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General Info

People:

Nectarios Koziris (Associate Professor, NTUA)

4 post-doc researchers

more than 15 graduate students
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Research Areas

High performance computing
I Optimizations for challenging applications

- Lack of inherent parallelism
- Memory bandwidth saturation (e.g. SpMxV, Floyd-Warshall)
- Memory latency (graph algorithms)

I Studies of architectures’ impact on applications
I Different architectures (PC clusters, CMPs, GPGPUs, Cell B/E)
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Research Areas

Computer architecture
I Caches for CMPs (e.g. cache-partitioning)
I SMTs (e.g. thread synchronization, speculative precomputation)

High performance systems and interconnects
I Study the effects of shared resources on SMP clusters
I Focus on I/O and scheduling techniques

Grid computing & P2P networks and distributed systems

More info at lab’s wiki:
http://www.cslab.ece.ntua.gr/cgi-bin/twiki/view/CSLab/
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Recent Work (HPC)

Transformations to increase data locality
I “Loop Transformations for Cache-Friendlier Floyd-Warshall”,

(submitted to ACM Journal of Experimental Algorithms)

Data compression to decrease memory traffic
I “Optimizing Sparse Matrix-Vector Multiplication Using Index and

Value Compression”, (Comp. Frontiers 2008)
I “Improving the Performance of Multithreaded Sparse Matrix-Vector

Multiplication Using Index and Value Compression”, (ICPP 2008)

Optimizing communication for message-passing applications
I “Overlapping Computation and Communication in SMT Clusters with

Commodity Interconnects”, (CLUSTER 2009)
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Recent Work (CA)

CMP caches
I “An Adaptive Bloom Filter Cache Partitioning Scheme for Multicore

Architectures”, (SAMOS 2008)

SMT processors
I “Facilitating Efficient Synchronization of Asymmetric Threads on

Hyper-Threaded Processors”, (MTAAP 2008)

Transactional memory
I “Early Experiences on Accelerating Dijkstra’s Algorithm Using

Transactional Memory”, (MTAAP 2009)
I “Employing Transactional Memory and Helper Threads to Speedup

Dijkstra’s Algorithm”, (ICPP 2009)
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Application Model - Motivation

Threads with asymmetric workloads
executing on a single HT processor,
synchronizing on a frequent basis

In real applications, usually a helper thread
that facilitates a worker

speculative precomputation

network I/O & message processing

disk request completions

How should synchronization be implemented
for this model?

resource-conservant

worker: fast notification

helper: fast resumption

worker
thread

helper
thread

exit
barrier1

exit
barrier2

exit
barrier3

exit
barrier4

exit
barrier5

busy period
idle period

barrier

T0 T1

HT processor
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Option 1: spin-wait loops

commonplace as building blocks of synchronization in MP systems

pros: simple implementation, high responsiveness

cons: spinning in resource hungry!
I loop unrolled multiple times
I costly pipeline flush penalty
I spins a lot faster than actually needed

wait loop:
ld eax,spinvar
cmp eax,0
jne wait loop

IP
IP

Trace
Cache

ITLBRegister
Rename

ITLB
Allocator

memory

general

Registers

Store Buffer

L1 D-Cache
Registers

Re-Order
Buffer
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Option 2: spin-wait, but loosen the spinning. . .

slight delay in the loop (∼pipeline depth)

spinning thread effectively de-pipelined → dynamically shared
resources to peer thread

I execution units, caches, fetch-decode-retirement logic

statically partitioned resources are not released (but still unused)
I uop queues, load-store queues, ROB
I each thread can use at most half of total entries

up to 15-20% deceleration of busy thread

wait loop:
pause
ld eax,spinvar
cmp eax,0
jne wait loop

IP
IP

Trace
Cache

ITLBRegister
Rename

ITLB
Allocator

memory

general

Registers

Store Buffer

L1 D-Cache
Registers

Re-Order
Buffer
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Option 3: spin-wait, but “HALT”. . .

partitioned resources recombined for full use by busy thread
(ST-mode)

IPIs to wake up sleeping thread, resources then re-partitioned
(MT-mode)

system call needed for waiting and notification /

multiple transitions between ST/MT incur extra overhead

wait loop:
halt
ld eax,spinvar
cmp eax,0
jne wait loop

IP
IP

Trace
Cache

ITLBRegister
Rename

ITLB
Allocator

memory

general

Registers

Store Buffer

L1 D-Cache
Registers

Re-Order
Buffer
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Option 4: MONITOR/MWAIT loops

while (spinvar!=NOTIFIED) {
MONITOR(spinvar,0,0)
MWAIT

}

condition-wait close to the hardware level

all resources (shared & partitioned) relinquished

require kernel privileges

obviate the need for (expensive) IPI delivery for notification ,

sleeping state more responsive than this of HALT ,

Contribution:

framework that enables use of MONITOR/MWAIT at user-level, with
least possible kernel involvement

I so far, in OS code mostly (scheduler idle loop)

explore the potential of multithreaded programs to benefit from
MONITOR/MWAIT functionality
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Implementing Basic Primitives with MONITOR/MWAIT

condition-wait:
I must occur in kernel-space → syscall overhead the least that should be

paid. . .
I must check continuously status of monitored memory

where to allocate the region to be monitored?
I in user-space. . .

F notification requires single value update ,
F on each condition check kernel must copy contents of monitored region

from process address space (e.g. via copy from user) /
I in kernel-space. . .

F additional system call to enable update of monitored memory from
user-space /

I in kernel-space, but map it to user-space for direct access ,
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Establishing Fast Data Exchange between Kernel- and
User-Space

monitored memory allocated in the
context of a special char device
(kmem mapper)

load module

I kmalloc page-frame
I initialize kernel pointer to show

at monitored region within frame

open kmem mapper

I initialize monitored region
(MWMON ORIGINAL VAL)

mmap kmem mapper

I page-frame remapped to
user-space (remap pfn range)

I pointer returned points to
beginning of monitored region

unload module

I page kfree’d

physical address space

0 2GB

0 2TB

VM space

direct mapping 
of physical 

memoryUser space
vmalloc/ioremap space, kernel text 
mapping, module mapping space

mmapped dev mem: used by notification
primitive at user-space to update monitored
memory
mwmon mmap area: used by condition-wait
primitive at kernel-space to check monitored
memory
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Use example - System call interface

worker thread helper thread

fd = open(“/dev/kmem_mapper”,…)

mwmem = mmap(
0,PAGE_SIZE,…,fd,PAGE_SIZE)

*mwmem = 
MWMON_NOTIFIED_VAL

mwmon_mmap_sleep()

main
thread

munmap(mwmem,PAGE_SIZE)

close(fd)

asmlinkage long sys_mwmon_mmap_sleep(void)
{

do {
        local_irq_disable();
        monitor(mwmon_mmap_area,0,0);
        local_irq_enable();
        if(*mwmon_mmap_area == MWMON_NOTIFIED_VAL)
            break;

mwait(0,0);
    } while (*mwmon_mmap_area != MWMON_NOTIFIED_VAL);
    *mwmon_mmap_area = MWMON_ORIGINAL_VAL;

    return 0;
}
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System Configuration

Processor
I Intel Xeon@2.8GHz (Prescott core), 2 hyper-threads
I 16KB L1-D, 1MB L2, 64B line size

Linux 2.6.13, x86 64 ISA

gcc-4.12 (-O2), glibc-2.5

NPTL for threading operations, affinity system calls for thread
binding on LPs

rdtsc for accurate timing measurements
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Case 1: Barriers - Simple Scenario
simple execution scenario:

I worker: 512×512 matmul (fp)
I helper waits until worker enters barrier

direct measurements:
I Twork → reflects amount of interference

introduced by helper
I Twakeup → responsiveness of wait primitive
I Tcall → call overhead of notification primitive

condition-wait/notification primitives as
building blocks for actions of intermediate/last
thread in barrier

worker
thread

helper
thread

w
or

k

Tw
or

k

Tcall    Twakeup

sl
ee

p

notify

Intermediate thread (condition-wait) Last thread (notification)

OS? OS?

spin-loops spin-wait loop + PAUSE in loop body NO single value update NO

spin-loops-halt spin-wait loop + HALT in loop body YES single value update + IPI YES

pthreads futex(FUTEX WAIT,...) YES futex(FUTEX WAKE,...) YES

mwmon mwmon mmap sleep YES single value update NO
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Case 1: Barriers - Simple Scenario

mwmon best balances resource
consumption and responsiveness/call
overhead

I 24% less interference compared to
spin-loops

I 4× lower wakeup latency, 3.5× lower
call overhead, compared to pthreads

worker
thread

helper
thread

w
or

k

Tw
or

k

Tcall    Twakeup

sl
ee

p

notify

Twork (seconds) Twakeup (cycles) Tcall (cycles)

lower is better

spin-loops 4.3897 1236 1173

spin-loops-halt 3.5720 49953 51329

pthreads 3.5917 45035 18968

mwmon 3.5266 11319 5470
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Case 2: Barriers - Fine-grain Synchronization

varying workload asymmetry
I unit of work = 10×10 matmul (fp)
I heavy thread: always 10 units
I light thread: 0-10 units

106 synchronized iterations

overall completion time reflects throughput of
each barrier implementation

heavy
thread

light
thread

×1
06

×1
06

w
or

k

w
or

k

Tt
ot

al
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Case 2: Barriers - Fine-grain Synchronization
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Across all levels of asymmetry mwmon outperforms pthreads by 12% and
spin-loops by 26%

converges with spin-loops as threads become symmetric
constant performance gap w.r.t. pthreads
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Case 3: Barriers - Speculative Precomputation (SPR)

Thread based prefetching of top L2
cache-missing loads (delinquent loads − DLs)

In phase k helper thread prefetches for phase
k+1, then throttled

phases or prefetching spans: execution
traces where memory footprint of DLs < 1

2
L2 size

Benchmarks

Application Data Set

LU decomposition 2048×2048, 10×10 blocks

Transitive closure 1.6K vertices, 25K edges, 16×16 blocks

NAS BT Class A

SpMxV 9648×77137, 260785 non-zeroes

worker
thread

helper
thread

exit
barrier1

exit
barrier2

exit
barrier3

exit
barrier4

exit
barrier5

span1

span2

span3

span4

span5

Prefetch for span2

Prefetch for span3

Prefetch for span4

Prefetch for span5

busy period

idle period
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Case 3: SPR Speedups and Miss Coverage

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

SVBTTCLU

S
pe

ed
up

serial
spin-loops
pthreads
mwmon

mwmon offers best speedups, between
1.07 (LU) and 1.35 (TC)

with equal miss-coverage ability
succeeds in boosting
“interference-sensitive”
applications
notable gains even when worker
delayed in barriers and prefetcher
has large workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SVBTTCLU

R
el

at
iv

e 
L2

 m
is

se
s 

in
cr

ea
se

serial
spin-loops

pthreads
mwmon

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SVBTTCLU

m
w

m
on

pt
hr

ea
ds

sp
in

-lo
op

s
m

w
m

on
pt

hr
ea

ds
sp

in
-lo

op
s

m
w

m
on

pt
hr

ea
ds

sp
in

-lo
op

s
m

w
m

on
pt

hr
ea

ds
sp

in
-lo

op
s

m
w

m
on

pt
hr

ea
ds

sp
in

-lo
op

s
m

w
m

on
pt

hr
ea

ds
sp

in
-lo

op
s

m
w

m
on

pt
hr

ea
ds

sp
in

-lo
op

s
m

w
m

on
pt

hr
ea

ds
sp

in
-lo

op
s

P
er

ce
nt

ag
e 

of
 to

ta
l c

yc
le

s 
(%

)
W-synch
W-work
P-synch
P-work

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 24 / 43



Conclusions

mwmon primitives make the best compromise between low resource waste
and low call & wakeup latency

efficient use of resources on HT processors

MONITOR/MWAIT functionality should be made available to the
user

Possible directions

mwmon-like hierarchical schemes in multi-SMT systems (e.g. tree
barriers)

other “producer-consumer” models (disk/network I/O applications,
MPI programs, work-queuing models, etc.)

multithreaded applications with irregular parallelism
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Motivation

TM community needs real-world applications

Graph algorithms are described as good candidates for TM, due to
irregular accesses of data structures

Dijkstra’s algorithm
I fundamental SSSP algorithm
I widely used
I inherently serial, thus challenging to parallelize
I previous attempts resulted in major changes in algorithm’s semantics

(e.g. ∆-stepping, Boost implementation)

Early results published in MTAAP’09, extended version will appear in
ICPP’09

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 27 / 43



Main Idea
Conventional use of TM: optimistic synchronization

x

Our view of TM: optimistic parallelization

x

Loop i i+1 i+2 i+3
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The Basics of Dijkstra’s Algorithm

Serial algorithm

Input : G = (V ,E), w : E → R+,
source vertex s, min Q

Output : shortest distance array d ,
predecessor array π

foreach v ∈ V do
d [v ]← inf;
π[v ]← nil;
Insert(Q, v);

end
d [s]← 0;

while Q 6= ∅ do
u ← ExtractMin(Q);
foreach v adjacent to u do

sum← d [u] + w(u, v);
if d [v ] > sum then

DecreaseKey(Q, v , sum);
d [v ]← sum;
π[v ]← u;

end

end
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The Basics of Dijkstra’s Algorithm
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Min-priority queue implemented as binary min-heap

maintains all but the settled (“optimal”) vertices

min-heap property: ∀i : d(parent(i)) ≤ d(i)

amortizes the cost of multiple ExtractMin’s and DecreaseKey’s
I O((|E |+ |V |)log |V |) time complexity
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Straightforward Parallelization

Fine-grain parallelization at the inner loop level

Fine-Grain Multi-Threaded

/* Initialization phase same to the serial
code */

while Q 6= ∅ do
Barrier
if tid = 0 then

u ← ExtractMin(Q);
Barrier
for v adjacent to u in parallel do

sum← d [u] + w(u, v);
if d [v ] > sum then

Begin-Atomic
DecreaseKey(Q, v , sum);
End-Atomic
d [v ]← sum;
π[v ]← u;

end

end

Issues

speedup bounded by average
out-degree

concurrent heap updates due to
DecreaseKey’s

barrier synchronization overhead

Evaluation

conventional synch. mechanisms
yield major slowdowns

TM
I better performance
I highlights optimistic

parallelism
I suffers from barriers overhead
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Helper-Threading Scheme

Motivation

expose more parallelism to each thread
eliminate costly barrier synchronization

Rationale

in serial, updates are performed only
from definitely optimal vertices

allow updates from possibly optimal
vertices

I main thread operates as in the serial
case

I helper threads are assigned the next
minimum vertices (xk ) and perform
updates from them
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speculation on the status of xk

I if already optimal , main thread will be offloaded
I if not optimal , any suboptimal relaxations will be corrected eventually by

main thread
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Execution Pattern
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Serial FGMT Helper Threads

Decoupling of sequential/parallel parts is achieved through TM

the main thread stops all helpers at the end of each iteration

unfinished work will be corrected, as with mis-speculated distances
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Helper-Threading Scheme

Main thread

while Q 6= ∅ do
u ← ExtractMin(Q);
done ← 0;
foreach v adjacent to u do

sum← d [u] + w(u, v);
Begin-Xact
if d [v ] > sum then

DecreaseKey(Q, v , sum);
d [v ]← sum;
π[v ]← u;

End-Xact
end

Begin-Xact
done ← 1;
End-Xact

end

Helper thread

while Q 6= ∅ do
while done = 1 do ;
x ← ReadMin(Q, tid)
stop ← 0
foreach y adjacent to x and while stop = 0 do

Begin-Xact
if done = 0 then

sum← d [x] + w(x , y)
if d [y ] > sum then

DecreaseKey(Q, y , sum)

d [y ]← sum
π[y ]← x

else
stop ← 1

End-Xact
end

end

Why with TM?

composable
I all dependent atomic sub-operations composed into a large atomic

operation, without limiting concurrency

optimistic
easily programmable
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Performance Evaluation
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Simics 3.0.31, GEMS 2.1, LogTM-SE

speedups in 15 out of 18 graphs, up to 1.84 (max ideal speedup = 4.64)

main thread not obstructed by helpers (<1% abort rate in all cases)
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Conclusions

HT+TM scheme

exposes more parallelism and eliminates barrier synchronization

noteworthy speedups with minimal code extensions

Future work

TM for optimistic parallelization
I HT+TM as a programming model for other graph problems (MSTs,

maximum flow, SSSP) and other similar (“greedy”) applications
I adjustments of existing TM systems for explicitly supporting

speculative parallelization
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Thank you!
Questions?
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