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ABSTRACT

In this paper we present the Brown Dwarf, a distributed
system designed to efficiently store, query and update mul-
tidimensional data over an unstructured Peer-to-Peer over-
lay, without the use of any proprietary tool. Brown Dwarf
manages to distribute a highly effective centralized structure
among peers on-the-fly. Both point and aggregate queries
are then naturally answered on-line through cooperating
nodes that hold parts of a fully or partially materialized
data cube. Updates are also performed on-line, eliminating
the usually costly over-night process. Our initial evaluation
on an actual testbed proves that Brown Dwarf manages to
distribute the structure across the overlay nodes incurring
only a small storage overhead compared to the centralized
algorithm. Moreover, it accelerates cube creation up to 5
times and querying up to several tens of times by exploiting
the capabilities of the available network nodes working in
parallel.

Categories and Subject Descriptors

H.3.4 [Information Systems|: Systems and Software—

Distributed systems; H.2.7 [Information Systems]: Database

Administration—Data warehouse and repository

General Terms

Design, Management
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1. INTRODUCTION

Data warehousing has become a vital component of every
organization, as it contributes to business-oriented decision-
making. Large companies, scientific organizations (NASA,
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Figure 1: Motivating scenario of distributing a Data
Warehouse

WMO, etc.) or even more specialized enterprises (such as
government, Internet-related, etc.) heavily rely on data
analysis in order to identify behavioral patterns and dis-
cover interesting trends/associations. Data warehouses store
vast amounts of historical and operational data (in the form
of multidimensional cubes), mainly due to the automation
of business processes, the growing use of sensors and other
data-producing devices along with the globalization of mar-
kets. Their candidate workloads usually consist of read-only
queries interleaved with batch updates.

Yet, data warehouses present a strictly centralized and
off-line approach in terms of data location and processing;:
Views are usually calculated on a daily or weekly basis af-
ter the operational data have been transferred from various
locations. The challenge of scaling very large datasets along
with the need for continuous data mining in order to detect
real-time changes in trends, have given birth to the idea of
creating distributed data-warehouse-like architectures.

As a motivating scenario, let us consider the computa-
tional center of a research or business establishment that
maintains records over its operations. Instead of a central-
ized data warehouse, the management prefers a horizontal
partitioning of the database (according to some metric, e.g.,
geographic), so that on-line queries on the multiple dimen-
sions can be performed. Fig. 1 depicts a sample scenario
where multiple establishments of a business insert, update
and query such a distributed warehouse.

There are big challenges in proposing such a system. Cen-
tralized warehousing systems offer indexing schemes for stor-
ing and efficiently querying data cubes (e.g., [5, 6]), but
only work in controlled environments, failing to scale. Some



Table 1: A sample fact table with three dimensions
and one measure

DIM1 | DIM2 | DIM3 | Measure
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

works in the field propose distributed warehousing systems
(e.g., [1,4]), but the warehouse and its aggregation, update
and querying functionality remain centralized. Recently, ef-
fort has been made to distribute the data warehouse itself
by applying techniques from the field of P2P computing [3],
but with no a priori consideration for group-by queries.

Our goal is to create a distributed data warehousing sys-
tem, where geographically spanned users, without the use of
any proprietary tool, can share and query information. We
intend to distribute a well known and highly efficient data
structure, the Dwarf [6]. While the Dwarf offers many ad-
vantages, like data compression and efficiency in answering
aggregate queries, it exhibits certain limitations that pro-
hibit its use as a solution for our motivating problem. Be-
sides the lack of fault-tolerance and decentralization, recent
work [2] indicated that, depending on the cube’s density,
a Dwarf structure may take up orders of magnitude more
space than the original tuples. To this end we propose the
Brown Dwarf!, a system that performs on-line distribution
of Dwarf over network hosts in a way that all queries that
were originally answered through the centralized structure
are now distributed over the network. The distribution of
the Dwarf structure relaxes its storage requirements and en-
ables the computation of much larger cubes. Moreover, it
allows for on-line updates that can originate from any host
that accesses the particular service.

2. THE ORIGINAL DWARF

Dwarf [6] is a complete architecture for computing, stor-
ing, indexing, querying and updating both fully and par-
tially materialized data cubes. Dwarf’s main advantage is
the fact that it eliminates both prefix and suffix redundan-
cies among the dimension values of multiple views. Pre-
fix redundancy happens when a value of a single or multi-
ple dimensions occurs in multiple group-bys (and possibly
many times in each group-by), while suffix redundancy oc-
curs when some group-bys share a common suffix.

To better understand how Dwarf indexes the dataset and
uses its properties to answer queries, we show in Fig. 2 the
cube created by this algorithm for the fact table of Table
1. The structure is divided in as many levels as the number
of dimensions. The root node contains all distinct values of
the first dimension. Each cell value points to a node in the
next level that contains all the distinct values that are asso-
ciated with its value. Grey cells correspond to “ALL” values
of that cell, used for aggregates on each dimension. Any
group-by can be realized through traversing the structure
and following the query attributes leading to a leaf node
with the answer. For example, (S1,C3, P1) will return the
$40 value while (S2, ALL, ALL) will return the aggregate
value $140 following nodes (1)—(6)—(7).

LA brown dwarf is an object which has a size between that
of a giant planet and that of a small star. It is possible that
a non-negligible portion of the mass in the Universe is in the
form of brown dwarfs.
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Figure 2: Centralized Dwarf for the fact table of
Table 1, using the sum aggregation function
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Figure 3: The distribution of the dwarf nodes in the
Brown Dwarf of Table 1 and their hint tables

3. THE BROWN DWARF SYSTEM

The essence of Brown Dwarf is the distribution of the
original, centralized dwarf structure over the nodes of an
unstructured overlay in a way that guarantees equal storage
and bandwidth consumption as well as query processing ef-
ficiency. The general approach is the following: Each vertex
of the dwarf graph (henceforth termed as dwarf node) is des-
ignated with a unique ID (UID) and assigned to an overlay
(or network) node. We assume that each network node n is
aware of the existence of a number of other network nodes,
which form its Neighbor Set, NS,,. Adjacent dwarf nodes are
stored in adjacent network nodes in the P2P layer by adding
overlay links. Thus, each edge of the centralized structure
represents a network link between n and a node in NS,,.

Each peer maintains a hint table, necessary to guide a
query from one network node to another until the answer
is reached. The hint table is of the form (currAttr, child),
where currAttr is the current attribute of the query to be
resolved and child is the UID of the dwarf node the currAtir
leads to. In case of a leaf node, child is the aggregate value.
In order to route messages among network nodes, each of the
peers maintains a routing table that maps UIDs to network
IDs (e.g., IP address and port).

Pictorially, Fig. 3 shows that nodes (1) through (9) are
selected in this order to store the corresponding dwarf nodes
of Fig. 2. These nodes form an unstructured P2P overlay,
using the indexing induced by the centralized creation al-
gorithm. Queries and updates are then naturally handled
using the same path that would be utilized in Dwarf, with
overlay links now being followed.

Compared to the traditional Dwarf, BD offers significant
advantages. The distribution of the Dwarf structure relaxes
its overwhelming storage requirements and enables the com-
putation of much larger cubes. Moreover, BD allows for on-
line updates that can originate from any host participating
in the dwarf structure.




3.1 Insertion

The creation of the data cube is undertaken by a specific
node (creator), that has access to the fact table. The cre-
ator follows the algorithm of the original dwarf construction,
distributing the dwarf nodes on-the-fly during the tuple-by-
tuple processing, instead of keeping them in secondary stor-
age. The creation of a cell in the original dwarf corresponds
to the insertion of a value under currAttr in the hint table.
The creation of a dwarf node corresponds to the registration
of a value under child. Thus, all distinct values of the cells
belonging to a dwarf node are eventually registered under
currAttr. Moreover, the node each currAttr points to is kept
under the child attribute. In the case of a dwarf leaf node,
child corresponds to the measure or the aggregate value.

Let d be the number of dimensions and ¢, = (a1, az ... aq)
be the first tuple of the fact table. Upon processing of ¢1, a1
triggers the creation of the root node, meaning that a net-
work node from the creator’s NS is allocated (let it be node
Nroot). A new hint table is created and stored in Nroot un-
der a randomly chosen UID. At this point, only the currAttr
can be filled in with a1. Moving to a2, a new node is allo-
cated from the neighborhood of N,.ot and a new hint table
is created following the previous procedure. The UID of the
newly allocated node is added to Nyot’s hint table under a;.
The same procedure is followed by all dimension attributes
of t1 (plus the special ALL attribute wherever needed). As
the tuples are being processed one by one, new hint tables
are created and existing ones are gradually modified.

Note that the proposed insertion mechanism does not en-
tail an a priori creation of the centralized dwarf. Nodes are
created and hint tables are filled in gradually as tuples are
processed. The only information the creator needs to hold
at each moment is that of d dwarf nodes (the nodes of the
path that ¢, traverses).

For the first tuple of Table 1, the corresponding nodes and
cells are created on all levels of the dwarf structure (Fig.
2). Each of the created nodes (1), (2), (3) are assigned to
respective overlay nodes. In the hint table of (1), S1 is placed
under currAttr and (2) under child. Following the same
procedure, the routing table for (2) is filled in with C3 and
(3) and that of (3) with P, and $70 (the measure attribute,
since it is a leaf node). Insertion moves on to the next tuple,
which shares only prefix Si with the previous one. This
means that the Cs needs to be inserted to the same node as
C2, namely (2), and (4) needs to be allocated. Thus, (Cs,
4) must be registered in the node’s hint table. Moreover,
(3) is now closed, so ALL along with the aggregate value
$70 are registered in its hint table. Gradually, all necessary
nodes are allocated and their hint tables are filled in with
the appropriate routing information (see Fig. 3).

3.2 Query Resolution

Queries are resolved by following their path along the BD
system attribute by attribute. Each attribute value of the
query belongs to a dwarf node which, through its hint table,
leads to the network node responsible for the next one.

A node initiating a query ¢ = (g1, ¢z - - . ¢a), with ¢; being
either a value of dimension 7 or ALL, forwards it to Nyoot.
There, the hint table is looked up for ¢1 under currAttr.
If it exists, child will be the next node the query visits.
The above procedure is followed until a measure is reached.
Note here that, since adjacent dwarf nodes belong to over-
lay neighbors, the answer to any point or group-by query

is discovered within at most d hops. A DHT-like solution
would require an average of log N steps for each dwarf node
discovery (N being the size of the network), producing an
average of dlog N overlay hops for a query resolution.

Back to our example, let us consider the query S1ALLP:.
Beginning the search from (1), and consulting the child value
corresponding to Si, we end up at (2). There, since the
second dimension value is ALL, the query follows the path
indicated by the third entry of the hint table, thus visiting
(5). P> narrows the possible options down to the second
entry of the hint table, namely $70.

3.3 Incremental Updates

The procedure of incremental updates is similar to the in-
sertion process, only now the longest common prefix between
the new tuple and existing ones must be discovered follow-
ing overlay links. Once the network node that stores the
last common attribute is discovered, underlying nodes are
recursively updated. This means that nodes are expanded
to accommodate new attribute values and that new dwarf
nodes are allocated when necessary. Moreover, ALL cells of
dwarf nodes associated with the updated nodes are affected.

Assuming u = (u1,uz...uq) is the tuple to be added to
an existing BD, the update procedure starts from N0t fol-
lowing the path designated by w1, uz etc. Once the dwarf
node containing the last common attribute u; is discovered,
a new entry for u;+1 must be registered to the node where u;
points to. The following attributes (uit2...uq) will trigger
the creation of new dwarf nodes. The special ALL cells are
recursively updated for all nodes affected by the change.

4. EXPERIMENTAL RESULTS

We now present an evaluation of an initial implementation
of BD, entirely written in Java, using an actual test-bed of
N = 16 LAN commodity nodes (dual core, 2.0 GHz, 2GB
of main memory). The centralized approach has also been
implemented for direct comparison. In our experiments, us-
ing our own generator, we have created synthetic datasets
consisting of a fact table representing multidimensional data
with numerical facts. For the application workloads, we in-
clude both point and aggregate queries with varying propor-
tions/distributions as well as batch updates.

Cube Creation: In the first set of experiments, we eval-
uate the creation of the distributed BD structure in terms
of construction time, storage and communication. We con-
struct BD and Dwarf cubes with variable number of dimen-
sions d (5 up to 25), with cardinalities equal to 1K values.
The datasets consist of 10K tuples, following uniform, self-
similar (80-20) and Zipfian (0 = 0.95) distributions. Storage
consumption and insertion times are presented in Table 2.

First, we note that the total cube size is always bigger than
the fact table by a factor that increases with dimensionality
and skew. For d = 25, Dwarf takes up 152 times more
storage than the fact table of the Zipfian distribution, while
the BD expansion ratio reaches 195:1. This index growth,
which constitutes an intrinsic characteristic of the method is
an extra motivation for the distribution of the Dwarf cube.

The insertion time is in general proportional to the index
sizes. High dimensional datasets take longer to insert and
skew further slows down the process for both Dwarf and
BD. However, our system exhibits impressively faster cre-
ation compared to the centralized method, due to the fact
that BD allows for overlapping of the store process (each



Table 2: Storage requirements and creation time for Dwarf and

Brown Dwarf data cubes of various dimensionalities

Table 3: Effect of 1% increments
over various dimensions

Uniform 80-20 Zipf Uniform 80-20

d[F. Tbl/size(MB)|time(sec)|size(MB)| time(sec) | size(MB) [time(sec) d| time(sec) [msg/| time(sec) [msg/

(MB) |dwarf|BD|dwarf|BD|dwarf|BD|dwarf| BD |dwarf| BD |dwarf|BD dwarf| BD |upd |dwarf| BD |upd
5 0.2 11 414 11 8| 7 1 1 3 4 5| 7.1 |72 (146| 75| 6.4 |13.7
10 04 415 31 13 415 28 | 14 6 7] H4121 10017.7 [14.3 |50.8| 21.3 | 14.4 {49.8
15 0.6 719 63 29| 10|13 | 96 |43 | 22|27 | 226 | 74 1530.8 [21.8 |111.00 43.4 | 31.2 [120.4
20 0.8 13 17 | 122 |50 18 [23 | 352 | 82 54 | 69 | 543 |204 2048.6 27.9 [193.3104.1 | 65.8 [200.2
25 1.0 18 23 | 198 |88 | 29 37 | 729 (196 | 152 (195 (1206 [535 25/89.1 [39.1 [300.7172.1 [103.6 [305.7

Table 4: Query resolution times and communication
cost over various 1K querysets.

Uniform Zipf
d| time(sec) msg/| time(sec) msg/

dwarf| BD | q |dwarf |BD q
5 5240 (58| 19 1.7 |55
10 30.1 2.6 (10.9] 29 [1.2 |10.6
15 65.2 2.9 [15.6] 55.4 [1.2 |15.5
20 102.1) 3.0 |20.8| 88.3 1.5 |20.3
25 182.513.2 [25.9|172.1 9.2 [25.6

peer stores its part of the cube independently). The acceler-
ation is more apparent as the number of dimensions and the
skew grows: For instance, BD inserts the 25-d skewed cubes
up to 3.5 times faster than Dwarf. The acceleration factor
is not directly proportional to the number of participating
nodes: The cube calculation remains serial and the network
communication introduces latencies.

BD induces a storage overhead for all datasets. This over-
head is mainly attributed to the mapping between the net-
work IDs (set to 4 bytes each in our implementation) that
every dwarf node needs to keep in order to be accessible
by network peers and dwarf node IDs. This also explains
why the overhead slightly increases with the number of di-
mensions. Nevertheless, this overhead is shared among the
participating nodes: In the case of the 25-d Zipfian dataset,
even though the overhead is 43MB, the burden of each of
the 16 peers is only 2.7MB. Thus, the big advantage of BD
is the fact that it can store almost NV times as much data as
Dwarf, using N computers similar to the central case.

Updates: In this section, we observe the behavior of BD
when update batches are to be inserted to the distributed
structure. Utilizing the same datasets, we apply 1% incre-
mental updates which follow the uniform and the self-similar
(80-20) distributions. Results are presented in Table 3.

Taking advantage of the inherent parallelization that up-
dates (similar to insertions) exhibit, BD is up to 2.3 times
faster in the high-dimensional sets. Dimensionality plays a
big role in both the time and the cost of updates: The more
the dimensions, the larger the BD created, thus the more
dwarf nodes and cells are affected. As observed in the case
of cube creation, skewed datasets take longer to update, due
to the fact that updates in a dense part of the cube affect
more dwarf nodes and cells, thus slowing down the process
and creating larger network traffic.

Query Processing: In this section we investigate the
query performance of BD compared to that of Dwarf. Using
the same datasets as in the above experiments, we pose two
1K querysets that follow the uniform and Zipfian (0 = 0.95)
distributions respectively, with the ratio of point queries set
to 0.5. Moreover, P;, which we define as the probability of
a dimension not participating in a query, is set to 0.3. Table

4 summarizes the results.

First, we notice that in all cases BD resolves the work-
load noticeably faster than the centralized version. While
the query response times rise with the dimensionality for
Dwarf, BD times remain almost constant and only the 25-d
workloads cause a slight slowdown. The resolution of each
dimension of the query is an atomic operation that may be
performed by separate peers. Thus, having 16 nodes perform
1/0 operations in parallel instead of just one significantly
boosts performance. Especially in the case of biased and
high dimensional workloads, where there is more room for
parallelization, BD exhibits impressive acceleration factors,
performing up to 60 times faster than the original Dwarf. It
is thus apparent, that BD is able to handle a significantly
(by orders of magnitude) larger request rate than its central-
ized version. Moreover, the number of messages per query
is in all cases bound by d + 1: d messages to forward the
query to the dwarf nodes along the path towards the answer
and one to send the response back to the initiator.

S.  CONCLUSIONS

In this paper we presented Brown Dwarf, a system that
distributes a data cube across peers in an unstructured P2P
overlay. To our knowledge, this is a unique approach that
enables users to pose both point and group-by queries and
update multidimensional bulk datasets on-line, without the
use of any proprietary tool.

Our future work will focus on the improvement of the dis-
tributed characteristics of Brown Dwarf. Our goal is to ad-
dress load balancing among nodes, content availability and
resiliency under volatile environments. This dictates the de-
sign of a replication mechanism adaptive to both load skew
and node failures. Furthermore, we intend to deploy BD to
Cloud environments.
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