Early Experiences on Accelerating Dijkstra’'s Algorithm
Using Transactional Memory

Nikos Anastopoulos, Konstantinos Nikas, Georgios Goumas
and Nectarios Koziris

Computing Systems Laboratory
School of Electrical and Computer Engineering
National Technical University of Athens
{anastop,knikas,goumas,nkoziris}@cslab.ece.ntua.gr
http://www.cslab.ece.ntua.gr

May 31, 2009

QOO Q Wetons Tchnicl ivrsity o Athons

:SLab

Outline

@ Dijkstra’s Basics

@ Straightforward Parallelization Scheme
© Helper-Threading Scheme

© Experimental Evaluation

@ Conclusions

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 2 /19

The Basics of Dijkstra’s Algorithm

SSSP Problem

@ Directed graph G = (V, E), weight function w : E — R™, source
vertex s

e Vv e V : compute 6(v) = min{w(p) : s % v}
Shortest path estimate d(v)

e gradually converges to §(v) through relaxations

o relax (v,w): d(w) = min{d(w),d(v) + w(v,w)}

» can we find a better path s <> w by going through v?

Three partitions of vertices

o Settled: d(v) = d(v)

@ Queued: d(v) > d(v) and d(v) # oo

e Unreached: d(v) = o0

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 3/19

The Basics of Dijkstra’s Algorithm

Serial algorithm

1 Input :G=(V,E), w: E—RT,
source vertex s, min @

2 Output : shortest distance array d,
predecessor array m

3 foreach v € V do

4 d[v] < INF;

5 m[v] « NIL;

6 Insert(Q, v);

7 end

8 d[s] —0;

9 while Q # (0 do

10 u +— ExtractMin(Q);

11 foreach v adjacent to u do

12 sum — d[u] + w(u, v);

13 if d[v] > sum then

14 DecreaseKey (Q, v, sum);

15 d[v] « sum;

16 m[v] — u;

17 end

18 end

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 4/19

The Basics of Dijkstra’s Algorithm

Min-priority queue implemented as binary min-heap
@ maintains all but the settled vertices
@ min-heap property: Vi : d(parent(i)) < d(i)
@ amortizes the cost of multiple ExtractMin's and DecreaseKey's
> O((|E| + | V])log|V]) time complexity

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 5/19

Straightforward Parallelization

Fine-grain parallelization at the inner loop level

Fine-Grain Multi-Threaded

/* Initialization phase same to the serial

code */
1 while Q # 0 do
2 Barrier
3 if tid = 0 then
4 u < ExtractMin(Q);
5 Barrier
6 for v adjacent to u in parallel do
7 sum «— d[u] + w(u, v);
8 if d[v] > sum then
9 Begin-Atomic
10 DecreaseKey (Q, v, sum); Issues:
11 End-Atomic
1 d[v] — sum; @ speedup bounded by average
13 w[v] — u; out-degree
1‘5‘ ond end @ concurrent heap updates due to
) DecreaseKey's

@ barrier synchronization overhead
Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 6 /19

Concurrent Heap Updates with Locks

o Coarse-grain synchronization (cgs-lock)
» enforces atomicity at the level of a DecreaseKey operation
» one lock for the entire heap
> serializes DecreaseKey's
e Fine-grain synchronization (fgs-lock)
» enforces atomicity at the level of a single swap
> allows multiple swap sequences to execute in parallel as long as they
are temporally non-overlapping
» separate locks for each parent-child pair

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 7 /19

Performance of FGMT with Locks

13
1.2

11

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Multithreaded speedup

7cgs—lock‘ T——
perfbar+cgs-lock ——
erfbar+fgs-lock ——
\,
e —— e " "
2 4 6 8 10 12 14 16

Number of threads

Software barriers dominate total execution time

o 72% with 2 threads, 88% with 8
o replace with idealized (simulated) zero-latency barriers

Fgs-lock scheme more scalable, but still fails to outperform serial

@ locking overhead (2 locks + 2 unlocks per swap)

Anastopoulos et al. (NTUA) MTAAP'09

May 31, 2009

8/19

Concurrent Heap Updates with TM

TM-based
e Coarse-grain synchronization (cgs-tm)

> enclose DecreaseKey within a transaction

» allows multiple swap sequences to execute in parallel as long as they
are spatially (and temporally) non-overlapping

» conflicting transaction stalls and retries or aborts

e Fine-grain synchronization (fgs-tm)
» enclose each swap operation within a transaction
> atomicity as in fgs-lock
» shorter but more transactions

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 9 /19

Performance of FGMT with TM

1.2

11 . i &

0.9 : :
0.8 ‘/‘\/
0.7 &

perfbar+cgs-lock

R —
06 erfbar+fgs-lock —— | |
) e

4 16

Multithreaded speedup

perfbar+cgs-tm
05 ‘ ‘ ‘ erfbar+fgs-tm

2 4 6 8 10 12 1
Number of threads

TM-based schemes offer speedup up to ~ 1.1

@ less overhead for cgs-tm, yet equally able to exploit available
concurrency

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 10 / 19

Helper-Threading Scheme

Motivation

@ expose more parallelism to each thread
@ eliminate costly barrier synchronization

Rationale

@ in serial, relaxations are performed only
from the extracted (settled) vertex

@ allow relaxations for out-edges of
queued vertices, hoping that some of
them might already be settled

> main thread operates as in the serial
algorithm

> assign the next t vertices in the
queue (X2 ...xt+1) to t helper threads

> helper thread k relaxes all out-edges
of vertex xy

@ speculation on the status of d(xk)
» if |already optimal/, main thread will be offloaded

> if , any suboptimal relaxations will be corrected eventually by

main thread

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 1 /19

Execution Pattern

Serial FGMT Helper Threads
4444
#3353
3333
= DD D D =
5 2288
B N g
I x x
oy o o
5 5
@ 2 8 8
ml 3 — d bl
2 =
g
XI I
o
3
g
:
K3 ‘
@ 2
8 g
x z
3 [o o

[l extract-min
M read tid"-min
[] relax edges

Z+y days

@ the main thread stops all helpers at the end of each iteration
@ unfinished work will be corrected, as with mis-speculated distances

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 12 /19

Helper-Threading Scheme

Main thread
1 while Q # 0 do
2 u + ExtractMin(Q);
3 done — 0;
4 foreach v adjacent to u do
5 sum «— d[u] + w(u, v);
6 Begin-Xact
7 if d[v] > sum then
8 DecreaseKey(Q, v, sum);
9 d[v] — sum;
10 w[v] — u;
11 End-Xact
12 end
13 Begin-Xact
14 done — 1;
15 End-Xact
16 end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Helper thread

while Q # 0 do
while done =1 do ;
x + ReadMin(Q, tid)
stop < 0
foreach y adjacent to x and while stop = 0 do
Begin-Xact
if done = 0 then
sum «— d[x] + w(x,y)
if d[y] > sum then
DecreaseKey(Q, y, sum)
dly] < sum
wly] — x
else
stop «— 1
End-Xact
end
end

@ for a single neighbour, the check for relaxation, updates to the heap, and
updates to d,7 arrays, are enclosed within a transaction

» performed “all-or-none”

» on a conflict, only one thread commits
@ interruption of helper threads implemented through TM, as well

Anastopoulos et al. (NTUA)

AAP’09 May 31, 2009

13 /19

Helper-Threading Scheme

Main thread
1 while Q # 0 do
2 u + ExtractMin(Q);
3 done — 0;
4 foreach v adjacent to u do
5 sum «— d[u] + w(u, v);
6 Begin-Xact
7 if d[v] > sum then
8 DecreaseKey(Q, v, sum);
9 d[v] — sum;
10 w[v] — u;
11 End-Xact
12 end
13 Begin-Xact
14 done — 1;
15 End-Xact
16 end

Why with TM?
@ composable

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17 end

Helper thread

while Q # 0 do

while done =1 do ;
x + ReadMin(Q, tid)
stop < 0
foreach y adjacent to x and while stop = 0 do
Begin-Xact
if done = 0 then
sum «— d[x] + w(x,y)
if d[y] > sum then
DecreaseKey(Q, y, sum)
dly] < sum
wly] — x
else
stop «— 1
End-Xact
end

> all dependent atomic sub-operations composed into a large atomic
operation, without limiting concurrency

@ optimistic
@ easily programmable

Anastopoulos et al. (NTUA)

May 31, 2009

14 / 19

Experimental Setup
Full-system simulation
@ Simics 3.0.31 in conjunction with GEMS toolset 2.1
@ boots unmodified Solaris 10 (UltraSPARC Il Cu)
LogTM (“Signature Edition™)

@ eager version management
@ eager conflict detection

» on a conflict, a transaction stalls and either retries or aborts
@ HYBRID conflict resolution policy
» favors older transactions

Hardware platform

@ single CMP system (configurations up to 32 cores)
@ private L1 caches (64KB), shared L2 cache (2MB)

Software

@ Pthreads for threading and synchronization
@ Simics “magic” instructions to simulate idealized barriers
@ Sun Studio 12 C compiler (-xO3)

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009

15 / 19

Graphs

Three graph families
e Random: G(n, m) model

o SSCA#2: cliques with varying size (1 - C) el
connected with probability P ol -
o R-MAT: power-law degree distributions * ,;“‘i‘:‘ :
GTgraph graph generator T A
Fixed #nodes (10K), varying density ;
@ sparse (~10K edges) il

@ medium (~100K edges) 7\ ekt
@ dense (~200K edges) :

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 200§ 16 / 19

Speedups

s5ca2-10000x28351

550a2-10000x118853

rmat-10000x200000

15 15 15
14 14 14
13 13 13 //‘/v
12 12 g A 12 e
11 11 11
1 1 = 1 P
09 09 [» R — 09 -2 n— ——
08 | P 08 [~ m—a—= 08
07 |-V = 0.7 [g 07
06 06 06
0.5 rperfbar+cgs-lock —— 0.5 rperfbar+cgs-lock —— 0.5 rperfbar+cgs-lock ——
0.4 Fperfbar+cgs-tm —_— 0.4 Fperfbar+cgs-tm —_— 0.4 Fperfbar+cgs-tm —_—
0.3 perfbar+fgs-lock —— 0.3 "perfbar-+fgs-lock —— 0.3 perfbar+fgs-lock ——
0.2 rperfbar+fgs-tm 0.2 rperfbar+fgs-tm 0.2 rperfbar+fgs-tm
Ové elper —— Oé elper —— Oé elper ——

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of threads Number of threads Number of threads
fmat-10000x10000 rand-10000x100000 rand-10000x200000

15 15 15
14 14 14 et
13 13 13
12 12 fgae® [
11 11 11

1 1 e p —
09 09 09 4
08 [=W 08 !7l;"7‘='=‘='ﬁ 08 :7. 1
07 [g 07 07
0.6 0.6 0.6
0.5 I perfbar+cgs-Tock —— 0.5 I perfbar+cgs-Tock —— 0.5 I perfbar+cgs-Tock ——
0.4 Fperfbar+cgs-tm —_— 0.4 Fperfbar+cgs-tm —_— 0.4 Fperfbar+cgs-tm —_—
0.3 Fperfbar+fgs-lock — 0.3 Fperfbar+fgs-lock — 0.3 Fperfbar+fgs-lock —
0.2 -perfbar+fgs-tm 02 rperfbar+fgs-tm 02 rperfbar+fgs-tm
Ové elper —— Oé elper — Oé elper —

2 a4 6 8 10 12 14 16 2 a4 6 8 10 12 14 16 2 a4 6 8 10 12 14 16

Number of threads

Helper-Threading

@ speedups in 6 out of 9 cases (not all shown), up to 1.46

Number of threads

@ performance improves with increasing density
@ main thread not obstructed by helpers (<1% abort rate in all cases)

FGMT with TM

@ speedups only with perfect barriers

@ optimistic parallelism does exist in concurrent queue updates

Anastopoulos et al

(NTUA)

MTAAP'09

Number of threads

May 31, 2009

17 / 19

Conclusions
FGMT

@ conventional synchronization mechanisms incur unacceptable
overhead

@ TM reduces overheads and highlights the existence of parallelism, but
still requires very efficient barriers to offer some speedup

HT with TM
@ exposes more parallelism and eliminates barrier synchronization
@ noteworthy speedups with minimal code extensions
Future work
@ more aggressive parallelization schemes
@ dynamic adaptation of helper threads to algorithm's execution phases
@ explore impact of TM characteristics

@ applicability of HT on other SSSP algorithms (A-stepping,
Bellman-Ford) and other similar (“greedy”) applications

Anastopoulos et al. (NTUA) MTAAP'09 May 31, 2009 18 /19

Anastopoulos et al. (NTUA)

Thank you!

Questions?

MTAAP'09

