
Tuning Blocked Array Layouts to Exploit

Memory Hierarchy in SMT Architectures

Evangelia Athanasaki, Kornilios Kourtis, Nikos Anastopoulos,
and Nectarios Koziris

National Technical University of Athens,
School of Electrical and Computer Engineering,

Computing Systems Laboratory,
{valia, kkourt, anastop, nkoziris}@cslab.ece.ntua.gr

Abstract. Cache misses form a major bottleneck for memory-intensive
applications, due to the significant latency of main memory accesses.
Loop tiling, in conjunction with other program transformations, have
been shown to be an effective approach to improving locality and cache
exploitation, especially for dense matrix scientific computations. Beyond
loop nest optimizations, data transformation techniques, and in particu-
lar blocked data layouts, have been used to boost the cache performance.
The stability of performance improvements achieved are heavily depen-
dent on the appropriate selection of tile sizes.

In this paper, we investigate the memory performance of blocked data
layouts, and provide a theoretical analysis for the multiple levels of mem-
ory hierarchy, when they are organized in a set associative fashion. Ac-
cording to this analysis, the optimal tile size that maximizes L1 cache uti-
lization, should completely fit in the L1 cache, even for loop bodies that
access more than just one array. Increased self- or/and cross-interference
misses can be tolerated through prefetching. Such larger tiles also reduce
mispredicted branches and, as a result, the lost CPU cycles that arise.
Results are validated through actual benchmarks on an SMT platform.

1 Introduction

The ever increasing gap between processor and memory speed, necessitates the
efficient use of memory hierarchy to improve performance on modern micropro-
cessors [15]. Compiler optimizations can efficiently keep reused data in memory
hierarchy levels close to processors. Loop tiling is one of the well-known control
transformation techniques, which, in combination with loop permutation, loop
reversal and loop skewing attempt to modify the data access order to improve
data locality. Combined loop and data transformations were proposed to avoid
any negative effect to the number of cache hits for some referenced arrays, while
increasing the locality of references for a group of arrays.

The automatic application of nonlinear layouts in real compilers is a really
time consuming task. It does not suffice to identify the optimal layout either
blocked or canonical one for each specific array. For blocked layouts, we also

P. Bozanis and E.N. Houstis (Eds.): PCI 2005, LNCS 3746, pp. 600–610, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tuning Blocked Array Layouts to Exploit Memory Hierarchy 601

need an automatic and quick way to generate the mapping from the multidi-
mensional iteration indices to the correct location of the respective data element
in the linear memory. Any method of fast indexing for non-linear layouts will
allow compilers to introduce such layouts along with row or column-wise ones,
therefore further reducing memory misses. In [1], in order to facilitate the auto-
matic generation of tiled code that accesses blocked array layouts, we proposed
a very quick and simple address calculation method of the array indices. Our
method has proved to be very effective at reducing cache misses.

In this paper, we further extend our previous work by providing a tile se-
lection formula that applies to blocked array layouts. All related work selects
tiles smaller than half of the cache capacity (they usually refer to L1 cache or
cache and TLB concurrently). However, blocked array layouts almost eliminate
self-interference misses, while cross-interference can be easily obviated. There-
fore, other factors, before negligible, now dominate cache and TLB behaviour,
that is, code complexity, number of mispredicted branches and cache utilization.
We have managed to reduce code complexity of accesses on data stored in a
blocked-wise manner by the use of efficient indexing, described in detail in [1].
Experimentation has proved that maximum performance is achieved when L1
cache is fully utilized. At this point, tile sizes fill the whole L1 cache. Proper ar-
ray alignment obviates cross-conflict misses, while the whole cache is exploited,
as all cache lines contain useful data. Such large tiles reduce the number of
mispredicted branches, as well. Experimental results were conducted using the
Matrix Multiplication.

The remainder of the paper is organized as follows: Section 2 briefly reviews
the related work. Section 3 presents a theoretical analysis of cache performance
and demonstrates the need of optimizing L1 cache behaviour, as it is the dom-
inant factor on performance. A tight lower bound for cache and TLB misses
is calculated, which meets the access pattern of the Matrix Multiplication ker-
nel. Section 4 illustrates execution results of optimized numerical codes, giving
heuristics of tile size selection. Finally, concluding remarks are presented in Sec-
tion 5.

2 Related Work

Loop tiling is a control transformation technique that partitions the iteration
space of a loop nest into blocks in order to reduce the number of intervening
iterations and thus data fetched between data reuses. This allows reused data to
still be in the cache or register file, and hence reduces memory accesses. Without
tiling, contention over the memory bus will limit performance. Conflict misses
[20] may occur when too many data items map to the same set of cache locations,
causing cache lines to be flushed from cache before they may be used, despite
sufficient capacity in the overall cache. As a result, in addition to eliminating
capacity misses [11], [23] and maximizing cache utilization, the tile should be
selected in such a way that there are no (or few) self conflict misses, while cross
conflict misses are minimized [3], [4], [5], [10], [17].

602 E. Athanasaki et al.

To model self conflict misses due to low associativity cache, [24] and [12] use
the effective cache size q × C (q < 1), instead of the actual cache size C, while
[3], [4], [10] and [19] explicitly find the non-conflicting tile sizes. Taking into
account cache line size as well, column dimensions (without loss of generality,
assume a column major data array layout) should be a multiple of the cache
line size [4]. If fixed blocks are chosen, Lam et al. in [10] have found that the

best square tile is not larger than
√

aC
a+1 , where a = associativity. In practice,

the optimal choice may occupy only a small fraction of the cache, typically less
than 10%. What’s more, the fraction of the cache used for optimal block size
decreases as the cache size increases. The desired tile shape has been explicitly
specified in algorithms such as [5], [3], [4], [23], [24], [10]. Both [23] and [10]
search for square tiles. In contrast, [3], [4] and [24] find rectangular tiles or [5]
even extremely tall tiles (the maximum number of complete columns that fit in
the cache). However, extremely wide tiles may introduce TLB thrashing. On the
other hand, extremely tall or square tiles may have low cache utilization.

Unfortunately, the performance of a tiled program resulting from existing
tiling heuristics does not have robust performance [13], [17]. Instability comes
from the so-called pathological array sizes, when array dimensions are near pow-
ers of two, since cache interference is a particular risk at that point. Array
padding [8], [13], [16] is a compiler optimization that increases the array sizes
and changes initial locations to avoid pathological cases. It introduces space over-
head but effectively stabilizes program performance. Cache utilization for padded
benchmark codes is much higher overall, since padding is used to avoid small
tiles [17]. As a result, more recent research efforts have investigated the combi-
nation of both loop tiling and array padding in the hope that both magnitude
and stability of performance improvements of tiled programs can be achieved at
the same time. An alternative method for avoiding conflict misses is to copy tiles
to a buffer and modify code to use data directly from the buffer [5], [10], [21].
Copying in [10] can take full advantage of the cache as it enables to use tiles of
size

√
C ×√

C in each blocked loop nest. However performance overhead due to
runtime copying is low if tiles only need to be copied once.

Cache behaviour is extremely difficult to analyze, reflecting its unstable na-
ture, in which small modifications can lead to disproportionate changes in cache
miss ration [20]. Traditionally, cache performance evaluation has mostly used
simulation. Although the results are accurate, the time needed to obtain them is
typically many times greater than the total execution time of the program being
simulated. To try to overcome such problems, analytical models of cache be-
haviour combined with heuristics have also been developed, to guide optimizing
compilers [6], [16] and [23], or study the cache performance of particular types
of algorithm, especially blocked ones [3], [7], [10], and [22]. Code optimizations,
such as tile size selection, selected with the help of predicted miss ratios require
a really accurate assessment of program’s code behaviour. For this reason, a
combination of cache miss analysis, simulation and experimentation is the best
solution for optimal selection of critical transformations.

Tuning Blocked Array Layouts to Exploit Memory Hierarchy 603

The previous approaches assumed linear array layouts. However, as afore-
mentioned studies have shown, such linear array memory layouts produce un-
favorable memory access patterns, that cause interference misses and increase
memory system overhead. In order to quantify the benefits of adopting nonlin-
ear layouts to reduce cache misses, there exist several different approaches. In
[18], Rivera et al. considers all levels of memory hierarchy to reduce L2 cache
misses as well, rather than reducing only L1 ones. He presents even fewer overall
misses, however performance improvements are rarely significant. Park et al. in
[14] analyze the TLB and cache performance for standard matrix access pat-
terns, when tiling is used together with block data layouts. Such layouts with
block size equal to the page size, seem to minimize the number of TLB misses.

3 Theoretical Analysis

In this section we study the cache and TLB behaviour, while executing the ma-
trix multiplication benchmark, which is the building block of many scientific
applications. The analysis is devoted to set associative caches. Arrays are con-
sidered to be stored in memory according to the proposed blocked layouts, that
is, elements accessed in consecutive iterations are found in nearby memory loca-
tions. Blocked layouts eliminate all self-conflict misses. We examine only square
tiles. Such tile shapes are required for symmetry reasons, to enable the simpli-
fication of the benchmark code. As a result, while optimizing nested loop codes
and selecting tile sizes, we should focus on dimishing the remaining factors that
affect performance. The following analysis is an effort to identify such factors.

3.1 Machine and Benchmark Specifications

The optimized ([9], [16], [1]) matrix multiplication code has the following form:

for (ii=0; ii < N; ii+=T)

for (jj=0; jj < N; jj+=T)

for (kk=0; kk < N; kk+=T)

for (i = ii; (i < ii+T && i < N); i++)
for (j = jj; (j < jj+T && j < N); j++)

for (k = kk; (k < kk+T && k < N); k++)
C[i, k]+=A[i, j]*B[j, k];

Table 1 contains the symbols used in this section to represent the machine
characteristics.

3.2 Data L1 Misses

In case of set associative caches, apart from capacity misses, neither self- nor
cross-interference misses arise. Even 2-way set associativity is enough for kernel
codes such as matrix multiplication, where data elements from three different
arrays are retrieved. Array alignment should be carefully chosen, so that no more

604 E. Athanasaki et al.

Table 1. Table of hardware specifications and respective symbols used in this section

Xeon DP symbol

CPU freq. : 2,8GHz
L1 cache : 16KB 8-way set asssoc. CL1

L1 line : 64B L1

L1 miss penalty: 4 clock cycles cL1

total L1 misses : M1

L2 cache : 1MB 8-way set asssoc. CL2

L2 line : 64B L2

L2 miss penalty: 18 clock cycles cL3

total L1 misses : M2

TLB entries (L1): 64 addresses E (# entries)
page size : 4KB P

TLB miss penalty: 30 clock cycles cTLB

total L1 misses : MTLB

mispred. branch penalty: 20 clock cycles cbr

L1 misses (16KB D-cache, associativity > 1)

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

10 100 1000 10000

T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s 4096

2048

1024

512

256

128

64

Fig. 1. Number of L1 cache misses on the Xeon DP architecture

than two arrays are mapped in the same cache location, concurrently. For this
purpose, the starting mapping distances of arrays (that is, elements A[0], B[0],
C[0]), should be chosen to be from L1 to T 2 elements. Further analysis is beyond
the scope of this paper.

N2 < CL1: In this case, all three arrays can exploit reuse, both in-tile and
intra-tile. For example, array C reuses one tile row along loop j (in-tile reuse)
and a whole row of tile along loop jj (intra-tile reuse). In both cases, the working
set fit in L1 cache. As a relult, for array C:

MC = x2 · T 2

L1
=

(
N
T

)2 T 2

L1
= N2

L1

Similarly, MA = MB = N2

L1

Tuning Blocked Array Layouts to Exploit Memory Hierarchy 605

N2 ≥ CL1, T · N < CL1: As in the previous case: MA = MC = N2

L1
On the other hand, for array B only in-tile reuse can be exploited, as loop ii

reuses N2 elements, and the cache capacity is not adequate to hold them. As a
result, each ii iteration will have to reload the whole array in the cache:

MB = x3 · T 2

L1
=

(
N
T

)3 T 2

L1
= N3

TL1

In case that N2 = CL1, T = N , there is in fact no tiling, so reuse takes place
in loops k and j for arrays A and C, containing just 1 element and one row
of the array (N elements) respectively. As a result, reuse is exploited as above.
However, the reference to array B reuses N2 elements (the whole array) along
loop i. In each iteration of i, two rows of B elements (2N elements) have been
discarded from the cache, due to references to arrays A and C. That is:

MB = N2

L1
+ (N − 1) · 2N

L1

N2 > CL1, 3T 2 < CL1 ≤ T · N : Three whole tiles fit in the cache, one for
each of the three arrays. For arrays B, C reuse along loops ii and jj respectively
can not be exploited, as there is not enough L1 cache capacity to hold N2 and
T · N elements respectively. The number of misses are:

MB = MC = N3

TL1
On the other hand, reuse along loop kk for array A can be exploited (only

T 2 elements are included):
MA = N2

L1

N2 > CL1, T 2 ≤ CL1 < 3T 2: There is enough space for at most two whole
tiles. Only in-tile reuse can be exploited in the arrays along the three inner loops.
Thus:

MA = MB = MC = N3

TL1

N2 > CL1, T 2 > CL1 > T : As in the previous case, no whole-tile reuse can
be exploited. Additionally, in array B, in-tile reuse (along loop i) can not be
exploited, either. Therefore, the total number of misses for each array is:

MA = MC = N3

TL1

MB = N3

L1

Summary of the Data L1 Misses: Figure 1 illustrates the graphic represen-
tation of the total number of Data L1 cache misses (M1 = MA + MB + MC)
for different problem sizes. The cache capacity and organization have the char-
acteristics of the Xeon DP architecture (table 1).

L1 cache misses increase sharply when the working set, reused along the three
innermost loops, overwhelms the L1 cache. That is, the tile size overexceeds the
L1 cache capacity (CL1), and no reuse can be exploited for at least one array.

606 E. Athanasaki et al.

L2 misses (1MB U-cache, associativity > 1)

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

10 100 1000 10000

T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s

4096

2048

1024

512

256

128

Fig. 2. Number of L2 cache misses on the Xeon DP architecture

3.3 L2 Misses

This cache level has similar behaviour as the L1 cache. As a result, we skip
the detailed analysis and provide only with the corresponding graphs. Figure 2
presents the number of L2 cache misses in case of a set associative cache, with
size equal the L2 cache of the Intel Xeon platform (table 1).

We note that L2 cache is unified (for data and instructions). However, the
number of misses hardly increases (less than 1%) compared to an equal-sized
data cache, when caches are large, like the one of the Xeon platform.

The number of L2 misses, for all array sizes, are minimized for T 2 = CL2,
when the whole cache is been used and a whole tile fits in the cache so that
tile-level reuse can be exploited. However, L1 misses are 1 order of magnitude
more than L2 misses. As a result, the L1 misses dominate the total memory
behaviour, as illustrated in figure 4.

3.4 Data TLB Misses

This cache level is usually fully associative. So, there is no need to take care
of array alignment. The TLB miss analysis is similar to the L1 cache analysis.
Due to space limitations, we provide only with the corresponding table. Table 2
summarizes the total number of Data TLB misses MTLB for all problem sizes.
According to this table, the number of Data TLB misses has the form of figure 3.

The number of TLB misses for all array sizes, for an example of 64 entries
(as the TLB size of Xeon is), are minimized when T = 256. At this point, the
pages addresses of a whole tile fit in the TLB entries, so that tile-level reuse can
be exploited.

3.5 Total Miss Cost

Taking into account the miss penalty of each memory level, as well as the penalty
of mispredicted branches (as presented in [2]), we derive the total miss cost of

Tuning Blocked Array Layouts to Exploit Memory Hierarchy 607

TLB misses (64 entries, 4KBpages)

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

10 100 1000 10000

T: tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s N=4096

N=2048

N=1024

N=512

N=256

N=128

Fig. 3. Number of TLB misses for various array and tile
sizes

Table 2. D-TLB misses

requirements MTLB

N2 < E · P 3N2

P

3TN ≤ E · P 2N2

P
+ N3

T ·P
TN < E · P < 3TN N2

P
+ 2 N3

T ·P
T 2 < E · P < 3T 2 3 N3

T ·P
T 2 > E · P > T 2 N3

T ·P + N3

P

T > E · P N3

T ·P + 2N3

P

Total cache & TLB miss cost (tile penalty included) - Xeon DP

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11

1,E+12

10 100 1000 10000

tile size

m
is

s
p

en
al

ty
 (

cl
o

ck
 c

yc
le

s)

4096

2048

1024

512

256

128

64

Fig. 4. Number of L2 cache misses on the Xeon DP architecture

figure 4. Figure 4 makes clear that L1 misses dominate cache and, as a result, to-
tal performance in the Xeon DP architecture. Maximum performance is achieved
when T = 64, which is the optimal tile size for L1 cache (the maximum tile that
fits in L1 cache). L1 cache misses are more than one order of magnitude more
than L2 misses and three orders of magnitude more than TLB misses. Notice
that the Xeon DP architecture bears quite a large L2 cache (1Mbytes), which
reduces the number of L2 misses significantly, and leaves L1 cache to dominate
total performance. Thus, even though L1 misses cost fewer clock cycles, they are
still the most weighty factor.

4 Experimental Results

In this section we present experimental results using the Matrix Multiplication
benchmarks. The experiments were performed on a Dual SMT Xeon (Simulta-

608 E. Athanasaki et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 1500 2000 2500 3000 3500 4000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

serial-MBaLt
2threads-MBaLt
4threads-MBaLt

Fig. 5. Xeon - The relative performance of
the three different versions

 10

 100

 1200
 1500

 1800
 2100

 2400
 2700

 3000
 3300

 3600
 3900

 1

 1.5

 2

 2.5

 3

Norm. Performance (PTi
/PTmin

)

1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PTmin

)

Fig. 6. Xeon - Normalized performance of
the matrix multiplication benchmark for
various array and tile sizes (serial MBaLt)

 10

 100

 1200
 1500

 1800
 2100

 2400
 2700

 3000
 3300

 3600
 3900

 1

 1.5

 2

 2.5

 3

Norm. Performance (PTi
/PTmin

)

1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PTmin

)

Fig. 7. Xeon - Normalized performance of
the matrix multiplication benchmark for
various array and tile sizes (2 threads -
MBaLt)

 10

 100

 1200
 1500

 1800
 2100

 2400
 2700

 3000
 3300

 3600
 3900

 1

 1.5

 2

 2.5

 3

Norm. Performance (PTi
/PTmin

)

1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PTmin

)

Fig. 8. Xeon - Normalized performance of
the matrix multiplication benchmark for
various array and tile sizes (4 threads -
MBaLt)

neous Multi-Threading supported). The hardware characteristics were described
in table 1.

The dual Xeon platform needed special attention, in order to efficiently ex-
ploit the hyperthreading technology. We conducted three different experiments.
Firstly, the serial blocked algorithm of Matrix Multiplication (MBaLt code -
with use of fast indexing) was executed. Secondly, we enabled hyperthreading
running 2 threads in the same physical cpu. For large tile sizes, execution times
obtained with the 2threads-MBaLt version are quite larger than those of the
serial version. Smaller tile sizes lead to more mispredicted branches and loop
boundary calculations, thus increasing the overhead of tiling implementation.
In the case of 2threads-MBaLt, this tiling overhead gets almost doubled, since
the two threads are executing the same code in an interleaved fashion. In other
words, the total overhead introduced overlaps the extra benefits we have with
the simultaneous execution capabilities of the hyperthreaded processor. This is

Tuning Blocked Array Layouts to Exploit Memory Hierarchy 609

not the case for larger tile sizes, where the tiling overhead is not large enough to
overlap the advantages of extra parallelism. Figure 5 illustrates only best perfor-
mance measurements for each different array dimension (tile sizes are equal to
the one minimize execution time). The serial-MaLt version seems to have bet-
ter performance compared to the 2threads-MBaLt version, as execution time is
minimized for small tile sizes. Finally, we executed a parallel version of matrix
multiplication MBaLt code (4threads-MBaLt), where 2 threads run on each of
the 2 physical cpus, that belong to the same SMP. Execution time is reduced,
and performance speed up reaches 44% compared to the serial-MBaLt version.

As far as the optimal tile size is concerned, serial MBaLt obey to the general
rule, this is Toptimal =

√
CL1 = 64. However, when hyperthreading had been en-

abled, Toptimal seams to be shifted to the just smaller size, in order to make room
in the L1 cache for the increased number of concurrently used array elements.
This behaviour is observed, both when two threads run on the same physical
cpu (2threads-MBaLt), as well as in the parallel version (4threads-MBaLt) where
Toptimal = 32 (figures 6, 7 and 8). Note that for the 2threads-MBaLt version
Toptimal = 32 when N < 2048. For larger arrays, the 2threads-MBaLt version
behaves similarly to the serial one, filling the whole L1 cache with useful array
elements.

5 Conclusion

A large amount of related work has been devoted to the selection of optimal tile
sizes and shapes, for numerical nested loop codes where tiling has been applied.
In this paper, we have examined blocked array layouts with an addressing scheme
that uses simple binary masks. We have found theoretically and verified through
experiments and simulations that, when such layouts are used, in direct mapped
caches, with a large L2 cache, L1 cache misses dominate overall performance.
Prefetching in combination with other code optimization techniques, set optimal
tiling to be T1 =

√
CL1. On the other hand, when L2 cache has a moderate

capacity, L2 misses weight overall performance to larger tile sizes and determine
the optimal tile size to be T ≤ √

CL2.

References

1. E. Athanasaki and N. Koziris. Fast Indexing for Blocked Array Layouts to Improve
Multi-Level Cache Locality. In 8-th Work. on Interaction between Compilers and
Computer Architectures, Madrid, Spain, Feb 2004. In conjuction with HPCA-10.

2. E. Athanasaki and N. Koziris. A Tile Size Selection Analysis for Blocked Array
Layouts. In 9-th Work. on Interaction between Compilers and Computer Architec-
tures, San Francisco, CA, Feb 2005. In conjuction with HPCA-11.

3. J. Chame and S. Moon. A Tile Selection Algorithm for Data Locality and Cache
Interference. In Int. Conf. on Supercomputing, Rhodes, Greece, June 1999.

4. S. Coleman and K. S. McKinley. Tile Size Selection Using Cache Organization and
Data Layout. In Conf. on Programming Language Design and Implementation, La
Jolla, CA, June 1995.

610 E. Athanasaki et al.

5. K. Esseghir. Improving Data Locality for Caches. Master’s thesis, Department of
Computer Science, Rice University, Houston, TX, Sept 1993.

6. S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: A Compiler Frame-
work for Analyzing and Tuning Memory Behavior. ACM Trans. on Programming
Languages and Systems, 21(4), July 1999.

7. J. S. Harper, D. J. Kerbyson, and G. R. Nudd. Analytical Modeling of Set-
Associative Cache Behavior. IEEE Trans. Computers, 48(10), Oct 1999.

8. C.-H. Hsu and U. Kremer. A Quantitative Analysis of Tile Size Selection Al-
gprithms. The J. of Supercomputing, 27(3), Mar 2004.

9. M. Kandemir, J. Ramanujam, and A. Choudhary. Improving Cache Locality by
a Combinaion of Loop and Data Transformations. IEEE Trans. on Computers,
48(2), Feb 1999.

10. M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Performance and Op-
timizations of Blocked Algorithms. In Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Santa Clara, CA, April 1991.

11. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving Data Locality with Loop
Transformations. ACM Trans. on Programming Languages and Systems, 18(04),
July 1996.

12. N. Mitchell, K. Högstedt, L. Carter, and J. Ferrante. Quantifying the Multi-Level
Nature of Tiling Interactions. Int. J. of Parallel Programming, 26(6), Dec 1998.

13. P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau. Augmenting Loop Tiling
with Data Alignment for Improved Cache Performance. IEEE Trans. on Comput-
ers, 48(2), Feb 1999.

14. N. Park, B. Hong, and V. Prasanna. Analysis of Memory Hierarchy Performance
of Block Data Layout. In Int. Conf. on Parallel Processing, Vancouver, Canada,
Aug 2002.

15. D. Patterson and J.Hennessy. Computer Architecture. A Quantitative Approach.
San Francisco, CA, 3rd edition, 2002.

16. G. Rivera and C.-W. Tseng. Eliminating Conflict Misses for High Performance
Architectures. In Int. Conf. on Supercomputing, Melbourne, Australia, July 1998.

17. G. Rivera and C.-W. Tseng. A Comparison of Compiler Tiling Algorithms. In Int.
Conf. on Compiler Construction, Amsterdam, The Netherlands, March 1999.

18. G. Rivera and C.-W. Tseng. Locality Optimizations for Multi-Level Caches. In
Int. Conf. on Supercomputing, Portland, OR, Nov 1999.

19. Y. Song and Z. Li. Impact of Tile-Size Selection for Skewed Tiling. In 5-th Work.
on Interaction between Compilers and Architectures, Monterrey, Mexico, Jan 2001.

20. O. Temam, C. Fricker, and W. Jalby. Cache Interference Phenomena. In Conf. on
Measurement and Modeling of Computer Systems, Nashville, TN, May 1994.

21. O. Temam, E. D. Granston, and W. Jalby. To Copy or Not to Copy: A Compile-
Time Technique for Assessing When Data Copying Should be Used to Eliminate
Cache Conflicts. In Conf. on Supercomputing, Portland, OR, Nov 1993.

22. X. Vera. Cache and Compiler Interaction (how to analyze, optimize and time cache
behaviour). PhD thesis, Malardalen University, Jan 2003.

23. M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. In Conf. on
Programming Language Design and Implementation, Toronto, Canada, June 1991.

24. M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining Loop Transformations
Considering Caches and Scheduling. In Int. Symposium on Microarchitecture, Paris,
France, Dec 1996.

	Introduction
	Related Work
	Theoretical Analysis
	Machine and Benchmark Specifications
	Data L1 Misses
	L2 Misses
	Data TLB Misses
	Total Miss Cost

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

