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ABSTRACT
Modern data analytics involve simple and complex compu-
tations over enormous numbers of data records. The volume
of data and the increasingly stringent response-time require-
ments place increasing emphasis on the efficiency of approx-
imate query processing. A major challenge over the past
years has been the efficient construction of fixed-space syn-
opses that provide a deterministic quality guarantee, often
expressed in terms of a maximum error metric. For data
reduction, wavelet decomposition has proved to be a very
effective tool, as it can successfully approximate sharp dis-
continuities and provide accurate answers to queries. How-
ever, existing polynomial time wavelet thresholding schemes
that minimize maximum error metrics are constrained with
impractical time and space complexities for large datasets.
In order to provide a practical solution to the problem,
we develop parallel algorithms that take advantage of key-
properties of the wavelet decomposition and allocate tasks to
multiple workers. To that end, we present i) a general frame-
work for the parallelization of existing dynamic program-
ming algorithms, ii) a parallel version of one such DP-based
algorithm and iii) a new parallel greedy algorithm for the
problem. To the best of our knowledge, this is the first at-
tempt to scale algorithms for wavelet thresholding for max-
imum error metrics via a state-of-the-art distributed run-
time. Our extensive experiments on both real and synthetic
datasets over Hadoop show that the proposed algorithms
achieve linear scalability and superior running-time perfor-
mance compared to their centralized counterparts. Further-
more, our distributed greedy algorithm outperforms the dis-
tributed version of the current state-of-the-art dynamic pro-
gramming algorithm by 2 to 4 times, without compromising
the quality of results.

1. INTRODUCTION
The technological and societal developments of our era

have resulted in an unprecedented production and process-
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ing of enormous data volumes, referred to with the term“Big
Data”. Applications, businesses, government organizations
and digital infrastructures alike contribute to this Big Data
reality. Processing over huge, heterogeneous and often im-
precise data (the Internet of Things [3] is such an example)
is considered common practice nowadays.

Approximate query processing has emerged as a viable al-
ternative for dealing with the huge amount of data and the
increasingly stringent response-time requirements [5]. Due
to the exploratory nature of many data analytics applica-
tions, there exists a number of scenarios in which an exact
answer is not required. Users are often willing to forgo ac-
curacy in favor of achieving better response times. In one
such example, visualizing available tradeoffs between accu-
racy and execution-time helps users to fine-tune the exe-
cution of queries [30]. Moreover, approximate answers ob-
tained from appropriate synopses of the data may be the
only option when the base data is remote and unavailable[7].

To that end, several approximation techniques have been
developed, including: sampling [5, 14, 4], histograms [19, 15,
20], wavelets [9, 13, 22, 24, 23] and sketches [16, 6]. Wave-
let decomposition [29] provides a very effective data reduc-
tion tool, with applications in data mining [25], selectivity
estimation [26], and approximate and aggregate query pro-
cessing of massive relational tables [9, 31] and data streams
[17, 11]. In simple terms, a wavelet synopsis is extracted by
applying the wavelet decomposition on an input collection
(considered as a sequence of values) and then summarizing
it by retaining only a select subset of the produced wavelet
coefficients. The original data can be approximately recon-
structed based on this compact synopsis. Previous research
has established that reliable and efficient approximate query
processing can then be performed solely over such concise
wavelet synopses [9].

Wavelet thresholding is the problem of determining the
coefficients to be retained in the synopsis given an avail-
able space budget B. A conventional approach to this prob-
lem features a linear-time deterministic thresholding scheme
that minimizes the overall mean squared error [29]. Still, the
synopses produced by this method exhibit significant draw-
backs [13], such as the high variance in the quality of data
approximation, the tendency for severe bias in favor of cer-
tain regions of the data and the lack of comprehensible er-
ror guarantees for individual approximate answers. On the
other hand, synopses that minimize maximum error metrics
on individual data values prove more robust in accurate data
reconstruction [12, 13].



However, the existing algorithms that minimize maximum
error metrics are strictly centralized and are usually based
on dynamic programming (DP) approaches, that demand a
lot of communication, memory and processing power. As
such, they cannot be executed over modern analytics plat-
forms and fail to scale to big datasets. In [22], GreedyAbs, a
heuristic-based solution is proposed, that is linear in prac-
tice. GreedyAbs is more efficient in terms of running-time
than the DP-based algorithms but at the cost of loosened
quality guarantees. Yet, this algorithm cannot scale to big
data either, as it follows a sequential path of execution that
prevents a data-parallel approach.

In this work, we present a general framework for adapt-
ing the existing DP algorithms to run over scalable, high-
throughput modern platforms. We also present DGreedy-
Abs, a new distributed greedy algorithm for the problem. In
this way, we offer scalable solutions to the wavelet thresh-
olding for maximum error metrics problem and thus, we en-
hance the usability of wavelets in modern applications. To
our knowledge, this is the first effort to adapt such algo-
rithms towards big data scenarios. In summary, we make
the following contributions:
• We present a general and scalable framework for the paral-

lelization of all the existing DP algorithms for the problem
and calculate its communication overhead. Our frame-
work is based on a novel error tree decomposition that
allows parallel processing of DP table rows. We demon-
strate that our proposed partitioning scheme has general
applicability, proving to be very efficient for other wavelet-
based algorithms. In order to demonstrate the benefits of
our approach, we create the DIndirectHaar algorithm, by
applying the proposed framework on IndirectHaar [24],
that is the current state-of-the-art. For datasets demand-
ing intensive computations, we show that DIndirectHaar
outperforms IndirectHaar by a factor of 2.7.
• We propose DGreedyAbs, a new distributed, heuristic-

based algorithm and study its computational complexity.
Our algorithm is based on three key ideas: 1) locality-
preserving partitioning similar to the one applied for the
DP algorithms, 2) speculative execution of the centralized
greedy algorithm and 3) merging and filtering of interme-
diate results. DGreedyAbs is 2×–4× faster than DIndirec-
tHaar and over 7 times faster than the centralized greedy
algorithm. Moreover, our experiments show that, com-
pared to GreedyAbs, the achieved performance exhibits
no quality degradation.
• We implement1 DGreedyAbs and DIndirectHaar on top

of the Hadoop processing framework and perform an ex-
tensive experimental evaluation using both synthetic and
real datasets. Previous approaches on the problem used
datasets of up to 262K datapoints. To put emphasis on
the merits of our approach, we experiment with datasets
of up to 537M datapoints, demonstrating the applicability
of our algorithms over big data scenarios.

The remainder of this paper is organized as follows: Section
2 presents the basic theoretical background for the wavelet
decomposition. In Section 3, we give an overview of the re-
lated work. Section 4 proposes a novel framework for the
parallelization of the DP algorithms and Section 5 presents
DGreedyAbs. Finally in Section 6, we experimentally eval-
uate our algorithms and in Section 7, we present the conclu-
sions.

1https://github.com/giagulei/dwmaxerr.git

Table 1: Wavelet decomposition example

Resolution Averages Detail Coef.
3 [5, 5, 0, 26, 1, 3, 14, 2] –
2 [5, 13, 2, 8] [0,−13,−1, 6]
1 [9, 5] [−4,−3]
0 [7] [2]

2. WAVELET PRELIMINARIES
Wavelet analysis is a major mathematical technique for hi-

erarchically decomposing functions in an efficient way. The
wavelet decomposition of a function consists of a coarse over-
all approximation together with detail coefficients that influ-
ence the function at various scales [29]. Thus, wavelets can
successfully approximate sharp discontinuities. In this Sec-
tion, we provide the basic background to the Haar wavelet
transform and its properties.

2.1 Haar Wavelets
Haar wavelets constitute the simplest possible orthogo-

nal wavelet system. Assume a one-dimensional data vector
A containing N = 8 data values A = [5, 5, 0, 26, 1, 3, 14, 2].
The Haar wavelet transform of A can be computed as fol-
lows: We first average the values in a pairwise fashion to
get a new “lower-resolution” representation of the data with
the following average values: [5, 13, 2, 8]. The average of the
first two values (i.e., 5 and 5) is 5, the average of the next
two values (i.e., 0 and 26) is 13, etc. It is obvious that, dur-
ing this averaging process, some information has been lost
and thus the original data values cannot be restored. To be
able to restore the original data array, we need to store some
detail coefficients that capture the missing information. In
Haar wavelets, the detail coefficients are the differences of
the (second of the) averaged values from the computed pair-
wise average. In our example, for the first pair of averaged
values, the detail coefficient is 0 (since 5 − 5 = 0) and for
the second is −13 (13−26 = −13). After applying the same
process recursively, we generate the full wavelet decompo-
sition that comprises a single overall average followed by
three hierarchical levels of 1, 2, and 4 detail coefficients re-
spectively, in order of increasing resolution (see Table 1). In
our example, the wavelet transform (also known as the wave-
let decomposition) of A is WA = [7, 2,−4,−3, 0,−13,−1, 6].
Each entry in WA is called a wavelet coefficient. The main
advantage of using WA instead of A is that, for vectors con-
taining similar values, most of the detail coefficients tend to
have very small values. Therefore, eliminating such small
coefficients from the wavelet transform (i.e., treating them
as zeros) introduces only small errors when reconstructing
the original array and thus results to a very effective form
of lossy data compression.

2.2 Error Trees
The error tree, introduced in [26], is a hierarchical struc-

ture that illustrates the key properties of the Haar wavelet
decomposition. Figure 1 depicts the error tree for our simple
example data vector A. Each internal node ci (i = 0, ..., 7)
is associated with a wavelet coefficient value, and each leaf
di (i = 0, ..., 7) is associated with a value in the original data
array. Given an error tree T and an internal node ck of
T, we let leavesk denote the set of data nodes in the sub-
tree rooted at ck. This notation is extended to leftleavesk
(rightleavesk) for the left (right) sub-tree of ck. We denote
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Figure 1: An error tree that illustrates the hierarchical struc-
ture of the Haar wavelet decomposition

pathk as the set of all nodes with nonzero coefficients in T
which lie on the path from a node ck (dk) to the root of the
tree T. Moreover, for any two data nodes dl and dh, we use
d (l : h) to denote the range sum Σhi=ldi.

Given the error tree representation T of a one-dimensional
Haar wavelet transform, we can reconstruct any data value
di using only the nodes that lie on the path from di to
the root of T. That is di = Σcj∈pathiδij · cj , where the
factor δij = 1 if di ∈ leftleavesj or j = 0 and δij =
−1 otherwise. For example, in Figure 1, value d5 = 7 −
2 − 3 − (−1) = 3. A range sum d(l : h) can be com-
puted using only nodes cj ∈ pathl ∪ pathh, by d(l : h) =
Σcj∈pathl∪pathhxj , where xj = (h− l + 1) · cj , if j = 0
and xj = (|leftleavesj,l:h| − |rightleavesj,l:h|) · cj , other-
wise. Here, leftleavesj,l:h = leftleavesj ∩ {dl, dl+1, .., dh}
and rightleavesj,l:h = rightleavesj ∩ {dl, dl+1, .., dh}. That
means that node cj contributes to the range sum d (h : l)
positively as many times as there are leaf nodes of the left
sub-tree of cj in the summation range, and negatively as
many times as there are leaf nodes of the right sub-tree of
cj , while the value of c0 contributes positively for each leaf
node in the summation range. In our example, d (3 : 6) =
(−1) · (−13)+(−1) · (−4)+(−2) ·2+4 ·7+1 · (−3)+6 = 44.

Thus, reconstructing a single data value involves summing
at most logN+1 coefficients and reconstructing a range sum
involves summing at most 2logN + 1 coefficients, regardless
of the width of the range.

2.3 Wavelet Thresholding
The complete Haar wavelet decomposition WA of a data

vector A is a representation of equal size as the original
array. Given a budget constraint B < N , the problem of
wavelet thresholding is to select a subset of at most B co-
efficients that minimize an aggregate error measure in the
reconstruction of data values. The non-selected coefficients
are implicitly set to zero. The resulting wavelet synopsis ŴA

can be used as a compressed approximate representation of
the original data.

We consider the decomposition of Figure 1 and assume
that only coefficients {c0, c5, c3} are retained in the synop-
sis, whereas all the rest are implicitly set to zero. In this
case, the reconstructed value for d5 is d̂5 = 7 − 3 = 4 in-
stead of the actual value d5 = 3. For assessing the quality
of a wavelet synopsis, many aggregate error-measures have
been proposed [10]. Among the most popular metrics are
the mean squared error (L2), the maximum absolute error
(max abs) and the maximum relative error (max rel):

L2

(
WA, ŴA

)
=

√√√√ 1

N

N∑
i=1

(
d̂i − di

)2

(1)

max abs
(
WA, ŴA

)
= maxNi=1

{
|d̂i − di|

}
(2)

max rel
(
WA, ŴA

)
= maxNi=1

{
|d̂i − di|

max{|di|, S}

}
(3)

In the above equations, d̂i denotes the reconstructed (ap-
proximate) value for di and S is a sanity bound used to
prevent the influence of very small values in the aggregate
error [31, 12, 13].

A preliminary approach to the thresholding problem is
based on two basic observations about a coefficient’s contri-
bution in the reconstruction of the original data values (and
range-sums). The first observation is that coefficients of
larger values are more important, since their absence causes
a larger absolute error in the reconstructed values. Second,
a coefficient’s significance is larger if its level in the error tree
is higher, as it participates in more reconstruction paths of
the error tree. Putting both together, the significance c∗i of a

coefficient is defined by c∗i = |ci|/
√

2level(ci), where level (ci)
denotes the level of resolution at which the coefficient resides
(0 corresponds to the “coarsest” resolution level).

Accordingly, the conventional thresholding scheme is to
retain the B wavelet coefficients with the greatest signifi-
cance. It has been shown [29] that this approach minimizes
the L2 error. Nevertheless, the L2 error minimization does
not provide maximum error guarantees for individual ap-
proximate answers. As a result, the approximation error of
individual values can be arbitrarily large, resulting into high
variance in the quality of data approximation and severe
bias in favor of certain regions of the data. This problem
is particularly striking whenever a series of omitted coef-
ficients lies along the same path of the error tree. Metrics
max abs and max rel prove more robust error measures [12,
13], since they set a maximum error guarantee on individual
values. The problem of minimizing these error metrics can
be formulated as follows:

Problem 1. Given a data vector A of size N and a bud-
get B, construct a representation ŴA of A that minimizes a
maximum error metric, while it retains at most B non-zero
coefficients.

For ease of readability, we also define the dual of Problem
1:

Problem 2. Given a data vector A of size N and an er-
ror bound ε, construct a representation ŴA of A such that
max abs ≤ ε and the number of non-zero entries s∗ in ŴA

is minimized.
In this work, we focus on designing algorithms for Prob-

lem 1 that can specifically scale in big data scenarios. The
existing algorithms for the problem either need to load the
whole data set in memory or work on a small working set and
make very often disk accesses to update it. The increasing
sizes of data to be processed render centralized approaches
(with excessive disk accesses) unusable in terms of perfor-
mance and scalability. In this work, we instead propose a
novel problem decomposition to smaller local sub-problems
that can be more easily handled. Following that, we utilize
partial and parallel computed solutions to derive the final
one.



Table 2: Notation

Symbol
i∈0..N-1

Semantics

A Input data array
WA Wavelet transform array
N Number of data points
B Target size of synopsis
Ti Error tree rooted at node i
TL (ci)
(TR (ci))

Sub-tree rooted at left (right) child of node i

di Data value at cell i of the data array

d̂i Reconstructed data value at cell i
leavesi Set of data nodes in Ti
ci Wavelet coefficient at cell i
M Matrix used by DP algorithm
erri Signed accumulated error for di
R Size of the root sub-tree
S Size of a base sub-tree

3. RELATED WORK
In this Section, we present an overview of the existing ap-

proaches to Problem 1 and discuss the relation of our work
to past research. In [12], a probabilistic DP algorithm that
minimizes the maximum error metrics was proposed for the
wavelet thresholding. The running-time of the algorithm is
O
(
Nδ2Blog (δB)

)
, where δ is a quantization factor. How-

ever, as there is always a possibility of a “bad” sequence of
coin flips, this approach can lead to a poor quality synopsis.

For this reason, a deterministic DP-based approach is pro-
posed in [13]. Unfortunately, the optimal solution provided
has a high time complexity of O

(
N2BlogB

)
, where N is the

total number of coefficients and B the synopsis size.
In [23], the Haar+ tree is presented. This is a modified

error tree that allows the design of a DP algorithm with

running-time complexity of O
((

∆
δ

2
)
NB

)
, where ∆ is the

range of dataset values.
These solutions are very expensive in terms of time and

space complexity. Such requirements render the solution im-
practicable for the purpose it is meant to be for, namely the
quick and space-efficient summarization of data into man-
ageable general-purpose synopses [9].

In order to decrease space complexity, Guha introduces
a generally applicable, space efficient technique [18] for all
these DP-based approaches. This technique only needs to
keep a small subset of the data in memory while all the rest
reside on disk. Nevertheless, such an approach considerably
increases the I/O cost.

Furthermore, all the approaches mentioned so far contain,
in their complexity formula, a term for budget B which can
be O (N) and can thus lead to quadratic or cubic complex-
ity. Such running-times are prohibitive for big datasets,
which may be in the order of gigabytes or terabytes. In
order to eliminate term B from the complexity, a differ-
ent DP-based approach is proposed in [24], where Problem
2 [24, 27, 28] is exploited and the resulting complexity is

O
((E

δ

)2
N (logε∗ + logN)

)
, where E is the minimum maxi-

mum error that can be achieved with B − 1 coefficients and
ε∗ is the real maximum error. This algorithm is considered
to be the current state-of-the-art for the problem, as it pro-

M[j]

M[2j]

M[2j+1]

TL(j) TR(j)

b

biL biR

Figure 2: DP recursion on the error tree. Node cj combines
the M-rows of its children in order to produce M [j]

vides the optimal data reconstruction for the given budget
and has the best running-time complexity among the corre-
sponding DP algorithms.

However, all of these algorithms run in a centralized fash-
ion and, to the best of our knowledge, there is no proposed
solution that adapts them to a distributed environment.
Thus, problems like excessive demand for main memory ca-
pacity and disk I/O have not yet been resolved.

In order to decrease running-time, greedy algorithms have
been proposed [22] for the minimization of the maximum ab-
solute and relative error with worst-case running-time com-
plexities ofO

(
Nlog2N

)
andO

(
Nlog3N

)
respectively. These

algorithms present almost linear behavior in practice and
require less memory capacity than most of the DP-based
ones. Nevertheless, as data scales close to the memory con-
straints of the machine, their performance significantly de-
teriorates. Moreover, these algorithms have inherent diffi-
culties in their parallelization and thus, the decomposition
to local sub-problems is not an easy task to accomplish.

Finally, the work in [21] considers a distributed setting for
the wavelet decomposition, implemented on top of Hadoop,
but it only targets the conventional thresholding scheme,
which is a considerably easier task.

4. SCALING DP ALGORITHMS
Since the majority of the proposed algorithms for Prob-

lem 1 are based on dynamic programming, in this Section we
present a general framework that can be used for their par-
allelization and efficient execution over modern distributed
platforms. To achieve that, we exploit the structure of the
error tree as well as the local properties of these algorithms
and propose a locality-preserving partitioning scheme.

In all these algorithms, each row of the DP-matrix M is
assigned to a node of the error tree. The contents of such a
row differ between algorithms. Despite the different struc-
ture of the rows of M, all these algorithms follow a bottom-
up fashion, where the rows corresponding to the leaves of
the error tree are computed first. The row for each inter-
nal node is computed by combining the already computed
rows of its children according to an optimality criterion. To
compute the values for a single cell of a row j, many cells of
the children-rows are examined and, eventually the one that
optimizes a defined metric is selected, according to each al-
gorithm. Thus, computing the row for any node of the error
tree, demands two more rows to be in memory.

For example, in the MinRelVar algorithm presented in
[12], each row M [j] stores three values for every possible
space allotment b to the sub-tree rooted at cj . Thus, each
cell M [j, b] of a row is 3-dimensional and contains the follow-
ing three values: M [j, b] .v,M [j, b] .y,M [j, b] .l, which rep-
resent: i) the minimum error, ii) the probability to retain



job i+1
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Figure 3: Partitioning used for parallelizing DP-based algo-
rithms for Problem 1

coefficient cj , and iii) the space allotment for the left sub-
tree respectively. In order to compute M [j, b], the algorithm
needs to examine all M [2j, biL ] , biL ∈ [0, b−M [j, b] .y] and
all M [2j + 1, biR ] , biR ∈ [0, b−M [j, b] .y − biL ] and finally
select the cells from M [2j] and M [2j + 1] that incur the
minimum error M [j, b] .v. This procedure is illustrated in
Figure 2. The shadowed cells represent the examined values
and the bold colored ones the finally selected values.

In Figure 2, we observe that the left and right sub-tree of
node cj (TL (j) and TR (j) respectively) can be computed
independently of each other. Based on this observation,
the idea is to apply a partitioning scheme that hierarchi-
cally decomposes the error tree to sub-trees of a fixed height
h, h < logN . Such a partitioning is presented in Figure 3
and results to d logN

h
e layers of sub-trees. We denote Layeri

to be all the sub-trees located in layer i and it holds that:

|Layeri| =

{
N

2h·i+i−1 i = 1, .., b logN+1
h+1

c
1 i = d logN+1

h+1
e

(4)

For the parallelization of the existing DP algorithms for both
Problems 1 and 2, we use Algorithm 1. The idea is to first
run the DP algorithm in parallel over the sub-trees of the
bottommost layer. When the processing is over, the com-
puted rows for the roots of these sub-trees are sent over to
the next layer in order to repeat the same process towards
the root. More specifically, if the local root is the node cj ,
the emitted key-value is (j,M [j]). The workers of the next
stage collect the emitted key-values and repeat the same
process. Naturally, a proper partitioning should be applied
between different stages, in order to preserve the sub-tree
locality in the next layer.

Algorithm 1 Parallel execution of a DP algorithm for
Problem1
Require: Data size N, sub-tree height h
1: Partition the error tree to sub-trees of fixed height h.
2: i = 1
3: while i ≤ b logN+1

h+1
c do

4: if i > 1 then Combine M-rows from layer i− 1
5: for all Tj ∈ Layeri in parallel do
6: Run DP on Tj
7: Send the computed row of node j to the next layer
8: end for
9: i = i+ 1

10: end while
11: Run DP on topmost sub-tree.

As a distributed approach, it is clear that this idea in-
curs a communication overhead. For every sub-tree of the

error tree, the row of M that corresponds to the local root is
transferred over to the workers of the next stage. Let |M [j] |
denote the size of the row corresponding to node cj . Then,
according to Equation 4, the communication overhead for
the i-th stage is:

O (|Layeri| ·maxj∈Layeri {|M [j] |}) =

O

(
1

2h·i+i−1
N ·maxj∈Layeri {|M [j] |}

)
(5)

and thus, the overall communication overhead:

O

b
logN+1

h+1
c∑

i=1

1

2h·i+i−1
N ·maxj∈Layeri {|M [j] |}

 =

O

(
N ·max {|M [j] |}

2h

)
(6)

Equation 6 represents the generic communication com-
plexity of all DP algorithms when our partitioning scheme
is applied. The maximum M-row size max {|M [j] |}, which
determines the complexity, depends on the used algorithm.

After the completion of Algorithm 1, it is only the op-
timal approximation error for Problem 1 (synopsis size for
Problem 2) that is computed and not the synopsis itself.
To compute the synopsis, all DP algorithms require one ad-
ditional step: a top-down recursive procedure on the error
tree in order to select the appropriate coefficients. Start-
ing from the root this time, we re-enter the sub-problem of
the topmost sub-tree and select the coefficients to retain.
When the processing of the topmost sub-tree is over, we
know which coefficients are retained from this sub-tree and
also the leaves of the sub-tree know which cells of the M-rows
of their children are the best choice in order to obtain the
optimal synopsis. Thus, each leaf-node of the topmost sub-
tree sends a message to its children to inform them about
the optimal choice they can make. With this message, the
children recursively re-enter the sub-problems of the next
layer of sub-trees.

Unfortunately, the space complexity of most DP algo-
rithms for Problem 1 relies on budget B. Thus, for a bad
case scenario where B is large enough (O (N)), matrix M
may not fit in memory even for a moderate or small-sized
sub-tree. Furthermore, in such a case, the communication
overhead may be also too high to sustain. For example, for
the algorithm in [12] it holds that max {|M [j] |} = O (B · δ).
If we substitute this quantity in Equation 6, the communi-
cation complexity is O

(
NBδ
2h

)
, which can become O

(
N2
)
.

In order to avoid the impact of budget B, we focus on
Problem 2 instead. The DP algorithm that solves the dual
problem and on which we are going to apply the proposed
framework is MinHaarSpace [24]. At each visited node cj ,
MinHaarSpace computes the corresponding M-row, M [j].
M [j] holds an entry M [j, v] for each possible incoming value
v at node cj . An incoming value v at node cj is a value re-
constructed in the path of ancestor coefficients from the root
node up to cj . For example, in Figure 1, the incoming value
of c2 is 7 + 2 = 9. For a specified incoming value v, M [j, v]
is a 3-dimensional cell that contains: (i) the minimum num-
ber of non-zero coefficients that need to be retained in the
sub-tree Tj , (ii) the optimal value2 to assign at cj , and (iii)
the actual minimum error in the scope of cj .
2We use MinHaarSpace for unrestricted wavelets



By applying the proposed framework, we create algorithm
DMHaarSpace, the new distributed version of MinHaarSpace.
The workers of DMHaarSpace execute MinHaarspace over
local data and emit the M-row of the local-root node, in
a manner similar as described before. The running-time
complexity of DMHaarSpace is the same as that of Min-

Haarspace, i.e., O
((

ε
δ

)2
NlogN

)
and the communication

complexity is O
(
Nε
δ2h

)
, as derived from Equation 6 and the

size of the M-row that is O
(
ε
δ

)
[24], where δ is a user-defined

parameter that quantizes the solution space.
Since DMHaarSpace targets Problem 2, we need to run

the algorithm multiple times to derive the final solution.
For this reason in [24], there is the IndirectHaar that solves
Problem 1 by running MinHaarSpace multiple times. Algo-
rithm 2 presents DIndirectHaar, a modified version of Indi-
rectHaar that uses DMHaarSpace instead of MinHaarSpace.

As Algorithm 2 describes, the DIndirectHaar algorithm
performs binary search in the space of possible errors. Ob-
viously, this results in multiple distributed jobs of input size
N. Furthermore, in order to compute the lower and upper
error bounds (lines 1-2), an overhead of two extra jobs is re-
quired. For the lower bound, we compute the (B+1)-largest
coefficient. Each worker emits its local wavelet coefficients
in reverse order, i.e., largest first, and in a next step these co-
efficients are merged and the first B+1 are retained. For the
upper bound, assuming that a B-term synopsis fits in mem-
ory, we load the B-largest-terms synopsis in the main mem-
ory of each worker and we bottom-up compute the max abs.

Algorithm 2 DIndirectHaar

1: eu =maximum absolute error for B-largest-terms synop-
sis

2: el = (B + 1)-largest coefficient
3: elow = el;ehigh = eu
4: while not finished do
5: emid =

ehigh+elow
2

6: ŴA =DMHaarSpace(emid);B̄ =size of ŴA

7: ē =actual maximum absolute error of ŴA

8: if B̄ < B then
9: W̃A =DMHaarSpace(< ē);B̃ =size of W̃A

10: if B̃ > B then finished=1
11: else ehigh = ē
12: else
13: if B̄ > B then elow = emid
14: else finished=1
15: end if
16: end while

5. A DISTRIBUTED GREEDY APPROACH
As the DP-based solutions incur high computational over-

head, there is often a need for a faster approach at the cost of
approximation quality. This is exactly what the GreedyAbs
[22] algorithm achieves. However, as explained in Section 3,
this algorithm is not easily parallelizable and cannot scale
for big datasets. In this Section, we present a fully par-
allelizable version of the greedy algorithm based on: (i) a
partitioning scheme similar to the one presented in Section
4, (ii) speculative execution of the centralized algorithm, (iii)
merging and filtering of results. We present our idea in de-
tail for the maximum absolute error metric and discuss the

modifications needed to support the maximum relative error
metric problem.

5.1 GreedyAbs
For the ease of understanding of our algorithm, we first

give a description of the GreedyAbs algorithm presented in
[22]. Let errj = d̂j − dj be the signed accumulated error for

a data node dj in a synopsis ŴA, yielded by the deletions of
some coefficients. To assist the iterative step of the greedy
algorithm, for each coefficient ck not yet discarded, we in-
troduce the maximum potential absolute error MAk that ck
will contribute on the running synopsis, if discarded:

MAk = maxdj∈leavesk{|errj − δjk · ck|} (7)

Computing MAk normally requires information about all
errj values in leavesk. A naive method to compute MAk is
to access all leavesk, where errj are explicitly maintained.
The disadvantages of this approach are the explicit mainte-
nance of all errj values at each step and the cost required
to update MAk values after the removal of a coefficient.

A more efficient solution for updating MAk is reached by
exploiting the fact that the removal of a coefficient equally
affects the signed costs of all data values in its left or right
sub-tree. For example, in Figure 1, the removal of coefficient
c2 = −4 increases the signed errors of data nodes d0, d1, and
decreases the signed errors of d2, d3 by 4. Accordingly, the
maximum and minimum signed errors in the left (right) sub-
tree of a removed coefficient ci are decreased (increased) by
ci. The maximum absolute error incurred by the removal
necessarily occurs at one of these four positions of existing
error extremum. Hence, the computation of MAk requires
that only four quantities be maintained at each internal node
of the tree. These are the maximum and minimum signed
errors for the leftleavesk and rightleavesk, and are denoted
by maxlk, minlk, maxrk, and minrk, respectively. It follows
that Equation 7 is equivalent to:

MAk = max{|maxlk − ck|, |minlk − ck|,
|maxrk + ck|, |minrk + ck|} (8)

In the complete wavelet decomposition, these four quanti-
ties are all 0, since errj = 0, ∀dj . Thus, MAk = |ck|, ∀k and
the greedy algorithm removes the smallest |ck| first. In or-
der to efficiently decide which coefficient to choose next, all
coefficients are organized in a min-heap structure based on
their MAk. After the removal of a coefficient ck, errj for all
leavesk changes, so the information of all descendants and
ancestors of ck must be updated. All the error quantities
of the descendants in the left (right) sub-tree of ck are de-
creased (increased) by ck. During this process, a new MAi
is computed for each descendant ci of ck. In accordance,
the changes in error quantities are propagated upwards to
ancestors ci of ck and MAi values are updated as necessary.
While updating error quantities andMA values, the position
of ck’s descendants and affected ancestors are dynamically
updated in the heap. These procedure of removing nodes is
repeated until only B nodes are left on the tree.

Another important thing to note is that the maximum
absolute error does not change monotonically when a coeffi-
cient is removed. In other words, after deleting a coefficient
ck the maximum absolute error of its affected data values
may decrease. As a result, choosing exactly B coefficients
may not be the best solution given a space budget B. For this
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Figure 4: Partitioning used for parallelizing GreedyAbs.
The red line illustrates an example of communication of two
base sub-trees through the root sub-tree. The blue-filled
nodes show a possible Croot set.

reason, we keep removing coefficients also after the limit of
B has been reached, until no coefficient remains in the tree.
From all B + 1 coefficient sets (B coefficients left, B-1 coeffi-
cients left, etc) produced at the last B steps of the algorithm,
the one with the minimum max abs is kept.

5.2 Scaling the Greedy Algorithm
GreedyAbs presents an inherent drawback for its paral-

lelization. At each step, the algorithm needs global knowl-
edge of the whole error tree. To solve the problem in parallel,
we need to consider a partitioning similar to the one we used
for the parallelization of the DP algorithms. In the proposed
scheme, the error tree is partitioned into one root sub-tree
and many base sub-trees, as shown in Figure 4.

At each iteration of GreedyAbs, the node ck with the
smallest MA is selected to be discarded. After its deletion,
all the other nodes that lie either in pathk or Tk may up-
date their MA values. Ideally, we would like to take decisions
at each base sub-tree independently of each other. For the
parallelization of the algorithm, the main difficulty is that
the base sub-trees communicate with each other through the
root sub-tree. For example, consider a scenario, like the one
depicted in Figure 4, where node c2i is selected to be re-
moved from the base sub-tree Ti and node c4j is selected
from Tj . The removal of c2i updates the MA value of node
ci/4 ∈ path2i to MA′i/4. Suppose also that for node c4j holds

ci/4 ∈ path4j ∧
(
MA4j < MAi/4

)
and also MA′i/4 < MA4j .

This means that the removal of c2i in Ti changed the pref-
erence of GreedyAbs in Tj . This example shows that the
communication of base sub-trees through the root sub-tree
can change the order in which nodes are discarded and in-
terferes with a straight-forward parallel implementation.

In order to proceed towards a parallel and correct compu-
tation, we need to offer more isolation to the partitions base
sub-trees. The idea behind our solution is the following. Let
us assume that we somehow know which nodes of the root
sub-tree are retained in the final synopsis. Let us call this
set of nodes Croot. Having selected the retained nodes from
the root sub-tree, we can remove the remaining root sub-tree
and there are B − |Croot| nodes that remain to be selected.

Consider now a base sub-tree Tj . The deletion of the
nodes ci ∈ root sub-tree\Croot incurs an incoming error to
Tj . For example, in the error tree of Figure 1, if we delete
nodes {c0, c2}, there is an incoming error −7 − 4 = −11
to sub-tree T5. Thus, if the incoming error to sub-tree
Tj is ein, we set then the signed accumulated errors to:
erri = δjein,∀di ∈ Tj (δj = −1 if Tj is a left sub-tree and

1, otherwise) and we run GreedyAbs on Tj . The output of
GreedyAbs (Tj) is an ordered list Lj of |Tj | coefficients. The
list is ordered according to the order that GreedyAbs dis-
cards the coefficients ci ∈ Tj . More specifically, each element
of the list is a tuple (error, index) that indicates the max-
imum incurred absolute error when this node is discarded
and the index of the discarded node in the error tree. This
procedure of locally executing GreedyAbs on a sub-tree, is
carried out in parallel for all base sub-trees.

When this stage of parallel GreedyAbs runs is over, we
collect, sort error-wise and merge all the outputs from all
the base sub-trees (i.e., ∀Tj ∈ base sub-trees, sort and merge
Lj), thus obtaining a globally ordered list. By keeping the
B− |Croot| elements of the list with the highest error, let us
call them Cbase, we form the final synopsis: Croot ∪ Cbase.

We have already mentioned that, in GreedyAbs, the er-
ror does not change monotonically when a coefficient is re-
moved. For example, consider the key-values KV1 = (50, 8),
KV2 = (42, 10) discarded in respective order. At the final
global order, we expect KV1 prior to KV2, since node 8 was
discarded first. However, as the error of KV2 is smaller than
the one of KV1, the sorting will place KV1 after KV2. In
order to avoid this unwanted behavior, we modify the logic
according to which Lj lists are emitted to the sorting and
merging mechanism. Instead of emitting a single node per
key-value, we emit a list of nodes. While the error incurred
by the deletion of a node is smaller or equal to the maxi-
mum so far error, we append the node to be discarded to
a list. Otherwise, we emit the key-value and create a new
one with an empty list. Consider the key-values KV1,KV2

of the previous example. Instead of emitting both of them,
we emit (50, [8, 10]). Apart from correctness, in this way we
also achieve better I/O efficiency, since the |Tj | coefficients
are emitted in batches and not one at a time.

This scheme, where lists are emitted as values, can be
further improved. Assume the error from discarding a node
is 132.44 and the error for the next node is 132.45. As the
absolute difference is very small, we may decide that we can
tolerate this error and, for I/O efficiency, we do not emit two
different key-values. In general, we consider a user-specific
parameter eb and partition the domain of errors to buckets
of width eb. The algorithm is then modified as to emit a new
key-value only when an error from the next bucket appears.
In Algorithm 3 we present the modified discardNode function
that we use for GreedyAbs.

Algorithm 3 discardNode

Require: node index k, error ek incurred by the deletion of
node k, width eb of the error bucket, list L of discarded
nodes, the current max error max error

1: ê = b ek
eb
c · eb

2: if ê ≤ max error then
3: L.append(ck)
4: else
5: emit (ê, L);max error = ê;L = []
6: end if

So far, we have ignored the procedure that finds the appro-
priate nodes to be retained from the root sub-tree, assuming
it is “magically” available. As we cannot compute a-priori
which these nodes are, we need to speculatively create the
synopses for different Croot sets and finally retain the one
that produces the best approximation. Let R denote the



size of the root sub-tree. Since we do not know the num-
ber of nodes that should be retained from the root sub-tree,
we should compute the synopsis for at least min{R,B}+ 1
different Croot sets, with each candidate Croot having dif-
ferent size: The empty set, as we may keep none of these
nodes, keep only 1 node, keep 2 nodes, etc, until we exam-
ine the case where min{R,B} nodes are kept. In order to
find min{R,B}+1 candidate Croot sets, we run GreedyAbs
on the root sub-tree. The intuition behind this choice is
that, since only the root sub-tree is considered known at
this stage, we should try to optimize the local problem and
each time discard the node that incurs the minimum error.
The candidate Croot sets are generated by the genRootSets
function presented in Algorithm 4.

For example, we consider as root sub-tree the nodes {c0, c1,
c2, c3} of the error tree depicted in Figure 1. The run of Gre-
edyAbs selects to discard the nodes according to the follow-
ing order: [c1, c3, c2, c0]. Thus, the candidate Croot sets are
the following 5: {c1, c3, c2, c0},{c3, c2, c0},{c2, c0},{c0},{}

Algorithm 4 genRootSets

Require: root sub-tree,B
1: Lroot = GreedyAbs(root sub-tree)
2: C = {{}}
3: lastIndex = Lroot.size
4: for (i = lastIndex; i > lastIndex−B; i = i− 1) do
5: Croot,i = {Lroot [i] , .., Lroot [lastIndex]}
6: C = C ∪ {Croot,i}
7: end for
8: return C

In order to execute our algorithm in a distributed envi-
ronment, we use the following scheme. Initially, we run
GreedyAbs, in a centralized fashion, on the root sub-tree
and we get as output a set C with all the candidate Croot
sets. Since the root sub-tree can be exponentially smaller
than the original dataset, its processing on a single machine
can be done without compromising performance. For the
distributed processing of the remaining dataset, we consider
an architecture of two levels of workers. Each base sub-tree
Tj is assigned to a different level-1 worker. Level-1 worker j
runs GreedyAbs over its local data for every Croot ∈ C that
affects the incoming error to Tj . For every list of nodes that
the GreedyAbs discards, the worker emits a key-value, in
the form ([Croot, error] , List) to the next level of workers.
Therefore, apart from the maximum incurred error, the key
contains information on which nodes are retained from the
root sub-tree, for this run of GreedyAbs.

From the description of the algorithm above, it is derived
that each worker runs GreedyAbs for all Croot ∈ C that
affect the incoming error. As we emit every node for each
run of GreedyAbs, we observe that each initial coefficient
is emitted O (min{R,B}+ 1) times. This quantity can be
multiple times the size of the initial dataset and leads to
significant I/O overhead.

In order to avoid the excessive I/O, instead of emitting
the list of the actual coefficients, we emit a histogram. For
each emitted key-value, we keep the key as is and as value
we emit the number of nodes that are discarded producing a
maximum error that falls in a specific error bucket. For ex-
ample, instead of emitting the key-value (50, [8, 10]) as in the
previous example, we now emit (50, 2), where 2 is the length
of the list [8, 10]. This way, we emit sizeOf(int) bytes instead
of the actual size of the list. We call ErrHistGreedyAbs the

modified version of GreedyAbs that emits error histograms.
With the use of an appropriate partitioning scheme, all the

emitted key-values that refer to the same Croot end up at
the same level-2 worker. Key-values are sorted and merged
according to the error information that is stored in the key,
with the node yielding the highest error expected to appear
first. When sorting and merging are over, there is a global
ordering of all the nodes of the dataset for a particular Croot.
By examining the first B + 1 key-values, the B most impor-
tant nodes are identified and the worker extracts the best
achieved maximum absolute error. When the processing is
over, each level-2 worker has computed the best error for the
Croot sets it was assigned. We call combineResults the de-
scribed procedure and we formally describe it in Algorithm
5. In a final step, all the level-2 workers send their results
to a single process that decides the most accurate synopsis.

Algorithm 5 combineResults

Require: space budget B
Require: the set C′ of Croot sets the worker is responsible

for
Require: a list LCroot = [L1,Croot , L2,Croot , ..] , ∀Croot ∈

C′, where Lj,Croot is the emitted key-values for Croot
from sub-tree Tj .

1: minError = infinity, bestCroot = {}
2: for all Croot ∈ C′ do
3: L = merge (LCroot)
4: if L [B − |Croot|] .error < minError then
5: minError = L [B − |Croot|] .error
6: bestCroot = Croot
7: end if
8: end for
9: return (minError, bestCroot)

With the level-1 workers emitting histograms, when the
job is over, we do not know which coefficients to choose for
the synopsis but only which Croot we should use and what is
the best error that can be achieved. By knowing the nodes
that should be retained from the root sub-tree, we initiate
a second job that computes and constructs the synopsis.
In this second job, each level-1 worker runs exactly once
GreedyAbs over its local data, only for the Croot that yields
the best quality synopsis. This time, the workers do not emit
histograms but the actually removed nodes. Furthermore,
as at this time the final error ε∗ is known, the workers do not
have to emit all the nodes of their local sub-tree but only the
ones that their removal incurs an error higher than ε∗. We
call our algorithm DGreedyAbs and we formally describe it
in Algorithm 6.

5.3 Complexity Analysis
The worst-case cost of GreedyAbs is O

(
Nlog2N

)
[22].

However, as we will see in the experimental Section, the al-
gorithm’s complexity is linear in practice and also leads to
linear behavior of our algorithm. Assume R = min{R,B}.
The run of GreedyAbs on the root sub-tree produces a pow-
erset C, such that:
|C| = R+ 1 ∧ ∀Croot,i ∈ C, 0 ≤ |Croot,i| ≤ R
∧|Croot,i| 6= |Croot,j |∀i, j ∈ [0, R− 1] , i 6= j
That means that every two different Croot sets differ from
each other by at least one coefficient and since |C| = R+ 1,
eventually all the coefficients of the root sub-tree will be
selected, one at a time. In this way, we have a differ-
ent incoming error to Tk for every node in pathk. Since



Algorithm 6 DGreedyAbs

Require: error tree, space budget B
1: C = genRootSets(root sub-tree,B)
2: Assign base sub-trees to level-1 workers
3: for all Tj ∈ base sub-trees in parallel do
4: for all Croot ∈ C that affect incoming error in Tj do
5: ein = incoming error in Tj from Croot
6: erri = erri + δjein,∀erri ∈ Tj
7: ErrHistGreedyAbs (Tj)
8: end for
9: end for

10: minError = infinity, bestCroot = {}
11: for all w ∈ level-2 workers in parallel do
12: Let Cw ⊆ C, the Croot sets that w is responsible for.
13: (error, Croot) = combineResults (B,Cw, LCw )
14: if error < minError then
15: minError = error
16: bestCroot = Croot
17: end if
18: end for
19: for all Tj ∈ base sub-trees in parallel do
20: ein = incoming error in Tj from bestCroot
21: erri = erri + δjein,∀erri ∈ Tj
22: Lj = GreedyAbs (Tj) {emit only nodes yielding error

higher than minError}
23: end for
24: L = merge(Lj lists)
25: return {L [0] , .., L [B − |bestCroot|]}

the length of the path of each base sub-tree to the root is
logR + 1, each mapper runs GreedyAbs exactly logR + 2
times; one for every node in pathk and one for the empty
set. Thus, the running-time complexity for the level-1 work-
ers is O

(
(logR+ 2)Nlog2N

)
= O

(
logRNlog2N

)
. For a

fixed size of base sub-trees, it holds that R ∼ N , that is for
a new N ′ = 2kN the new size of the root sub-tree will be
R′ = 2kR and so our solution is linearly scalable, as there is
only a constant overhead in the running-time complexity of
a level-1 worker. The running-time complexity of a level-2
worker is O (N), as it only merges the already sorted outputs
from the previous stage of execution.

An interesting question relates the size of the base and
root sub-trees. Does the size of the sub-trees affect perfor-
mance? Which is a “good” size for them? We study again
the running-time complexity for a level-1 worker. Let us
denote with S the size of a base sub-tree. It holds that
N = R + R · S. Consider now the same dataset N, but dif-
ferently partitioned, so as R′ = 2kR. Since the dataset is
the same, we have:

R+R · S = R′ +R′ · S′ ⇒ S′ =
S + 1

2k
− 1

So, the complexity becomes:

O
(
logR′S′log2S′

)
=

O

(
(logR+ k)

(
S + 1

2k
− 1

)
log2

(
S + 1

2k
− 1

))
=

O
(
logRSlog2S

)
(9)

Next, we examine the communication complexity between
level-1 and level-2 workers. In the worst case, where each
node is discarded with a different error, S key-values are
emitted for each Croot ∈ C. As |C| = R+1, there are O (RS)
emitted key-values. In practice, the communication is much
lower, as with the described algorithm many discarded nodes
are compacted to a single emitted key-value.

Finally, we compute the impact that the size of the sub-
trees has on communication. As before, we consider a dif-
ferent partitioning with R′, S′. It holds that:

O
(
R′S′

)
= O

(
2kR

(
S + 1

2k
− 1

))
= O (RS)

We see that the size of the base sub-trees does not asymp-
totically affect neither running-time nor communication.

5.4 Maximum Relative Error
Minimizing the maximum relative error is arguably more

essential compared to absolute error minimization in approx-
imate query processing, as the same absolute error in two
different data values may express huge differences in relative
error. At the same time, relative error measures tend to be
inordinately dominated by small data values. For instance,
returning 2 as the approximate answer for 1 amounts to an
100% relative error, while in fact it is insignificant in a data
context dominated by much larger values. In order to over-
come such problems, several techniques have been developed
for combining absolute and relative error metrics [31]. As
in earlier approaches ([12], [13]), we have opted for the rel-
ative error metric with a sanity-bound S > 0. Our aim is
to produce wavelet synopses in near-linear time and space
such that, for each approximation d̂i of a data value di, the
ratio is kept lower than a feasible bound.

For this problem, in [22] the GreedyRel algorithm is pre-
sented. GreedyRel follows the greedy paradigm introduced
in Section 5.1, wherein, instead of using MAk, it chooses to
discard the coefficient with the minimum maximum potential
relative error, defined as follows:

MRk = maxdj∈leavesk{
|errj − δjk · ck|
max (|dj |, S)

} (10)

Nevertheless, the four error quantities of Equation 8 cannot
be used for the calculation or update of the MRk. The
reason is the denominator in Equation 10, which implies that
the effect a coefficient ck is different in the signed relative
error of different data values.

In order to provide a scalable solution to this problem, we
use a similar approach with that of DGreedyAbs, but instead
of using GreedyAbs at the workers, we use GreedyRel.

6. EXPERIMENTAL EVALUATION
In the experimental Section we focus on evaluating the

utility of the proposed distributed algorithms with respect to
their efficiency (measuring creation time and approximation
accuracy), data- and resource-based scalability and discuss
parameters that affect their performance. All algorithms
are implemented in Java. The distributed algorithms were
developed using the MapReduce programming model.

Datasets. The experiments were conducted using both
synthetic and real datasets. Synthetic data (SYN) allows
easy testing over different data distributions and value ranges.
Distributions utilized are uniform and zipfian (with expo-
nents 0.7 and 1.5). Data values lie between [0,M ], with
M ∈ {1K, 100K, 1000K}. For the real-life datasets we uti-
lize NYCT [2] and WD [1]. NYCT describes taxi trips in
the New York City in 2013 containing records for the trip
time in seconds. WD consists of observations on wind direc-
tion that were captured by sensors in the U.S.A. during the
hurricanes Ike, Bill, Bertha and Katrina. Wind direction is
reported in azimuth degrees. Both datasets were partitioned



Table 3: Characteristics of NYCT and WD datasets

Name #Records Avg Stdv Max
NYCT2M 2M 672 483 10800
NYCT4M 4M 511 519.5 10800
NYCT8M 8M 255 646.6 10800
NYCT16M 16M 127 745 10800
NYCT32M 32M 63 3566.3 4293410
NYCT64M 64M 31 25410.3 4294966

WD2M 2M 121 119.7 655
WD4M 4M 122 119.9 655
WD8M 8M 138 119.4 655
WD16M 16M 127 118.8 655

in order to test scalability over different sizes. The smallest
partition comprised the first 2M records, while each subse-
quent partition was twice as big as the previous one. Table
3 gives an overview of all real datasets used.

Platform setup. For our deployment platform, we used
a Hadoop 2.6.0 cluster of 9 machines, each featuring eight
Intel(R) Xeon(R) CPU E5405 @ 2.00GHz cores and 8 GB
of main memory. One machine was used as the master node
with the remaining ones setup as slaves. Each slave was al-
lowed to run simultaneously up to 5 map tasks and 2 reduce
tasks. Each of these tasks was assigned 1 physical core and
1 GB of main memory. For all the remaining properties, we
kept the default Hadoop configuration.

DGreedyAbs and DIndirectHaar were deployed on the de-
scribed platform. For the centralized algorithms, i.e., Greedy-
Abs and IndirectHaar, we used one machine with the same
configuration as the ones of our Hadoop cluster.

6.1 Scalability
In this subsection, we assess the scalability of the algo-

rithms with respect to the sub-tree size, the budget space for
the synopsis B, the number of datapoints N and the number
of tasks running in parallel. For the scalability experiments
of this Section, we use a synthetic dataset of uniformly dis-
tributed data values in the range of [0, 1K].

Varying sub-tree size. In the described distributed al-
gorithms and according to the proposed partitioning schemes,
each worker is assigned to process a sub-tree of the error
tree. A first question we need to answer is how the size
of the local sub-problems affects the overall performance of
the algorithm. Figure 5a presents the running-time of the
DIndirectHaar and DGreedyAbs algorithms when different
sub-tree sizes are used. We examine values from 131K (217)
to 1M (220) nodes per sub-tree. Values smaller than 131K
are not appropriate as the resulting partitions are too small
and incur a very high overhead to Hadoop. Similarly, values
bigger than 1M do not fit in our mapper’s main memory, de-
grading performance. For this experiment we use a dataset
of N = 17M and a budget space B = N/8. Figure 5a shows
that the size of the sub-trees does not significantly affect the
running-time of the job. This observation verifies the the-
oretical complexity for both algorithms. For the remainder
of the experiments we consider a sub-tree size of 1M nodes
for both algorithms.

Varying budget space. In the next experiment we ex-
amine the scalability to the budget space B. We run both
DGreedyAbs and DIndirectHaar for a data size N = 17M
and we vary B from N/64 to N/8. Results are shown in
Figure 5b. The running-time of DGreedyAbs is not con-
siderably affected by the size of the synopsis. This is not

always true for the DIndirectHaar algorithm. As we can
see for B = 0.5M for DIndirectHaar, the running-time may
decrease as B is increased. This is because higher B-values
lead to tighter errors and thus higher convergence rate for
the algorithm. As the running-time of our algorithms is not
significantly affected by B, for all subsequent experiments,
we consider B = N/8.
Varying data size and number of parallel tasks.

Figures 5c, 5d show the scalability with respect to N and
the number of tasks running in parallel for DGreedyAbs and
DIndirectHaar respectively. We vary the datasize from 2M
to 537M datapoints for all the algorithms and the number
of parallel map tasks from 10 to 40. For DGreedyAbs, we
fix the number of reducers to four, as they do not have a
high impact on performance and for DIndirectHaar we use
only one reducer. We also compare both algorithms with
the corresponding centralized implementations in order to
assess the difference in performance. For DIndirectHaar,
we set the parameter δ to 50, as for this value it achieves
the best running-time results. We also note that the y-axis
follows a logarithmic scale in these Figures.

Both algorithms scale linearly with the dataset size. The
running-time is almost constant at first, when all data can
be processed fully in parallel, and is linearly growing as the
cluster is fully utilized and more tasks need to be serialized
for execution. Linear scalability is also observed with the
number of parallel running tasks. By halving the capacity
of the cluster, running-time is doubled for DGreedyAbs and
is increased by a factor of 1.7 on average for DIndirectHaar.

Compared to the centralized GreedyAbs, DGreedyAbs is
7.4× faster for a dataset of 17M datapoints. For sizes greater
than 17M points, neither GreedyAbs nor IndirectHaar could
run, as their execution demanded more main memory than
the available 8GB. In Figure 5d, we see that IndirectHaar
is faster than DIndirectHaar when the dataset size is small
or there are few parallel running tasks. That is because
the centralized implementation loads the whole dataset in
memory and the multiple jobs required by IndirectHaar do
not need to perform I/O operations. Therefore, in order
to get benefit from DIndirectHaar, we need large datasets
and compute-intensive jobs, where parallelization can be ex-
ploited. The degree of compute-intensity of a job is depen-
dent on the dataset. We remind that the complexity of In-

directHaar (DIndirectHaar) is O
((E

δ

)2
N (logε∗ + logN)

)
.

For two same-sized datasets, running-time is determined by

the term
(E
δ

)2
, which is dataset-specific.

6.2 Dataset impact
In this subsection, we use synthetic datasets to evaluate

the impact of different data distributions and value ranges
on both running-time and approximation quality. For all
the experiments in this subsection, we use datasets of size
N = 17M and synopsis size B = N/8.
Varying distribution and δ. As the parameter δ of

DIndirectHaar provides a “knob” for tuning the tradeoff be-
tween resource requirements and solution quality, in Figure
6 we show the impact of data distribution on DIndirectHaar
when different δ-values are used. The main observation is
that biased distributions favor both the synopsis construc-
tion time and the approximation quality [28]. In Figure 6a,
we see that for the Zipf-0.7 distribution and for all δ-values,
the algorithm is about 25% faster compared to the Uniform
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Figure 5: Scalability with the sub-tree size, budget space, dataset size and number of parallel tasks

distribution. Furthermore, the run for the Zipf-1.5 distribu-
tion outperforms the one for Zipf-0.7 by 45% when δ = 10
and 20% when δ = 20. Accordingly, in Figure 6b we see that
when the Zipf-1.5 distribution is the case, the maximum ab-
solute error is 8.4 times smaller than the one achieved for
the Uniform data.
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Figure 6: Impact of data distribution and δ on the perfor-
mance and approximation quality of DIndirectHaar.

We also see that usually the smaller δ is, the higher is the
running-time of the algorithm and the better the approxima-
tion quality, since more candidate values are examined for
the incoming values and the wavelet coefficients. For values
of δ equal to 50 or 100 we see that the algorithm reaches its
lower bound of execution time on this data and thus, higher
values for δ do not affect performance. For the Zipf-1.5, we
see that the run for δ = 10 outperforms the one for δ = 20.
As we get more approximate results for higher values of δ,
DIndirectHaar requires more jobs to converge and provide
the final answer. Moreover, the algorithm could not run for
Zipf-1.5 and δ = 50, 100 as these values were higher than
the space they need to quantize.

Varying distribution and value ranges. Figure 7
shows how both DIndirectHaar and DGreedyAbs are af-
fected by the range of dataset values. For the DIndirec-
tHaar, we use δ = 20, as it could not run for the Zipf-
1.5 distribution when higher values for δ were used. For
both algorithms and for all data distributions, we observe
that datasets with wide ranges to select values from, lead
to higher running-time and maximum absolute error. Intu-
itively, the larger the range of data values, the more likely
are discontinuities present and thus, more coefficients are
needed for an accurate synopsis. Since we keep the budget
space fixed to N/8, we expect the maximum error to increase
with the value range. In Figures 7b and 7d we observe that
for the Uniform and the Zipf-0.7 distributions, an increase
of an order of magnitude in the range of values is reflected
to a corresponding increase to the maximum absolute error.
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Figure 7: Impact of different data value ranges and distri-
butions on the performance and approximation quality.

However, as we can see from the example of the Zipf-1.5
distribution for both algorithms, both the achieved running-
time and error for very biased datasets are very robust to
changes in the range of data values. Moreover, in Figures 7a
and 7c we observe that, for all distributions, running-time is
more affected by the range of data values for DIndirectHaar
than for DGreedyAbs. For example, the running-time of
DIndirectHaar for the range [0, 100K] is 25% higher than
for [0, 1K] for both Uniform and Zipf-0.7 distributions. The
corresponding numbers for DGreedyAbs are 5% for the Uni-
form and 15% for the Zipf-0.7.

In Figure 7c, we notice a counter-intuitive result: The
best running-time is achieved for the Uniform distribution.
This is due to the I/O cost between the map and the reduce
phase. In the case of the Uniform distribution, when the
root of the error tree is not retained in the Croot, the first
deletion of a node causes a large absolute error X. This first
deleted node ck happens to be located in the last level of the
error tree and thus it affects only the nodes in pathk, i.e.,
logS nodes. The algorithm continues by discarding other
nodes. As the deletion of the majority of the nodes causes
an error e < X, in this case, almost the whole sub-tree is
emitted as a single key-value achieving high I/O-efficiency.



6.3 Direct Comparison
In this subsection we compare DGreedyAbs and DIndi-

rectHaar with each other, as well as with their centralized
counterparts using real-life datasets. Furthermore, we com-
pare them against algorithms that construct a conventional
synopsis (i.e., L2-optimal). As these algorithms are less
compute-intensive, we want to investigate the tradeoffs in
running-time and produced maximum error. For construct-
ing the conventional synopsis we implement CON, a paral-
lel algorithm that uses the partitioning scheme described in
Section 4 and retains the B largest coefficients in absolute
normalized value. We also use Send-Coef [21], which com-
putes in parallel the conventional synopsis by using a differ-
ent partitioning. Both CON and Send-Coef are described in
detail in Appendix A. For the approximation quality ex-
periments, we do not include IndirectHaar and Send-Coef,
as they theoretically achieve exactly the same results with
DIndirectHaar and CON respectively.

NYCT dataset. In Figure 8, we present the results for
the NYCT dataset. For the IndirectHaar and the DIndirec-
tHaar we set δ = 50, as for this value they achieve the best
execution times. The construction of an accurate synopsis
for this dataset is a difficult task to accomplish as it contains
values of high magnitude and variance. In Table 3, we see
that the NYCT64M dataset for example, has a maximum
value 4294966 and standard deviation 25410.3. The diffi-
culty in approximating NYCT is illustrated in Figure 8b,
where the maximum absolute error for B = N/8 is more
than 550 for all data sizes and algorithms. However, the
most important deduced result from Figure 8b is that DGre-
edyAbs does not compromise approximation quality for the
performance gain it offers and achieves the same maximum
absolute error with its centralized counterpart. The synopsis
produced by DGreedyAbs is 3 to 4.5 times more accurate,
with respect to max abs, than the conventional one.

Figure 8a presents the running-time results for the same
dataset. With the maximum absolute error over 570 for all
data sizes, the multiplicative factor

(E
δ

)2
of the complexity

formula of IndirectHaar and DIndirectHaarand is equal to
121. As such, for this dataset, the execution of the DP algo-
rithms is very compute-intensive. Nevertheless, as we have
already mentioned, datasets that demand intensive compu-
tations favor DIndirectHaar over IndirectHaar which is 2.7
times slower for a 17M dataset. As seen in Section 6.2,
the execution of DGreedyAbs is more robust to different
datasets and thus, its running-time is not significantly af-
fected by the data distribution. DGreedyAbs is the most
time-efficient algorithm, targeting maximum absolute error,
being 5× faster than GreedyAbs for a 17M dataset and
1.8×–2.9× faster than DIndirectHaar for all data sizes. As
the conventional synopsis is easier to be computed, we ob-
serve CON to be 4.2× and Send-Coef 2.8× faster on average
than DGreedyAbs. CON outperforms Send-Coef, due to its
partitioning scheme that preserves sub-tree locality.

WD dataset. Figure 9 shows the results for the WD
dataset. In this experiment, we run IndirectHaar and DIndi-
rectHaar with δ = 20, as they could not run for larger values
of δ. The values of this data set do not present large discon-
tinuities and can thus be more easily approximated. This is
verified in Figure 9b, where the maximum absolute errors are
about 5 times smaller than the corresponding ones for the
NYCT dataset. Regarding approximation quality, DGre-
edyAbs achieves again the same maximum absolute error
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Figure 8: Comparison for the NYCT dataset, B = N/8.

with GreedyAbs and on average 2.6× smaller than CON.
With a maximum absolute error about 125, the factor(E
δ

)2
is only 36 and thus, the execution of the DP algorithms

demands fewer computations than for the NYCT dataset.
Similarly to Section 6.1, in Figure 9a we see that Indirec-
tHaar outperforms DIndirectHaar for data sizes up to 8M
datapoints. We also observe that for this dataset and for all
data sizes, IndirectHaar outperforms GreedyAbs and CON
outperforms Send-Coef. Still, the most efficient algorithm,
that targets the minimization of maximum error metrics, is
DGreedyAbs as it outperforms GreedyAbs by a factor of
4.4 for a 17M dataset and achieves half the running-time of
DIndirectHaar for all data sizes.
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Figure 9: Comparison for the WD dataset, B = N/8.

7. CONCLUSIONS
In this paper, we have examined the problem of wavelet

thresholding aiming at the minimization of maximum error
metrics. Having established that the existing approaches
do not scale for big datasets, we focused on designing algo-
rithms with linear scalability over scale-out infrastructures.
We first presented a novel technique that allows the par-
allel decomposition of an error tree and can be used to
support all the existing DP algorithms for the problem.
In order to demonstrate the power of the proposed tech-
nique, we applied it on IndirectHaar thus implementing the
DIndirectHaar algorithm. Our results show that DIndirec-
tHaar scales linearly to data sizes that IndirectHaar is inca-
pable of processing. Moreover, in order to further improve
the running-time for the synopsis construction, we proposed
DGreedyAbs, a new heuristic-based algorithm based on Gre-
edyAbs. DGreedyAbs is over 7 times faster than GreedyAbs
for a 17M dataset and 2–4 times faster than DIndirectHaar
for all data sizes. Despite its efficient execution time, DGre-
edyAbs does not compromise quality, as in all experiments it
achieves the same approximation results with its centralized
counterpart.
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APPENDIX
A. CONSTRUCTING THE CONVENTIONAL

SYNOPSIS IN PARALLEL
In this Appendix, we describe in detail the CON and Send-

Coef [21] algorithms used in Section 6.3 for computing the
conventional wavelet synopsis. Moreover, we describe the
Send-V and H-WTopk algorithms that also compute the
conventional synopsis in parallel and are presented in [21].
All the algorithms in [21] compute wavelet synopses over
histograms. Thus, in order to compare them against our al-
gorithms, we first modify them not to compute histograms
and perform the wavelet transform directly on the input
data. For all the descriptions that follow, we denote N as
the dataset size, m the number of map tasks, S the input
size of a map task and R the size of the root sub-tree in
datapoints.

A.1 The CON Algorithm
In order to compute the conventional synopsis in parallel,

we partition the data as described in Section 4 (see Figure
3). Each mapper reads a portion of the input in the size
of a power of two and locally constructs the corresponding
sub-tree by pairwise averaging and differencing coefficients,
as explained in Section 2. As the wavelet transform is of
linear complexity and the mapper computes the coefficients
only for its local data, the computational complexity of each
map task is O (S). After the construction of the sub-trees
is over, each mapper emits all the computed coefficients to
the reduce stage. Thus, the communication between the
map and reduce phase is O (N). The reducer reads all the
coefficients that are computed in the map phase and inserts
them in a priority queue, where only the B largest ones in
absolute normalized value are retained. It also computes the
wavelet coefficients of the root sub-tree and inserts them in
the queue as well. When this process is over, there are B
coefficients in the queue which comprise the conventional
synopsis.

A.2 Send-V
The simplest algorithm presented in [21] for the compu-

tation of a conventional synopsis is Send-V. The Send-V al-
gorithm computes a histogram in the map phase of the job.
The reducer centrally computes the wavelet coefficients and
retains the B largest ones. As the histogram computation
is not required in our case, Send-V is, in effect, a sequential
algorithm, where the reducer reads and centrally computes
the wavelet transform for all the input data.

A.3 Send-Coef
Send-Coef is based on another method to compute wave-

let coefficients, that is used especially in streaming settings.
This method uses the wavelet basis vectors. The first wave-
let basis vector is ψ0 = [1, .., 1] /

√
N , where [1, .., 1] is a

vector of ones. To define the other N − 1 basis vectors, we
first introduce, for j = 1, .., logN and k = 0, .., 2j − 1, the
vector:

φj,k (l) =

{
1 k N

2j + 1 ≤ l ≤ k N
2j + N

2j

0 elsewhere
(11)

For j = 1, .., logN − 1 and k = 0, .., 2j − 1, we define
the i-th wavelet basis vector for i = 2j + k + 1 as ψi =

(−φj+1,2k + φj+1,2k+1) /
√

N
2j , where

√
N
2j is a scaling factor.

If A is the data vector, the wavelet coefficients are the dot
product of A with these wavelet basis vectors, i.e., wi =
〈A,ψi〉, for i = 1, .., N .

The distributed computation of Send-Coef is based on the
following observation:

wi = 〈A,ψi〉 =

m∑
j=1

〈Aj , ψi〉,

where Aj is the j-th partition of the initial input data.
Thus, every wavelet coefficient is a linear combination of
the data values that belong to its sub-tree in the error tree.

Send-Coef partitions the data in a different way than the
one proposed in Section 4. Each mapper takes up as many
datapoints that fit as possible in a HDFS block size. The
block size does not need to be aligned to a power of two.
For every datapoint di, the mapper computes its contribu-
tion to the final value of every wavelet coefficient in pathdi .
Thus, a mapper partially computes all the coefficients along
the path from its datapoints to the root of the error tree
and thus sub-tree locality is not preserved. The reducer
computes the final coefficients by aggregating the partially
computed values and then retains the B largest ones in ab-
solute normalized value. Algorithm 7 gives the pseudocode
for the mappers of the Send-Coef algorithm.

As data locality is not preserved and for every data value
we need to compute its contribution to logN + 1 nodes (the
path to the root), the computational complexity of a map-
per is O (SlogN). Furthermore, every mapper emits
O (S (logN − logS)) key-values to the reducer. By having
m mappers, the whole communication cost is
O (mS (logN − logS)) = O (N (logN − logS)). Compared
to Send-Coef, our approach in Section A.1 achieves better
computational complexity by a factor of logN and commu-
nication cost by logN − logS.

Algorithm 7 Send-CoefMapper

Require: S: mapper input data
1: for all datapoints di ∈ S do
2: for all error tree nodes j ∈ pathdi do
3: compute contribution ci,j of di to coefficient cj
4: if cj is fully computed then emit (j, cj)
5: end for
6: end for
7: for all datapoints di ∈ S do
8: for all error tree nodes j ∈ pathdi do
9: if cj is partially computed then emit (j, ci,j)

10: end for
11: end for

A.4 H-WTopk
In order to reduce the communication cost between the

map and the reduce phase, the H-WTopk algorithm is pro-
posed in [21]. H-WTopk is based on the TPUT [8] algorithm
for the distributed top-k problem. In contrast to TPUT, H-
WTopk can handle both positive and negative values, as
both are possible for a wavelet coefficient. The intuition be-
hind the algorithm is to use a partial sum to prune items that
cannot be in the top-k. Thus, a mapper does not need to



send all of its data to the reducer but only a set of candidate
nodes, according to the local partial sums. The algorithm
requires three communication rounds between the mappers
and the reducer. For a coefficient x, c (x) denotes its value
and cj (x) its partially computed value at mapper j.

Round 1: Each mapper first emits the coefficients with
the k highest and k lowest (i.e., most negative) values. For
each coefficient x seen at the reducer, a lower bound τ (x) is
computed on its total value’s magnitude |c (x) | (i.e., |c (x) | ≥
τ (x)), as follows. First, an upper bound τ+ (x) and a lower
bound τ− (x) are computed on its total value c (x) (i.e.,
τ− (x) ≤ c (x) ≤ τ+ (x)): If a mapper sends out the value of
x, its exact value is added. Otherwise, for τ+ (x), the k-th
highest value this mapper sends out is added and for τ− (x)
the k-th lowest value is added. Then we set τ (x) = 0 if
τ+ (x) and τ− (x) have different signs and
τ (x) = min{|τ+ (x) |, |τ− (x) |} otherwise. Doing so ensures
τ− (x) ≤ c (x) ≤ τ+ (x) and |c (x) | ≥ τ (x). Now, the k-th
largest τ (x), denoted as T1, is used as a threshold for the
magnitude of the top-k coefficients.
Round 2: A mapper j next emits all local coefficients x

having |cj (x) | > T1/m. This ensures a coefficient in the true
top-k in magnitude must be sent by at least one mapper after
this round, because if a coefficient is not sent, its aggregated
value’s magnitude can be no higher than T1.

Now, with more values available from each mapper, upper
and lower bounds τ+ (x) , τ− (x) are refined for each coeffi-
cient x ∈ L, where L is the set of coefficients ever received. If
a mapper did not send the value for some x, T1/m (−T1/m)
is now used for computing τ+ (x) (τ− (x)). This produces a
new better threshold, T2 (calculated in the same way as com-
puting T1 with improved τ (x)’s), on the top-k coefficients’
magnitude.

Next, coefficients are further pruned from L. For any x ∈
L a new threshold τ ′ (x) = max{|τ+ (x) |, |τ− (x) |} is com-
puted based on refined upper and lower bounds τ+ (x) , τ− (x).
If τ ′ (x) < T2, coefficient x is deleted from L. The final top-k
coefficients must be in the set L.
Round 3: Finally, the values of all coefficients in L are

requested from each mapper. Then the aggregated values of
exactly these coefficients are computed, and the k of largest
magnitude among them are selected as the synopsis.

A.5 Experimental Evaluation of Algorithms for
the Conventional Synopsis

For any given dataset, all four described algorithms pro-
duce exactly the same synopses. Thus, we do not need to
compare them in terms of approximation quality. In this
Section, we evaluate their performance with respect to run-
ning time. For the evaluation we use the NYCT and WD
datasets over the same platform presented in Section 6. For
all the experiments, we have configured a cluster for 20 avail-
able map and 1 reduce slots.

Figure 10 shows the running time results for both datasets
when a synopsis of size B = N/8 is requested. Since Send-
V ends up to be a sequential algorithm, it presents much
worse running time performance than CON and Send-Coef
for both examined datasets.

In Figure 10, we also observe that our algorithm (CON) is
the most time-efficient for computing the conventional syn-
opsis. The performance gain of CON stems from its locality-
preserving partitioning, which results in less computational
and communication complexity. CON is 1.5× faster on av-
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Figure 10: Running time comparison for constructing a con-
ventional synopsis with B = N/8.

erage than Send-Coef, that is the second most efficient al-
gorithm, both for the NYCT and the WD datasets.

For both datasets, we observe that despite the communi-
cation optimizations, H-WTopk presents the worst perfor-
mance. Furthermore, for datasizes larger than 8 millions of
datapoints, it runs out of memory. This is because of the
selected synopsis size. H-WTopk can be very efficient if B is
much smaller than the input size of the mapper. Otherwise,
since it needs to emit the B largest and B smallest coeffi-
cients, it ends up emitting twice the input size. Furthermore,
it also has the extra overhead of three MapReduce jobs. In
[21], the wavelet transform was applied to a histogram and
thus, data had been already compacted and smaller budget
space was needed to achieve accurate results. The impact of
B in the communication cost is discussed in [21], where the
corresponding values were only chosen in the range [10, 50].
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Figure 11: Running time results for the NYCT dataset and
B=50.

Figure 11 shows the corresponding results for the NYCT
dataset when a synopsis of stable size B = 50 is used. This
figure verifies the results of [21]: H-WTopk dominates the
other approaches only when B is very small and the dataset
size large enough to not be affected by the overhead of the
three MapReduce jobs. Thus, in our case, where the trans-
form is applied directly on the data and not on a histogram,
this algorithm is not of practical use as it is very difficult to
construct a good quality synopsis with so few coefficients.


