cluster of log measurements, (thus reproducing
the approach in [2], which represents the state-of-the-
art in NoSQL elasticity).

• SIMPLE, which employs the model in Figure 1 with 3
model states per number of active VMs unless stated
otherwise and a direct MDP solver is used through
PRISM.

• ADVANCED, which employs the model in Figure 1
with 3 model states per number of active VMs unless
stated otherwise and provides probabilistic guarantees
as explained earlier. The number of steps l is set to 3.

A. Experimental Setup

We first collected logs from a real infrastructure, and
then we ran emulated experiments based on those logs.
The reason behind this is to allow for a completely fair
comparison between the various techniques. In order to
collect real data, we conducted log measurement experi-
ments using the okeanos IaaS infrastructure [16], and the
YCSB benchmark. For our NoSQL cluster, we have used
4 client VMs as load generators with 2 VCPUs and 4GB
of RAM and 5GB storage each, and up to 18 cassandra
server VMs (minimum 8 VMs) with 2 VCPUs, 2GB of RAM
and 20GB storage each. The server VMs were created and
booted before the experimental procedure. In all cases, the
OS was “Debian Base” (7.4) running Linux 3.12.6 kernel
the java VM runtime from the SUN JRE v1.7.0 51, and
ganlia monitor v3.3.8 [17]. Cassandra v2.0.9 with 256 virtual
nodes per host and a replication factor of one is installed
and configured on every server VM. A (heavily modified)
version of YCSB-0.1.4 ran on every client VM to produce
the load; the modifications were made to support database
metrics reporting on ganglia.

The workload consists of asynchronous read requests in
uniform distribution. We have created varying sinusoidal
load from 4000 (req/sec) up to 16000 (req/sec). We collected
measurements every 30 secs, and in each sine period, there
were 360 measurements.

The collected measurements are used firstly, to populate
the initial logs of each policy, and secondly, to emulate a real
situation. Through emulation, we managed to fairly test each
policy on an equal basis, which could not be done if each
policy ran separately in a real cluster. In our emulation, a
time unit corresponds to the measurement collection period,
i.e., 30 secs. We allow an elasticity action to take place
every 10 time units, to emulate a system that may modify
the VMs every 5 mins (or 10 mins is cases of add action,
to allow the system to stabilize). Later, we examine more
frequent options and we allow for decisions every 30secs.
As the emulated load is generated based on the logs, which
also act as training set, we consider that the system is well
trained; note that some policies like RL are more sensitive
than others to the quality of training [13].
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Figure 3: Latencies for 8 (top) and 18 (bottom) VMs

The load applied during elasticity experiments is a 5
period sinusoidal workload varying from 4000 (req/sec) to
16000 (req/sec) coupled with with 2 plateau periods at 13000
(req/sec) for 1000 time units each. In every up-scale action,
up to 3 VMs can be added, while during down-scaling, up
to 2 VMs are allowed to be removed in a single step.

The latency threshold in the utility function is set to
45ms; later, we examine further thresholds. Additionally,
for RE, a lower latency threshold is set to 20 ms to trigger
a remove action. Figure 3 presents the latency distribution
in two characteristic states of the collected dataset, where
the dotted line shows the latency threshold. For the lowest
amount of load, there are few latency values that violate the
threshold (mostly caused by the cold cache of the system
at the beginning of the measurement collection) and the
system can handle load up to about 8000 req/sec. For the
maximum number of active VMs (18), except from a few
outlier measurements, the system can handle the full amount
of the incoming load.

B. Experimental Results

In Figure 4, we present the adaptation of the number
of VMs to the incoming load for each policy. All the
policies can broadly follow the load variation, however
RE (Figure 4a) does that in a less close fashion, as it
takes the lowest number of state change actions (addi-
tions/removals) (4.62% of the total actions). This helps in
avoiding under-provisioning and it experiences violations in
only 2% violations of the steps; however it increases over-
provisioning as will be discussed later. The other policies



0 2000 4000 6000 8000 10000 12000 14000 16000

steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m

s

RE

change state actions (%): 4.62
violations (%): 2.03

(a) RE

0 2000 4000 6000 8000 10000 12000 14000

steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

9

10

11

12

13

14

15

16

17

v
m

s

RL

change state actions (%): 29.08
violations (%): 14.50

(b) RL-MB

0 2000 4000 6000 8000 10000 12000 14000

steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m

s

SIMPLE

change state actions (%): 24.43
violations (%): 9.76

(c) SIMPLE

0 2000 4000 6000 8000 10000 12000 14000

steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m

s

ADVANCED

change state actions (%): 26.21
violations (%): 10.08

(d) ADVANCED

Figure 4: Variation of the external load and the number of active VMs
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Figure 5: Aggregated Latency Violations

Decision Policy RE RL-MB SIMPLE ADVANCED

avg. utility 0.35 0.64 0.61 0.63

Table I: Average normalized utility

apply more state change actions to cope with the constantly
evolving load change: RL(Figure 4b) performs changes in
29.08% of the steps, SIMPLE(Figure 4c) in 24.43% , and
ADVANCED(Figure 4d) in 26.21%. The instability on the
minimum amount of load (4000 (req/sec)) in every decision
policy is explained by the outlier values presented in Figure
3.

We quantify under-provisioning by counting the number
of steps where a latency violation occurs, as shown in
Figure 5. RE policy seems to achieve the best behaviour

regarding avoiding under-provisioning as the percentage of
violations is 2.03%, while RL achieves the worst with
14.5% violations, i.e., it suffers from under-provisioning.
The other two policies SIMPLE and ADVANCED exhibit
an almost equal amount of latency violations, that is 9.76%
and 10.08% respectively. For these numbers, we excluded
the time steps in which the system tries to stabilize after
an add action, but the pattern does not change if those time
steps are considered.

Over-provisioning is quantified with the help of the utility
function that penalizes the unnecessary use of extra ma-
chines. According to Table I, RL, SIMPLE and ADVANCED
policies achieve significantly higher average utility than RE.
The values in the table are normalized to the range [0,1].
The actual values range from 1+(1/18) = 1.056 to 1+(1/8)
= 1.125. Combining the values in that table and in Figure
5, we see that SIMPLE and ADVANCED can strike a better
balance between under-provisioning and over-provisioning.

Next we explain how the model extensions discussed
in Sections II-B2 and II-B3 further improve ADVANCED.
These are (i) to employ a utility function-specific MDP
model state through VC, as presented in Section II-B2 and
(ii) to employ a prediction module (PRE). Figure 6 examines
the following combinations: (i) ADV+VC for ADVANCED
combined with a model state exclusively for violations, and
(ii) ADV+VC+PRE for additionally incorporating prediction
of future external load values. The prediction error bound
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Figure 6: Aggregated Latency Violations for ADVANCED
enhancements
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Figure 7: Variation of the external load and the number of
active VMs for ADV+VC (top) and ADV+VC+PRE (bottom)

for the kth future step is 0.05k times the minimum load.
Both enhancements lead to a great decrease in the occa-
sions of under-provisioning, which are nearly eliminated
for ADV+VC+PRE. However, this comes at the expense
of lower normalized utility (0.45). Figure 7 shows the
behaviour of those decision policy alternatives. We have also
examined the combination of the SIMPLE decision policy
with a model state corresponding to a log measurement
cluster with violations: the percentage of latency violations
drops to 2.41% from 9.76%, but the average utility drops
similarly to ADV+VC+PRE.

A final note is that, in this setting, it is not surprising
that RL yields the highest utility, because RL is based on
an optimally solved MDP and we assumed full and accurate
training of the Q-learning approach. However, RL cannot
reach the level of under-provisioning avoidance that SIMPLE
and ADVANCED do, which is attributed to the modeling
extensions presented and the probabilistic guarantees.
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Figure 8: Results for higher decision frequency

Decision Policy RE RL-MB SIMPLE ADVANCED

avg. utility 0.34 0.71 0.61 0.61

Table II: Average normalized utility for higher decision
frequency

C. Sensitivity Analysis

The policies and the evaluation setting described previ-
ously contain several fixed parameters. In this part of the
experiments, we aim to provide string insights into how
changing those parameters affects the results. We focus on
(i) the decision frequency, (ii) the prediction accuracy, and
(iii) the latency threshold.

1) Decision Frequency: In our experiments so far, deci-
sion making is activated every 10 time units or 5 emulated
minutes, i.e., even if no action is decided at a specific point,
the next consideration takes place after 10 time units. We
now allow for making decisions at each time step (unless
this step falls into a stabilization period). Figure 8 shows the
behaviour of each policy and, with the help of Figures 5 and
6, we can see that our two proposals benefit the most in terms
of the latency violations. For the example, the percentage of
violations for the ADVANCED policy drops by 48%. This
comes at the expense of a slight decrease in normalized
utility. As shown in Table II, the utility of RL is increased
by 10%, but the decrease in latency violations is only 23%.
Figure 8 also considers the ADVANCED extensions. For
ADV+VC policy, the percentage of violations drops by 73%
(from 2.54% to 0.68%) and the average normalized utility is
slightly increased (from 0.46 to 0.47). The ADV+VC+PRE
policy is less affected by the change in the frequency of
the decisions. Overall, our policies exhibit efficient elastic
behaviour at both high and low decision making frequencies.

2) Prediction Accuracy: Here we assess the impact of
the accuracy of the prediction. As we have already men-
tioned, the prediction error bound for the kth future step is
0.05k times the minimum load. In this section we present
experimental results for both accurate and more inaccurate
predictions. For the latter, the error bound is doubled. Figure
9 summarizes the latency violations for the ADV+VC+PRE
policy. The difference from the accurate setting is small.
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Figure 9: Results for different prediction accuracies
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For even more inaccurate setting, the violations increase, but
they are still less than 0.5%. This implies that our proposals
are robust to prediction inaccuracies.

3) Latency Threshold: Until now, the latency threshold
is set to 45 ms based on the latency distribution of the
dataset for the maximum amount of active VMs (18). As
Figure 3 (bottom) depicts, this is the minimum possible
threshold to allow the maximum number of VMs to operate
without violations. In this section we conduct experiments
with lower and higher latency thresholds, namely 40 ms
and 50 ms, respectively; see Figure 10, where we can
observe that for the lower threshold (40 ms, red dotted line),
even the maximum number of VMs is not capable of fully
avoiding violations. Due to space constraints, we do not
present detailed results. However, the same trend as in the
previous cases appears: ADVANCED strikes a better balance
between latency violations and utility, and its extensions
further improve on this trade-off.

D. Decision Making Overhead

Using an Intel i7 4700M CPU (4 cores, 8 threads) with
8GM RAM, on average, the RL decision policy takes 0.013
secs to reach a decision, while our most expensive policy
that invokes PRISM, namely ADV+VC+PRE, takes 5.8 secs.
RE decides almost instantly (0.0002 secs). However, the
difference of two orders of magnitude in the running time
between the RL and our proposals is insignificant in practice,
where we typically take elasticity actions every 5 or 10 mins.

V. RELATED WORK

Our proposal is, to the best of our knowledge, the first
advocator of online quantitative verification to drive cloud
elasticity. In this section, we mention other representative
approaches to the same problem and we discuss further
differences with our proposal.

Using MDPs combined with reinforcement learning-based
policies to decide the number of VMs has been proposed
in [2], [13]. Compared to those proposals, we allow for
direct MDP solvers, dynamically instantiated models and
quantitative analysis.

The authors in [18] combine cloud elasticity with anomaly
prevention. This proposal utilizes a prediction technique
based on system metrics to vertically scale the resources of
the VMs or to decide for VM migration, i.e., they consider
different forms of elasticity, as is also the case in [4],
[5]. In our work we employ prediction; however, analyzing
the efficiency and effectiveness of prediction techniques
is an interesting direction that we leave for future work.
Complementarily to us, [19], [15] deal with heterogeneity
issues, while we assume that all VMs are of the same type.

A significant number of proposals use rule-based tech-
niques to guide the elasticity, e.g., [20], [21]. The former
presents an enhanced rule-based technique with predictive
capabilities. In [21], a technique is proposed that addresses
the implications of an elastic action across multiple di-
mensions, providing for example the cost implication of
a horizontal scaling action. None of those techniques is
accompanied by online probabilistic verification of elasticity
properties. For elasticity in cloud data stores, there are
several proposals, such as [22], [23], [6], [3]. Apart from
being limited to a specific setting, they tend to focus on
satisfaction of strict SLOs, instead of maximizing utility.

Finally, model checking and runtime quantitative verifi-
cation for cloud solutions other than horizontal scaling has
been proposed in [24] and [25]. The former, utilizes PRISM
to guide service adaptation, while the latter presents a
technique to predict the minimum cost of cloud deployments
using PCTL over MDP models.

VI. SUMMARY AND FUTURE WORK

This work presented a formal, probabilistic model
checking-based approach to resizing an application clus-
ter of VMs so that elasticity decisions are amenable to
quantitative analysis. We presented MDP elasticity models
and associated elasticity policies that rely on the dynamic
instantiation of such models. We also conducted experiments
using real datasets, and we presented results showing that
we can significantly decrease the frequency of user-defined
threshold violations and attain high utility values; these
aspects are directly related to under-provisioning and over-
provisioning, respectively.

In this work we have shown but not fully exploited the
potential of MDP models, which we plan to do in the



future. MDP models can naturally capture complementary
non-deterministic aspects of elasticity in real systems, such
as provision for failure or long delays to enforce an elas-
ticity decision and support for additional forms of elasticity
like vertical resizing (e.g. resizing of CPU,RAM resources)
and/or taking into consideration different VM types. Other
directions for future work include the consideration of
additional utility functions that are more directly associated
with common usage and charging policies on clouds (e.g.,
to consider the charging-by-hour model to reason about
over-provisioning), mitigating the impact of outdated log
measurements in cases where there are significant shifts
in the system behaviour, and more thorough experimental
analysis.
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