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The Basics of Dijkstra’s Algorithm

SSSP Problem

@ Directed graph G = (V, E), weight function w : E — R™, source
vertex s

e Vv e V : compute 6(v) = min{w(p) : s % v}
Shortest path estimate d(v)

e gradually converges to §(v) through relaxations

o relax (v,w): d(w) = min{d(w),d(v) + w(v,w)}

» can we find a better path s <> w by going through v?

Three partitions of vertices

o Settled: d(v) = d(v)

@ Queued: d(v) > d(v) and d(v) # oo

e Unreached: d(v) = o0
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The Basics of Dijkstra’s Algorithm

Serial algorithm

1 Input :G=(V,E), w: E—RT,
source vertex s, min @

2 Output : shortest distance array d,
predecessor array m

3 foreach v € V do

4 d[v] < INF;

5 m[v] « NIL;

6 Insert(Q, v);

7 end

8 d[s] —0;

9 while Q # (0 do

10 u +— ExtractMin(Q);

11 foreach v adjacent to u do

12 sum — d[u] + w(u, v);

13 if d[v] > sum then

14 DecreaseKey (Q, v, sum);

15 d[v] « sum;

16 m[v] — u;

17 end

18 end
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The Basics of Dijkstra’s Algorithm

Min-priority queue implemented as binary min-heap
@ maintains all but the settled vertices
@ min-heap property: Vi : d(parent(i)) < d(i)
@ amortizes the cost of multiple ExtractMin's and DecreaseKey's
> O((|E| + | V])log|V]) time complexity
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Straightforward Parallelization

Fine-grain parallelization at the inner loop level

Fine-Grain Multi-Threaded

/* Initialization phase same to the serial

code */
1 while Q # 0 do
2 Barrier
3 if tid = 0 then
4 u < ExtractMin(Q);
5 Barrier
6 for v adjacent to u in parallel do
7 sum «— d[u] + w(u, v);
8 if d[v] > sum then
9 Begin-Atomic
10 DecreaseKey (Q, v, sum); Issues:
11 End-Atomic
1 d[v] — sum; @ speedup bounded by average
13 w[v] — u; out-degree
1‘5‘ ond end @ concurrent heap updates due to
) DecreaseKey's

@ barrier synchronization overhead
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Concurrent Heap Updates with Locks

o Coarse-grain synchronization (cgs-lock)
» enforces atomicity at the level of a DecreaseKey operation
» one lock for the entire heap
> serializes DecreaseKey's
e Fine-grain synchronization (fgs-lock)
» enforces atomicity at the level of a single swap
> allows multiple swap sequences to execute in parallel as long as they
are temporally non-overlapping
» separate locks for each parent-child pair
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Performance of FGMT with Locks
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Software barriers dominate total execution time

o 72% with 2 threads, 88% with 8
o replace with idealized (simulated) zero-latency barriers

Fgs-lock scheme more scalable, but still fails to outperform serial

@ locking overhead (2 locks + 2 unlocks per swap)
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Concurrent Heap Updates with TM

TM-based
e Coarse-grain synchronization (cgs-tm)

> enclose DecreaseKey within a transaction

» allows multiple swap sequences to execute in parallel as long as they
are spatially (and temporally) non-overlapping

» conflicting transaction stalls and retries or aborts

e Fine-grain synchronization (fgs-tm)
» enclose each swap operation within a transaction
> atomicity as in fgs-lock
» shorter but more transactions
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Performance of FGMT with TM
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TM-based schemes offer speedup up to ~ 1.1

@ less overhead for cgs-tm, yet equally able to exploit available
concurrency
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Helper-Threading Scheme

Motivation

@ expose more parallelism to each thread
@ eliminate costly barrier synchronization

Rationale

@ in serial, relaxations are performed only
from the extracted (settled) vertex

@ allow relaxations for out-edges of
queued vertices, hoping that some of
them might already be settled

> main thread operates as in the serial
algorithm

> assign the next t vertices in the
queue (X2 ...xt+1) to t helper threads

> helper thread k relaxes all out-edges
of vertex xy

@ speculation on the status of d(xk)
» if |already optimal/, main thread will be offloaded

> if , any suboptimal relaxations will be corrected eventually by

main thread
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Execution Pattern

Serial FGMT Helper Threads
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@ the main thread stops all helpers at the end of each iteration
@ unfinished work will be corrected, as with mis-speculated distances
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Helper-Threading Scheme

Main thread
1 while Q # 0 do
2 u + ExtractMin(Q);
3 done — 0;
4 foreach v adjacent to u do
5 sum «— d[u] + w(u, v);
6 Begin-Xact
7 if d[v] > sum then
8 DecreaseKey(Q, v, sum);
9 d[v] — sum;
10 w[v] — u;
11 End-Xact
12 end
13 Begin-Xact
14 done — 1;
15 End-Xact
16 end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Helper thread

while Q # 0 do
while done =1 do ;
x + ReadMin(Q, tid)
stop < 0
foreach y adjacent to x and while stop = 0 do
Begin-Xact
if done = 0 then
sum «— d[x] + w(x,y)
if d[y] > sum then
DecreaseKey(Q, y, sum)
dly] < sum
wly] — x
else
stop «— 1
End-Xact
end
end

@ for a single neighbour, the check for relaxation, updates to the heap, and
updates to d,7 arrays, are enclosed within a transaction

» performed “all-or-none”

» on a conflict, only one thread commits
@ interruption of helper threads implemented through TM, as well
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Helper-Threading Scheme

Main thread
1 while Q # 0 do
2 u + ExtractMin(Q);
3 done — 0;
4 foreach v adjacent to u do
5 sum «— d[u] + w(u, v);
6 Begin-Xact
7 if d[v] > sum then
8 DecreaseKey(Q, v, sum);
9 d[v] — sum;
10 w[v] — u;
11 End-Xact
12 end
13 Begin-Xact
14 done — 1;
15 End-Xact
16 end

Why with TM?
@ composable

1
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4
5
6
7
8
9

10
11
12
13
14
15
16

17 end

Helper thread

while Q # 0 do

while done =1 do ;
x + ReadMin(Q, tid)
stop < 0
foreach y adjacent to x and while stop = 0 do
Begin-Xact
if done = 0 then
sum «— d[x] + w(x,y)
if d[y] > sum then
DecreaseKey(Q, y, sum)
dly] < sum
wly] — x
else
stop «— 1
End-Xact
end

> all dependent atomic sub-operations composed into a large atomic
operation, without limiting concurrency

@ optimistic
@ easily programmable
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Experimental Setup
Full-system simulation
@ Simics 3.0.31 in conjunction with GEMS toolset 2.1
@ boots unmodified Solaris 10 (UltraSPARC Il Cu)
LogTM (“Signature Edition™)

@ eager version management
@ eager conflict detection

» on a conflict, a transaction stalls and either retries or aborts
@ HYBRID conflict resolution policy
» favors older transactions

Hardware platform

@ single CMP system (configurations up to 32 cores)
@ private L1 caches (64KB), shared L2 cache (2MB)

Software

@ Pthreads for threading and synchronization
@ Simics “magic” instructions to simulate idealized barriers
@ Sun Studio 12 C compiler (-xO3)
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Graphs

Three graph families
e Random: G(n, m) model

o SSCA#2: cliques with varying size (1 - C) el
connected with probability P ol -
o R-MAT: power-law degree distributions * ,;“‘i‘:‘ :
GTgraph graph generator T A
Fixed #nodes (10K), varying density ;
@ sparse (~10K edges) il

@ medium (~100K edges) 7\ ekt
@ dense (~200K edges) :
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Speedups
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Helper-Threading

@ speedups in 6 out of 9 cases (not all shown), up to 1.46

Number of threads

@ performance improves with increasing density
@ main thread not obstructed by helpers (<1% abort rate in all cases)

FGMT with TM

@ speedups only with perfect barriers

@ optimistic parallelism does exist in concurrent queue updates
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Conclusions
FGMT

@ conventional synchronization mechanisms incur unacceptable
overhead

@ TM reduces overheads and highlights the existence of parallelism, but
still requires very efficient barriers to offer some speedup

HT with TM
@ exposes more parallelism and eliminates barrier synchronization
@ noteworthy speedups with minimal code extensions
Future work
@ more aggressive parallelization schemes
@ dynamic adaptation of helper threads to algorithm's execution phases
@ explore impact of TM characteristics

@ applicability of HT on other SSSP algorithms (A-stepping,
Bellman-Ford) and other similar (“greedy”) applications
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