Utilizing Underlying Synchronization Mechanisms for
Efficient Support of Different Programming Models

Nikos Anastopoulos

Computing Systems Laboratory
School of Electrical and Computer Engineering
National Technical University of Athens
anastop@cslab.ece.ntua.gr
http://www.cslab.ece.ntua.gr

July 26, 2009

QOO Q Wetons Technicl nivrsty o Ahons

:8SLab

Talk Outline

@ Lab Profile

@ Part I: Supporting Efficient Synchronization of Asymmetric Threads
on Hyper-Threaded Processors

© Part Il: Combining TM with Helper Threads for Exploiting Optimistic
Parallelism

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 2/43

Talk Outline

@ Lab Profile

@ Part I: Supporting Efficient Synchronization of Asymmetric Threads
on Hyper-Threaded Processors

© Part Il: Combining TM with Helper Threads for Exploiting Optimistic
Parallelism

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 3/43

General Info

People:
@ Nectarios Koziris (Associate Professor, NTUA)
@ 4 post-doc researchers

@ more than 15 graduate students

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

July 26, 2009

4/43

Research Areas

@ High performance computing
» Optimizations for challenging applications

- Lack of inherent parallelism
- Memory bandwidth saturation (e.g. SpMxV, Floyd-Warshall)
- Memory latency (graph algorithms)

» Studies of architectures’ impact on applications
» Different architectures (PC clusters, CMPs, GPGPUs, Cell B/E)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 5/ 43

Research Areas

Computer architecture

» Caches for CMPs (e.g. cache-partitioning)
» SMTs (e.g. thread synchronization, speculative precomputation)

High performance systems and interconnects

» Study the effects of shared resources on SMP clusters
» Focus on 1/0 and scheduling techniques

Grid computing & P2P networks and distributed systems

More info at lab's wiki:

http://www.cslab.ece.ntua.gr/cgi-bin/twiki/view/CSLab/

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 6 /43

http://www.cslab.ece.ntua.gr/cgi-bin/twiki/view/CSLab/

Recent Work (HPC)

@ Transformations to increase data locality
» “Loop Transformations for Cache-Friendlier Floyd-Warshall”,
(submitted to ACM Journal of Experimental Algorithms)
@ Data compression to decrease memory traffic
» “Optimizing Sparse Matrix-Vector Multiplication Using Index and
Value Compression”, (Comp. Frontiers 2008)
» “Improving the Performance of Multithreaded Sparse Matrix-Vector
Multiplication Using Index and Value Compression”, (ICPP 2008)
@ Optimizing communication for message-passing applications

» “Overlapping Computation and Communication in SMT Clusters with
Commodity Interconnects”, (CLUSTER 2009)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 7 /43

Recent Work (CA)

@ CMP caches
» “An Adaptive Bloom Filter Cache Partitioning Scheme for Multicore
Architectures”, (SAMOS 2008)
@ SMT processors
» “Facilitating Efficient Synchronization of Asymmetric Threads on
Hyper-Threaded Processors”, (MTAAP 2008)
@ Transactional memory

» “Early Experiences on Accelerating Dijkstra’'s Algorithm Using
Transactional Memory”, (MTAAP 2009)

» “Employing Transactional Memory and Helper Threads to Speedup
Dijkstra's Algorithm”, (ICPP 2009)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 8 /43

Talk Outline

@ Lab Profile

@ Part I: Supporting Efficient Synchronization of Asymmetric
Threads on Hyper-Threaded Processors

© Part Il: Combining TM with Helper Threads for Exploiting Optimistic
Parallelism

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 9 /43

Application Model - Motivation

Threads with asymmetric workloads

executing on a single HT processor,

synchronizing on a frequent basis busy perod @D
idle period
barrier

In real applications, usually a helper thread
that facilitates a worker

@ speculative precomputation
@ network /O & message processing

o disk request completions

How should synchronization be implemented
for this model?

@ resource-conservant
@ worker: fast notification

@ helper: fast resumption

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

worker helper
thread thread

barrierl

barrier2

barrier4

I
L

exit
barriers

TO T1 /

HT processor

July 26, 2009 10 / 43

Option 1: spin-wait loops

@ commonplace as building blocks of synchronization in MP systems
@ pros: simple implementation, high responsiveness
@ cons: spinning in resource hungry!

> loop unrolled multiple times

» costly pipeline flush penalty
> spins a lot faster than actually needed

[OBusy thread [JWaiting thread

I-Fetch i Uop | Rename | Queue | Schedulers | Register | Execute ; L1Cache| Register ! Retire |
. ; | queve | ; ; | Read ! : | wiite
wait_loop: 1 1 3 1 1 BB
: i @ i i P i i | S |
Id eax,spinvar ! 3 : i i i i i
cmp eax,0 | | I

jne wait_loop

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 11 / 43

Option 2: spin-wait, but loosen the spinning. ..

@ slight delay in the loop (~pipeline depth)

@ spinning thread effectively de-pipelined — dynamically shared
resources to peer thread
» execution units, caches, fetch-decode-retirement logic
e statically partitioned resources are not released (but still unused)
» uop queues, load-store queues, ROB
» each thread can use at most half of total entries

@ up to 15-20% deceleration of busy thread

[DBusy thread [Waiting thread

I-Fetch ! Uop | Rename | Queue | Schedulers | Register ! Execute | L1Cache; Register |

wait_loop: | aueve ! [Reas | | [|

Retire |

| e |
Id eax,spinvar

cmp eax,0 ﬂ % ﬁ

jne wait_loop
N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 12 / 43

Option 3: spin-wait, but “HALT". ..

partitioned resources recombined for full use by busy thread
(ST-mode)

IPIs to wake up sleeping thread, resources then re-partitioned
(MT-mode)

system call needed for waiting and notification ®

multiple transitions between ST /MT incur extra overhead

[OBusy thread [Waiting thread

. I-Fetch i Uop | Rename | Queue | Schedulers | Register | Execute { LiCache | Register | Retire |
walt,loop: | queue Read | Write :

halt 7 1 % ‘
Id eax,spinvar | % %

| Reoer |
Bufer

jne wait_loop

cmp eax,0

i upcahe |

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 13 / 43

Option 4: MONITOR/MWAIT loops

while (spinvar!=NOTIFIED) {
MONITOR(spinvar,0,0)
MWAIT

}

condition-wait close to the hardware level
all resources (shared & partitioned) relinquished
require kernel privileges

obviate the need for (expensive) IPI delivery for notification ®

sleeping state more responsive than this of HALT ©®

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009

14 / 43

Option 4: MONITOR/MWAIT loops

while (spinvar!=NOTIFIED) {
MONITOR(spinvar,0,0)
MWAIT

}
condition-wait close to the hardware level
all resources (shared & partitioned) relinquished
require kernel privileges

obviate the need for (expensive) IPI delivery for notification ®

sleeping state more responsive than this of HALT ©®

Contribution:

e framework that enables use of MONITOR/MWAIT at user-level, with
least possible kernel involvement

» so far, in OS code mostly (scheduler idle loop)

@ explore the potential of multithreaded programs to benefit from
MONITOR/MWAIT functionality

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 14 / 43

Implementing Basic Primitives with MONITOR/MWAIT

@ condition-wait:
» must occur in kernel-space — syscall overhead the least that should be
paid. ..
» must check continuously status of monitored memory
@ where to allocate the region to be monitored?
> in user-space. ..
* notification requires single value update ®
* on each condition check kernel must copy contents of monitored region
from process address space (e.g. via copy_from user) @
> in kernel-space. ..
* additional system call to enable update of monitored memory from
user-space ®

> in kernel-space, but map it to user-space for direct access ©

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 15 / 43

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the atet g
Mo
context of a special char device . Userspace o memev,

(kmem_mapper) o

physical address space

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the atet g
Mo
context of a special char device . Userspace o memev,

(kmem_mapper) o
@ load module

physical address space

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the drect mapping
of physical

context of a special char device Userspace | memer
(kmem_mapper) . L ‘
o load module

» kmalloc page-frame

page physical address space
frame

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 16 / 43

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the drect mapping
A) . ofphysical
context of a special char device Userspace | e

(kmem_mapper) 0
e load module
» kmalloc page-frame
> initialize kernel pointer to show
at monitored region within frame f

page physical address space
frame

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 16 / 43

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the drect mapping
A) . ofphysical
context of a special char device . Userspace .memen

(kmem_mapper) 0
e load module
» kmalloc page-frame
> initialize kernel pointer to show
at monitored region within frame f

@ open kmem_mapper page

frame

physical address space

> initialize monitored region
(MWMON_ORIGINAL VAL)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 16 / 43

Establishing Fast Data Exchange between Kernel- and

User-Space

@ monitored memory allocated in the
context of a special char device

(kmem_mapper)
e load module

» kmalloc page-frame
> initialize kernel pointer to show
at monitored region within frame

@ open kmem_mapper

> initialize monitored region
(MWMON_ORIGINAL VAL)

e mmap kmem_mapper

N. Anastopoulos (cslab@NTUA)

User space

direct mapping
of physical
memory

ARCO, UPC, Barcelona

H]

/ VM space
*mwmon_mmap_area

2GB

page physical address space
frame

July 26, 2009 16 / 43

Establishing Fast Data Exchange between Kernel- and

User-Space

@ monitored memory allocated in the
context of a special char device

(kmem_mapper)
@ load module

» kmalloc page-frame
> initialize kernel pointer to show
at monitored region within frame

@ open kmem_mapper

> initialize monitored region
(MWMON_ORIGINAL VAL)

e mmap kmem_mapper

» page-frame remapped to
user-space (remap_pfn_range)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

User space

direct mapping
of physical

memory

*mwmon_mmap_area

VM space

2GB

1

page
frame

physical address space

July 26, 2009 16 / 43

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the rect mapping

of physical

context of a special char device User space ey

(kmem_mapper) 3
e load module . L]
& *mwmon_mmap_area

VM space

» kmalloc page-frame
> initialize kernel pointer to show
at monitored region within frame [. 2‘37

@ open kmem_mapper

*mmapped_dev_mem)

fpage physical address space
rame

> initialize monitored region
(MWMON_ORIGINAL VAL)
e mmap kmem_mapper
> page-frame remapped to
user-space (remap_pfn_range)
> pointer returned points to
beginning of monitored region

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 16 / 43

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the rect mapping

of physical

context of a special char device User space ey

(kmem_mapper) 3 N

o load module
» kmalloc page-frame "~ *mamon_mmap_area
> initialize kernel pointer to show
at monitored region within frame [. 2‘33

@ open kmem_mapper page

frame

*mmapped_dev_mem)

> initialize monitored region
(MWMON_ORIGINAL VAL)

e mmap kmem_mapper
> page-frame remapped to
user-space (remap_pfn_range)
> pointer returned points to
beginning of monitored region
o unload module
> page kfree'd

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009

VM space

physical address space

16 / 43

Establishing Fast Data Exchange between Kernel- and
User-Space

@ monitored memory allocated in the rect mapping

of physical

context of a special char device User space ey
(kmem_mapper) .

@ load module .: [

VM space
» kmalloc page-frame *mumon_mmap_area
> initialize kernel pointer to show ~ “Mmapped-dev_men
at monitored region within frame {0 . 26?
@ open kmemimapper f?:iee physical address space
> initialize monitored region
(MWMON?DRIGINALA[AL) @ mmapped_dev_mem: used by notification
k primitive at user-space to update monitored
e mmap kmem_mapper memory
> page-frame remapped to @ mwmon mmap_area: used by condition-wait
user-space (remap pfnlange) primitive at kernel-space to check monitored
R memory

> pointer returned points to
beginning of monitored region

o unload module
> page kfree'd

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 16 / 43

Use example - System

main
thread

fd = open(““/dev/kmem_mapper”,..)

mwmem = mmap(
0,PAGE_SIZE, .., fd,PAGE_SIZE)

worker thread helper thread

mwmon_mmap_sleep()

*mwmem =

MWMON_NOTIFIED_VAL — "

munmap (mwmem, PAGE_SIZE)
|
close(fd)

N. Anastopoulos (cslab@NTUA)

call interface

asmlinkage long sys_mwmon_mmap_sleep(void)

do {
local_irqg_disable(Q);
monitor (mwmon_mmap_area,0,0);
local_irqg_enable();
if(*mwmon_mmap_area == MWMON_NOTIFIED_VAL)
break;
mwait(0,0);
3 while (*mwmon_mmap_area !'= MWMON_NOTIFIED_VAL)
*mwmon_mmap_area = MWMON_ORIGINAL_VAL;

return 0;

ARCO, UPC, Barcelona July 26, 2009

17 / 43

System Configuration

Processor

> Intel Xeon©2.8GHz (Prescott core), 2 hyper-threads
» 16KB L1-D, IMB L2, 64B line size

Linux 2.6.13, x86_64 ISA

gce-4.12 (-02), glibc-2.5

NPTL for threading operations, affinity system calls for thread
binding on LPs

@ rdtsc for accurate timing measurements

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 18 / 43

Case 1: Barriers - Simple Scenario

@ simple execution scenario:
> worker: 512x512 matmul (fp)
» helper waits until worker enters barrier e tead
@ direct measurements:
> Tuork — reflects amount of interference
introduced by helper
> Takeup — responsiveness of wait primitive
> T — call overhead of notification primitive

Twork
sleep

o condition-wait/notification primitives as Tean
building blocks for actions of intermediate/last
thread in barrier

} $Twakeup

Intermediate thread (condition-wait) Last thread (notification)
| os? | os?
spin-loops spin-wait loop + PAUSE in loop body | NO single value update NO
spin-loops-halt | spin-wait loop + HALT in loop body YES | single value update + IPl | YES
pthreads futex (FUTEX_WAIT,...) YES futex (FUTEX_WAKE, ...) YES
mwmon mwmon_mmap_sleep YES | single value update NO
N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 19 / 43

Case 1: Barriers - Simple Scenario

@ mwmon best balances resource
consumption and responsiveness/call

overhead

> 24% less interference compared to

spin-loops

Twork

> 4x lower wakeup latency, 3.5x lower
call overhead, compared to pthreads Tl

worker helper
thread thread

sleep

‘17-1’ ITwakeup

Twork (seconds)

Twakeup (cycles)

Tean (cycles)

spin-loops 4.3897 1236 1173
spin-loops-halt 3.5720 49953 51329
pthreads 3.5917 45035 18968
mwmon 3.5266 11319 5470

N. Anastopoulos (cslab@NTUA)

ARCO, UPC, Barcelona

Case 2: Barriers - Fine-grain Synchronization

heavy light
thread thread

@ varying workload asymmetry

> unit of work = 10x10 matmul (fp)
heavy thread: always 10 units
> light thread: 0-10 units

@ 10° synchronized iterations

\{

Ttotal
x108

@ overall completion time reflects throughput of
each barrier implementation

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 21 /43

Case 2: Barriers - Fine-grain Synchronization

55

‘/I

50

45 -*

40

35

/

Overall execution time (seconds)

25

0

20 .

mwmon =——
pthreads =
spin-loops —e—

4 6

8 10

Amount of work for light thread

Across all levels of asymmetry mwmon outperforms pthreads by 12% and

spin-loops by 26%

@ converges with spin-loops as threads become symmetric

@ constant performance gap w.r.t. pthreads

N. Anastopoulos (cslab@NTUA)

ARCO, UPC, Barcelona

July 26, 2009

22 /43

Case 3: Barriers - Speculative Precomputation (SPR)

Thread based prefetching of top L2
cache-missing loads (delinquent loads — DLs)

In phase k helper thread prefetches for phase
k+1, then throttled

@ phases or prefetching spans: execution

traces where memory footprint of DLs < %
L2 size

Benchmarks
Application Data Set

LU decomposition

2048x2048, 10x10 blocks

Transitive closure

1.6K vertices, 25K edges, 16x16 blocks

NAS BT

Class A

SpMxV

9648 x 77137, 260785 non-zeroes

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

worker helper

thread thread
_Cb Prefetch for span2
spanl
) exit
~ Pamel =5 Prefetch for span3
span2
< exit "«7 "li
Barier2
——@ Prefetch for span4
span3

.....

spand
exi

span5

idle period

July 26, 2009 23 /43

Case 3: SPR Speedups and Miss Coverage

16

15
14
13

=== serial
s spin-loops
C—— pthreads
C— mwmon

12

11

1

0.9
0.8

Speedup

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3

Relative L2 misses increase

0.2
0.1

N. Anastopoulos (cslab@NTUA)

LU TC BT sV
serial == |
spin-loops mm—
pthreads — |
mwmon ——
Ly TC BT sv

mwmon offers best speedups, between
1.07 (LU) and 1.35 (TC)

@ with equal miss-coverage ability
succeeds in boosting
“interference-sensitive”
applications

@ notable gains even when worker
delayed in barriers and prefetcher
has large workload

Fwmon

Percentage of total cycles (%)

BT sv

ARCO, UPC, Barcelona July 26, 2009 24 / 43

Conclusions

mwmon primitives make the best compromise between low resource waste
and low call & wakeup latency

o efficient use of resources on HT processors

e MONITOR/MWAIT functionality should be made available to the
user

Possible directions

e mwmon-like hierarchical schemes in multi-SMT systems (e.g. tree
barriers)

@ other “producer-consumer” models (disk/network 1/O applications,
MPI programs, work-queuing models, etc.)

@ multithreaded applications with irregular parallelism

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 25 /43

Talk Outline

@ Lab Profile

@ Part I: Supporting Efficient Synchronization of Asymmetric Threads
on Hyper-Threaded Processors

© Part II: Combining TM with Helper Threads for Exploiting
Optimistic Parallelism

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 26 / 43

Motivation

@ TM community needs real-world applications

@ Graph algorithms are described as good candidates for TM, due to
irregular accesses of data structures
@ Dijkstra's algorithm
» fundamental SSSP algorithm
widely used
inherently serial, thus challenging to parallelize
previous attempts resulted in major changes in algorithm’s semantics
(e.g. A-stepping, Boost implementation)

v vy

@ Early results published in MTAAP'09, extended version will appear in
ICPP'09

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 27 / 43

Main Idea

Conventional use of TM: optimistic synchronization

e |
) I

-

)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

July 26, 2009

28 / 43

Main Idea

Conventional use of TM: optimistic synchronization

e |
) I

-

[~

Our view of TM: optimistic parallelization

Loop i LI*1 i+2 i+3

-

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

July 26, 2009

28 /43

The Basics of Dijkstra’s Algorithm

Serial algorithm

Input :G=(V,E), w: E—RT,
source vertex s, min @
Output : shortest distance array d,
predecessor array 7
foreach v € V do
d[v] < INF;
7[v] < NIL;
Insert(Q, v);
end
d[s] < 0;
while Q # 0 do
u +— ExtractMin(Q);
foreach v adjacent to u do
sum «— d[u] + w(u, v);
if d[v] > sum then
DecreaseKey (Q, v, sum);
d[v] < sum;
wv] — u;

end
end

v

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 29 / 43

The Basics of Dijkstra’s Algorithm

Min-priority queue implemented as binary min-heap
@ maintains all but the settled (“optimal”) vertices
e min-heap property: Vi : d(parent(i)) < d(i)
@ amortizes the cost of multiple ExtractMin's and DecreaseKey's
> O((|E| + |V]|)log|V]) time complexity

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 30/ 43

Straightforward Parallelization

Fine-grain parallelization at the inner loop level

Fine-Grain Multi-Threaded

/* Initialization phase same to the serial
code */
while Q # 0 do
Barrier
if tid = 0 then
u «+— ExtractMin(Q);
Barrier
for v adjacent to u in parallel do
sum — d[u] + w(u, v);
if d[v] > sum then
Begin-Atomic
DecreaseKey (Q, v, sum);
End-Atomic
d[v] < sum;
wlv] < u;
end
end

Issues

@ speedup bounded by average
out-degree

@ concurrent heap updates due to
DecreaseKey's

@ barrier synchronization overhead
Evaluation
@ conventional synch. mechanisms
yield major slowdowns
o TM

> better performance

> highlights optimistic
parallelism

» suffers from barriers overhead

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 31/43

Helper-Threading Scheme

Motivation

@ expose more parallelism to each thread
@ eliminate costly barrier synchronization

Rationale

@ in serial, updates are performed only
from definitely optimal vertices

@ allow updates from possibly optimal
vertices
» main thread operates as in the serial
case
> helper threads are assigned the next
minimum vertices (xx) and perform
updates from them

@ speculation on the status of xx
» if lalready optimall, main thread will be offloaded
> if [not optimall, any suboptimal relaxations will be corrected eventually by
main thread

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 32/43

Execution Pattern

Serial

[}
=
3

Helper Threads

L peaiyy M

Z peaiyL
€ peaiyL
¥ peaiyL

Z sodioH

I ven
¥ doys
¥ dois

¥ days
7

L+ deys

1+ deys

L+ deys

z+ days

[|

Zot dois

B extract-min
M read tid™-min
[] relax edges

Zo1 dors

Decoupling of sequential/parallel parts is achieved through TM
@ the main thread stops all helpers at the end of each iteration
@ unfinished work will be corrected, as with mis-speculated distances

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 33 /43

Helper-Threading Scheme

Main thread

while Q # (0 do

end

u + ExtractMin(Q);
done + 0;
foreach v adjacent to u do
sum «— d[u] + w(u, v);
Begin-Xact
if d[v] > sum then
DecreaseKey (Q, v, sum);
d[v] « sum;
7lv] « u;
End-Xact
end
Begin-Xact
done «+— 1;
End-Xact

Why with TM?
@ composable

Helper thread
while Q # 0 do

while done =1 do ;
x < ReadMin(Q, tid)
stop < 0
foreach y adjacent to x and while stop = 0 do
Begin-Xact
if done = 0 then
sum «— d[x] + w(x, y)
if d[y] > sum then
DecreaseKey (Q, y, sum)
dly] < sum
else
stop «— 1
End-Xact
end
end

> all dependent atomic sub-operations composed into a large atomic
operation, without limiting concurrency

@ optimistic
@ easily programmable

N. Anastopoulos (cslab@NTUA)

ARCO, UPC, Barcelona

July 26, 2009

34 /43

Performance Evaluation

10Kx10K 10Kx200K 10Kx1000K
(O ideal speedup: 1.46 - 2.22) (O ideal speedup: 2.41 - 2.63) (O ideal speedup: 4.42 - 4.64)
19 her 19 Sher 19
[rand-helper —a— rand-helper —m—
o, 18 rmat-helper —e— L 18 rmat-helper —e— o 18
5 w7t sscahelper —— 1§ 17 sscahelper —— 1§ 17
g 16f g 16 g 16
g 15 g 15 & 15
3 14+ k4 14 3 14
g 13 T 13 g 13
g g g
g 12+ F: 12 _-E 12
=z 11r k=1 11 = 11
s R R dbelpor —m—
B 0.9 0.9 0.9 rmat-helper —e—
- - ssca-helper —+—
0.8 0.8 08
2 4 6 8 101214 16 18 20 22 24 26 28 30 32 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 2 4 6 8 101214 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads
rmat-10Kx200K rmat-10Kx200K 10Kx200K
<
£ 6e+07 fotal cycles =
verall =] H on-xadt cycles =
Imain thread =] g - act cycles —
B El
8 3
o 2 8 £ et
E 5 2
§ 15 Z S 3eso7
¢ 2
< N B £ sevor
3 i
3 §
05 g 2 e
ol g,
o
2 46 8101214161820222426283032 5 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads

@ Simics 3.0.31, GEMS 2.1, LogTM-SE
@ speedups in 15 out of 18 graphs, up to 1.84 (max ideal speedup = 4.64)

@ main thread not obstructed by helpers (<1% abort rate in all cases)

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 35 /43

Conclusions

HT+TM scheme
@ exposes more parallelism and eliminates barrier synchronization

@ noteworthy speedups with minimal code extensions

Future work
@ TM for optimistic parallelization
» HT+TM as a programming model for other graph problems (MSTs,
maximum flow, SSSP) and other similar (“greedy”) applications
» adjustments of existing TM systems for explicitly supporting
speculative parallelization

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona July 26, 2009 36 / 43

Thank you!

Questions?

N. Anastopoulos (cslab@NTUA) ARCO, UPC, Barcelona

	Appendix

