
Employing Transactional Memory and Helper
Threads to Speedup Dijkstra’s Algorithm

Konstantinos Nikas, Nikos Anastopoulos, Georgios Goumas and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

Members of HiPEAC
{knikas,anastop,goumas,nkoziris}@cslab.ece.ntua.gr

Abstract—In this paper we work on the parallelization of the
inherently serial Dijkstra’s algorithm on modern multicore plat-
forms. Dijkstra’s algorithm is a greedy algorithm that computes
Single Source Shortest Paths for graphs with non-negative edges
and is based on the iterative extraction of nodes from a priority
queue. This property limits the explicit parallelism of the algo-
rithm and any attempt to utilize the remaining parallelism results
in significant slowdowns due to synchronization overheads. To
deal with these problems, we employ the concept of Helper
Threads (HT) to extract parallelism on a non-traditional fashion
and Transactional Memory (TM) to efficiently orchestrate the
concurrent threads’ accesses to shared data structures. Results
demonstrate that the proposed implementation is able to achieve
performance speedups (reaching up to 1.84 for 14 threads),
indicating that the two paradigms could be efficiently combined.

I. I NTRODUCTION

Parallel programming is a very intricate, yet increasingly
important, task as we have entered the multicore era and more
cores are made available to the programmer. Although separate
applications or independent tasks within a single application
can be easily mapped on multicore platforms, the same is
not true for applications that do not expose parallelism in a
straightforward way. Dijkstra’s algorithm [1] is a challenging
example of such an application that is difficult to accelerate
when executed in a multithreaded fashion. It is a fundamental
algorithm applied to compute single source shortest paths
(SSSP) for graphs with non-negative edges and is used in a
variety of applications, like network routing or VLSI design.

Dijkstra’s algorithm iteratively extracts one node from a
min-priority queue and performs relaxations to this node’s
neighbors. To preserve the semantics of the algorithm the
extractions must be performed sequentially, a fact that greatly
prohibits efficient parallelization [2], [3]. Straightforward par-
allelism can be sought in the relaxation of the neighbors,
but this approach leads to significant performance slowdowns,
since the threads need to synchronize their concurrent access to
shared data very frequently [4]. Its fundamentally serial nature
has led researchers to seek performance through significant
modifications of the algorithm [3], [5], [6], [7]. However, in
this work we adhere to the original version and attempt to
improve its performance by utilizing the capabilities provided
by modern multicore processors. To this direction, we need to

face the two major issues inherent to the algorithm:limited
explicit parallelismandexcessive synchronization.

Since Dijkstra’s algorithm does not favor the utilization
of multiple symmetric threads in any standard parallelization
scheme (e.g. data-parallel, task-parallel, pipeline), weelabo-
rate on the concept ofHelper Threads (HT)[8], [9] and test
whether the incorporation of helper threads is a good strategy
to provide performance speedups. The key idea is to employ a
number of threads that will offload operations from the main
thread in a transparent way.

To amortize the cost of excessive synchronization, we
employ Transactional Memory (TM)[10], [11]. TM is a
novel programming model for multicore architectures that
allows concurrency control over multiple threads and is getting
adopted by the industry, as it is demonstrated by Sun’s coming
processor Rock [12] or Intel’s STM [13]. The programmer
is offered the capability to envelop parts of the code within
a transaction, indicating that some of the memory accesses
in this code segment may be performed by other threads as
well. The TM system monitors the transactions of the threads
and if two or more perform conflicting memory accesses,
it decides how to handle this conflict. The common case
is to allow one thread to commit its transaction and restart
the transaction(s) of the other conflicting thread(s). In the
case of non-conflicting transactions, TM systems perform the
appropriate accesses with (almost) no overhead. TM seems a
promising approach which increases programmability while
being capable of providing performance gains through the
concept of optimistic parallelism. Therefore, if for a given
problem the threads access the same memory location too
rarely, then locking seems a pessimistic exaggeration, making
TM a more appropriate approach. Lately, TM’s usage in the
parallelization of specific algorithms has attracted scientific
attention [14], [15], [16], as its potential on the speedup of
real-world applications is still under investigation.

The evaluation of our scheme demonstrates that the
combination of the aforementioned approaches can provide
speedups, while requiring only a few extensions to the original
source code. The rest of the paper is organized as follows: Sec-
tion II discusses the basics of Dijkstra’s algorithm. Section III
presents our scheme while Section IV presents its evaluation.
Related work is presented in Section V and Section VI

5

7 8

12 9

15 17 13 16

10 13

12 14

i

j

k

(a) Min-priority queue as a binary heap.

3

5 8

7 9

15 12 13 16

10 13

12 14

ki:17 3

j:9 2

(b) Conflicting concurrent updates.

4

6 5

7 9

15 12 13 16

8 13

10 14

j

k:12 4i:17 6

(c) Non-conflicting concurrent updates.

Fig. 1: Min-priority queue andDecreaseKey operations.

summarizes the paper and discusses future work directions.

II. T HE BASICS OFDIJKSTRA’ S ALGORITHM

Dijkstra’s algorithm solves the SSSP problem for a directed
graph with non-negative edge weights. Specifically, letG =
(V,E) be a directed graph withn = |V | vertices,m = |E|
edges, andw : E → R

+ a weight function assigning non-
negative real-valued weights to the edges ofG. For each
vertex v, the SSSP problem computesδ(v), the weight of
the shortest path from a source vertexs to v. The weight
of the path is the sum of the weights of its edges. Ifv is
not reachable froms, then δ(v) = ∞. For each vertexv,
Dijkstra’s algorithm maintains ashortest-path estimate(or
tentative distance) d(v), which is an upper bound for the
actual weight of the shortest path froms to v, δ(v). Initially,
d(v) is set to∞ and through successive edge relaxations it is
gradually decreased, converging toδ(v). The relaxation of an
edge(v, w) setsd(w) to min{d(w), d(v) + w(v, w)}, which
means that the algorithm tests whether it can decrease the
weight of the shortest path froms to w by going throughv.

The algorithm maintains a partition ofV into settled, queued
and unreachedvertices. Settled vertices haved(v) = δ(v);
queued haved(v) > δ(v) and d(v) 6= ∞; unreached have
d(v) = ∞. Initially, only s is queued,d(s) = 0 and all other
vertices are unreached. In each iteration of the algorithm,the
vertex with the smallest shortest-path estimate is selected, its
state is permanently changed to settled and all its outgoing
edges are relaxed, causing any of its neighbors that were
unreached by the source vertex until this point to become
queued. The algorithm is presented in more detail in Alg. 1.

The basic data structure lying at the heart of Dijkstra’s
algorithm is a min-priority queue of vertices, keyed by their
d(·) values. The queue maintains all but the settled vertices of
the graph. At each iteration, the vertex with the smallest key
is removed from the queue (ExtractMin operation) and its
outgoing edges are relaxed, which could result to reductions
of the keys of the corresponding neighbors (DecreaseKey
operation). To amortize the time complexity of these oper-
ations, the min-priority queue is implemented as a binary
heap. Thus, aDecreaseKey operation on a relaxed node
involves an upward traversal of the heap with consecutive
parent-child swaps, until the node reaches its correct position
which satisfies the min binary heap’s property, i.e. all children
have a key value larger or equal to that of their parent. An
example is shown in Fig. 1a.

The algorithm involves a two-level nested loop. The outer
loop iterates over all the nodes and each time extracts the
one closest to the settled set. It clearly prioritizes the nodes
and thus, is inherently serial. The inner loop relaxes the
neighbors of the extracted node. The order of the relaxations is
irrelevant and thus, this loop is conceptually parallel.However,
its operations includeDecreaseKey, which means that the
threads may need to modify the binary heap concurrently.
Fig. 1b depicts how the parallel relaxations of two nodes
can lead to conflictingDecreaseKey operations. In this
example, the relaxation of nodei causes its traversal to the
root of the heap. Ifj is relaxed in parallel, a conflict arises as
it tries to travel through the parts of the heap thati traverses.

Algorithm 1 : Dijkstra’s algorithm.

Input : Directed graphG = (V, E), weight functionw : E → R
+,

source vertexs, min-priority queueQ
Output : shortest distance arrayd, predecessor arrayπ

/* Initialization phase */
foreach v ∈ V do1

d[v]← INF;2
π[v]← NIL ;3
Insert(Q, v);4

end5
d[s]← 0;6

/* Main body of the algorithm */
while Q 6= ∅ do7

u← ExtractMin(Q);8
foreach v adjacent to udo9

sum← d[u] + w(u, v);10
if d[v] > sum then11

DecreaseKey(Q, v, sum);12
d[v]← sum;13
π[v]← u;14

end15
end16

To preserve the semantics of the algorithm, we need to syn-
chronize the threads’ accesses to the heap. In [4] we evaluated
two multithreaded versions of the algorithm, one based on a
coarse-grain synchronization scheme which locks the entire
binary heap and one based on a fine-grain synchronization
scheme where the threads lock pairs of nodes. Note that,
apart from the synchronized accesses to the priority queue,the
threads need to synchronize further (e.g. with a barrier) atthe
end of their parallel relaxation phase, in order for the execution
to proceed correctly to the next iteration of the outer loop.Due
to this excessive synchronization, both versions exhibited poor
performance, motivating us to look for alternatives.

III. SPEEDING UPDIJKSTRA’ S ALGORITHM

This section presents our scheme for parallelizing Dijkstra’s
algorithm. It tries to deal with the two major problems, the lack

50

55

60 65

70

5

2

10

10 15

20

7

i-1

i

S

A

B

C
D

E

8

8

8

Fig. 2: Example of HT scheme’s functionality.

of sufficient explicit parallelism and the synchronizationcosts.

A. Extracting more parallelism

As discussed in Section II, explicit parallelism exists only in
the inner loop of Dijkstra’s algorithm. Our goal is to coarsen
the granularity of parallelism as in [3], [6], [7], without though
changing the algorithm itself. Thus, instead of partitioning the
inner loop and assigning only a few neighbors to each thread,
we parallelize the outer loop by assigning the relaxation ofa
complete set of neighbors to each thread.

We specifically exploit the following basic property of
Dijkstra’s algorithm: the relaxations lead to monotonically
decreasing values for the distances of unsettled nodes until
each distance reaches its final minimum value. As long as a
node is inserted in the queued set (i.e. its distance fromS is
not infinite) its neighbors can also be relaxed to newer updated
values. This property is not utilized by the original algorithm,
which avoids calculating intermediate distances that willeven-
tually be overwritten by updating only the neighbors of the
extracted node. Our key idea is that parallel threads can serve
asHelper Threadsand relax neighbors of nodes belonging to
the queued set. Optimistically, the load corresponding to some
of these relaxations will be taken off themain thread.

The rationale behind our scheme is that vertices occupy-
ing the top k positions in the queue might be, with some
probability, already settled. When the helper threads read
their distances and relax their outgoing edges, there is a high
probability they will set their neighbors to settled as well.
Thus, when the main thread checks these vertices later, it
will avoid any further relaxations. On the contrary, if a helper
thread reads a node that has not been settled yet, it will update
its neighbors to suboptimal tentative values. When, though,the
node is extracted by the main thread later on, all its outgoing
edges will be re-relaxed using the correct final distance.

This is illustrated in Fig. 2, where thei-th iteration of
the outer loop is depicted. In the previous step, nodeA was
extracted and its neighbors were relaxed to the values shown.
In the current step, the main thread extracts nodeB, while
the helper threads are assigned the next three nodes in the
priority queue, namelyC,D andE. Thus,C ’s neighbors will
be relaxed using value60. However, at the end of this step,C ’s
distance will be updated to57 by the main thread. In stepi+1
the main thread will extractC and relax again its neighbors

extract-min relax outgoing edgesread tid
th
-min

k
ill

k
ill

k
ill

Thread 1

Thread 2

Thread 3

Thread 4

k
ill

k
ill

step k step k+1 step k+2

Time

Fig. 3: Execution pattern of the HT scheme.

using now the correct distance. In this case, the helper thread’s
work has been wasted. On the contrary, the distances for nodes
D and E will not change, as they obtained their minimum
value in thei−1 step. Thus, in stepi, the helper threads relax
their neighbors correctly and when the main thread extracts
them it will not have to perform any relaxations.

In our implementation, the main thread operates like in the
sequential version,extracting in each iteration the minimum
vertex from the priority queue and relaxing all its outgoing
edges. At the same time, thek-th helper threadreads the
tentative distance of thek-th vertex in the queue (let us call
it xk for short) and attempts to relax its outgoing edges
based on this value. When the main thread accomplishes
all its relaxations, it notifies the helper threads to stop their
relaxations, and they all proceed to the next iteration. This
execution pattern is illustrated in Fig. 3.

This orchestration by the main thread has a potential draw-
back. It is possible, that at this point a helper thread might
have updated only some of the neighbors of its vertexxk,
leaving the rest with their old, possibly suboptimal, distances.
As explained above, however, this is not a problem since all
neighbors ofxk with suboptimal distances will be correctly
updated whenxk reaches the top of the priority queue.

B. Efficient Concurrency Control

In our scheme the threads need to access the binary heap
as well as the data structures that implement the graph (lines
10–14 in Alg. 1) in parallel. For efficient concurrency control,
we propose the use of Transactional Memory.

A TM system allows non-conflicting updates, like those
shown in Fig. 1c, to occur in parallel with no overhead. At
the same time, it guarantees atomicity, which means that if
a conflict arises, it will allow one of the threads to update
the heap (e.g. perform the traversal of nodei in Fig. 1b)
while the rest will have to repeat their work (e.g. relax
node j in Fig. 1b). To implement this, we enclose each
DecreaseKey operation within a transaction using the ap-
propriateBegin-Transaction andEnd-Transaction
primitives, as shown in Alg. 2 and Alg. 3 for the main and
helper threads respectively.

In the beginning of each iteration, the main thread extracts
the top vertex from the queue. At the same time, the helper
threads spin-wait until the main one has finished the extraction,
and then each one reads –without extracting– one of the
top k vertices in the queue (implemented by theReadMin

function). Next, all threads relax in parallel the outgoing
edges of the vertices they have undertaken. Compared to the
original algorithm, a performance improvement is expected,
since, due to the helper threads, the main thread will evaluate
the expression of line 7 in Alg. 2 as true fewer times and thus,
will not need to execute the operations of lines 8–10.

Algorithm 2 : Main thread’s code.

while Q 6= ∅ do1
u← ExtractMin(Q);2
done← 0;3
foreach v adjacent to udo4

sum← d[u] + w(u, v);5
Begin-Transaction6
if d[v] > sum then7

DecreaseKey(Q, v, sum);8
d[v]← sum;9
π[v]← u;10

End-Transaction11
end12

Begin-Transaction13
done← 1;14
End-Transaction15

end16

Algorithm 3 : Helper threads’ code.

while Q 6= ∅ do1
while done = 1 do ;2
x← ReadMin(Q, tid);3
stop← 0;4
foreach y adjacent to xand while stop = 0 do5

Begin-Transaction6
if done = 0 then7

sum← d[x] + w(x, y);8
if d[y] > sum then9

DecreaseKey(Q, y, sum);10
d[y]← sum;11
π[y]← x;12

else13
stop← 1;14

End-Transaction15
end16

end17

Our scheme employs TM not only for the concurrent
accesses to the various data structures, but for the orchestration
of the helper threads as well. Specifically, when the main
thread completes the relaxations for its vertex, it sets the
notification variabledone to 1 within a separate transaction.
This value denotes a state where the main thread proceeds to
the next iteration and requires all helper threads to stop and
follow, terminating any operations that they were performing
on the heap. All helper threads executing transactions at this
point will abort, sincedone is included in their read sets.
Then they will retry their transactions, but there is a good
chance that they will finddone set to1, stop examining the
remaining neighbors in the inner loop and continue with the
next iteration of the outer loop. If the main thread happens
to perform theExtractMin operation too quickly,done
will be set back to0 and the helper threads will miss the last
notification, continuing from the point where they had stopped.
This might yield suboptimal updates to the distances of the
neighbors, but as explained above, these will be overwritten
once the vertices examined by the helper threads reach the top
of the queue. So, correctness is guaranteed.

Employing TM instead of traditional locking primitives, i.e.
locks and barriers, offers two significant advantages: First, it

is too difficult and error-prone to develop a fine-grain locking
scheme for these threads. The programmer would probably
have to use a series of locks in a composable fashion to
guard all the data structures that must be accessed atomically
(lines 7–10 in Alg.2). This is a quite intricate task, since
correctness requires avoiding potential deadlocks or livelocks,
while efficiency requires avoiding serialization of accesses as
much as possible. On the other hand, this functionality is
achieved easily with TM, just by enclosing the critical section
in one transaction, as shown in Alg. 2 and Alg. 3.

Even if such a complex locking scheme was implemented,
it would incur a very high overhead on non-conflicting par-
allel accesses. This would be acceptable if the majority of
concurrent accesses led to conflicts. However, in this work we
show that the opposite is true. Therefore, the optimistic nature
of TM, where non-conflicting accesses are allowed to execute
with no overhead, makes it a better solution.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

The performance of the proposed scheme was evaluated
through full-system simulation, using the Wisconsin GEMS
toolset v.2.1 [17], [18] in conjunction with the Simics v.3.0.31
simulator [19]. Simics provides functional simulation of a
SPARC chip multiprocessor system (CMP) that boots unmod-
ified Solaris 10. The GEMS Ruby module provides detailed
memory system simulation and for non-memory instructions
behaves as an in-order single-issue processor, executing one
instruction per simulated cycle.

Hardware TM is supported in GEMS through the LogTM-
SE subsystem [20]. It is built upon a single-chip CMP system
with private per-processor L1 caches and a shared L2 cache. It
featureseager version management, where transactions write
the new memory values “in-place”, after saving the old values
in a log. It also supportseager conflict detection, as conflicts,
i.e. overlaps between the write set of one transaction and the
write or read set of other concurrent transactions, are detected
at the very moment they occur. On a conflict, the offending
transaction stalls and either retries its request hoping that the
other transaction has finished, or aborts if LogTM detects
a potential deadlock. The aborting processor uses its log to
undo the changes made and then retries the transaction. In our
experiments we used theHYBRID conflict resolution policy,
which tends to favor older transactions against younger ones.
Table I shows the configuration of the simulation framework.

TABLE I: Simulation framework.

Simics Processor
configurations up to 32 cores
UltraSPARC III Cu (III+)

L1 caches
Private, 64KB, 4-way set-associative,
64B line size, 4 cycle hit latency

Ruby L2 cache
Unified and shared, 8 banks, 2MB, 4-way set-
associative, 64B line size, 10 cycle hit latency

Memory 160 cycle access latency

TM System HYBRID resol. policy, 2Kb HW signatures

TABLE II: Graphs used for experiments
random rmat ssca

E Ser. Id. E Ser. Id. E Ser. Id.
(K) (%) Sp. (K) (%) Sp. (K) (%) Sp.
10 52.9 1.89 10 68.4 1.46 28 45.0 2.22
50 62.2 1.61 50 58.8 1.70 60 55.2 1.81
100 50.9 1.96 100 48.3 2.07 118 46.6 2.15
200 40.1 2.49 200 38.0 2.63 177 41.5 2.41
500 28.4 3.52 500 27.3 3.66 590 27.4 3.65
1000 22.6 4.42 1000 22.2 4.50 1157 22.4 4.64

To avoid resource conflicts between our programs and the
operating system’s processes, we used CMP configurations
with more processor cores than the number of threads we
required. At the same time, each thread is bound to a specific
processor to avoid migrations. Finally, all codes were compiled
with Sun’s Studio 12 C compiler (O3 level).

B. Reference graphs

In our evaluation we strived to work on graphs which vary
in terms of density and structure. In that attempt, we used the
GTgraph graph generator [21] to construct graphs with10K

vertices from theRandom, R-MAT andSSCA#2families.
To obtain an estimate of possible speedups, we profiled the

stand-alone execution of the main thread of our scheme on
each graph to calculate the extent of the sequential part. As
sequential we define the non-transactional part of the code,
which includes mainly theExtractMin operations. In the
ideal case where the helper threads would manage to offload
all the relaxations of the main thread, the speedup would be

100%
%SerialPart

. Note that this is optimistic, since even in this case
the main thread would still have to check if any relaxations are
required. In general, it constitutes a theoretical upper bound
for any performance improvement and is presented in Table II
for each graph family.

C. Performance results

Fig. 4 presents the speedups achieved by our HT+TM based
implementation of Dijkstra’s algorithm for our graph suite. The
speedup obtained forp threads is the ratio of the execution
time of the serial algorithm to the execution time withp
threads,p − 1 of them being helper threads. The maximum
speedup is1.84, achieved for14 threads in Fig. 4f. Considering
the serial nature of the algorithm and the inherent difficulties in
its parallelization, this is a significant performance gain. Note
also that the performance is strongly related to the density
of the graph. In the serial case the execution time can be
estimated as follows:

Tserial = n × O(lg n) + d × n × O(lg n) (1)

wheren denotes the number of vertices in the graph andd

the average out-degree of the nodes. The first part of (1) esti-
mates the time spent onExtractMin operations, while the
second part approximates the time spent onDecreaseKey
operations. Similarly, the execution time of our scheme can
be estimated as follows:

THT = n × O(lg n) + a × d × n × O(lg n), a < 1 (2)

where a the ratio of the main thread’sDecreaseKey op-
erations to those executed in the serial case. This is a simple
estimate and does not take into account the time spent in thread
orchestration or delays due to conflicting transactions. The

speedups could be approximated bys =
1 + d

1 + a × d
which

implies that s should increase with the average out-degree
and thus, the density of the graph, explaining the results of
Fig. 4. This figure also reveals that the speedup increases as
more threads are utilized. This tendency reaches a maximum
point, after which employing more threads leads to a slight
performance degradation. The number of threads needed to
achieve this maximum, is again related to the graph’s density.

D. Interpretation of the HT scheme’s behavior

In this section, we attempt to gain a better insight into the
behavior of our scheme. We focus our study on one family of
graphs, the rmat, as the other families exhibit similar behavior
and we select only three representative graphs with different
density degrees; low (10K), medium (200K) and high (1000K).

Fig. 5 shows the distribution ofDecreaseKey operations
between the main and helper threads and compares them to
those performed in the serial case. As more threads are used,
the main thread’sDecreaseKey operations are reduced,
justifying the performance improvement. However, not all the
helper threads’ operations are useful, as illustrated in Figs. 5b
and 5c, where the total number ofDecreaseKeys is greater
than that of the serial case, explaining why the performance
does not keep improving. Interestingly, similar reductions in
the main thread’s operations are also achieved for the sparse
graph, as it is shown in Fig. 5a. However, Fig. 4a shows that
in this case the performance is actually degraded. This can
be attributed to the transactions’ abort rate, which is defined
as the ratio of aborts to commits and is depicted in Fig. 6.
It is obvious, that for the sparse graph, the abort rate is
too high, causing any performance improvements due to the
exploitation of parallelism to be canceled out. However, for
the more dense graphs, the abort rate is significantly reduced
and thus, speedups are achieved. An important observation
though, is that in any case the abort rate of the main thread is
significantly low, which means that it is not obstructed by the
helper threads. This explains the robustness of our scheme,as
in the worst case the slowdown is around0.95.

The same conclusion can be derived from Fig. 7, where the
execution cycles of the main thread are depicted. The non-
transactional cycles remain stable for each graph, as they rep-
resent the time spent onExtractMin operations, which are
not affected by our scheme. The addition of helper threads re-
duces the time spent in transactions, i.e. the parallel partof our
scheme, since the main thread executes lessDecreaseKeys,
as shown before. The overhead cycles represent the time
spent in aborts or stalls caused by transaction conflicts. This
overhead is relatively small, illustrating once again thatthe
main thread is not hindered by the helper threads.

To gain a better understanding of the wasted work due to
transaction aborts, Fig. 8 plots the percentage of the total

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ul

tit
hr

ea
de

d
sp

ee
du

p

Number of threads

(a) 10Kx10K

rand-helper
rmat-helper
ssca-helper

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ul

tit
hr

ea
de

d
sp

ee
du

p

Number of threads

(b) 10Kx50K

rand-helper
rmat-helper
ssca-helper

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ul

tit
hr

ea
de

d
sp

ee
du

p

Number of threads

(c) 10Kx100K

rand-helper
rmat-helper
ssca-helper

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ul

tit
hr

ea
de

d
sp

ee
du

p

Number of threads

(d) 10Kx200K

rand-helper
rmat-helper
ssca-helper

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ul

tit
hr

ea
de

d
sp

ee
du

p

Number of threads

(e) 10Kx500K

rand-helper
rmat-helper
ssca-helper

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ul

tit
hr

ea
de

d
sp

ee
du

p

Number of threads

(f) 10Kx1000K

rand-helper
rmat-helper
ssca-helper

Fig. 4: Multithreaded speedups for graphs of different density.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
 D

ec
re

as
eK

ey
 o

ps
 w

.r
.t.

 s
er

ia
l e

xe
cu

tio
n

Number of threads

(a) 10Kx10K

serial
HT-main
HT-helper
HT-all

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
 D

ec
re

as
eK

ey
 o

ps
 w

.r
.t.

 s
er

ia
l e

xe
cu

tio
n

Number of threads

(b) 10Kx200K

serial
HT-main
HT-helper
HT-all

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
 D

ec
re

as
eK

ey
 o

ps
 w

.r
.t.

 s
er

ia
l e

xe
cu

tio
n

Number of threads

(c) 10Kx1000K

serial
HT-main
HT-helper
HT-all

Fig. 5: Distribution ofDecreaseKey operations between the main and helper threads.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
bo

rt
 r

at
e

Number of threads

(a) 10Kx10K

overall
main thread

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
bo

rt
 r

at
e

Number of threads

(b) 10Kx200K

overall
main thread

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
bo

rt
 r

at
e

Number of threads

(c) 10Kx1000K

overall
main thread

Fig. 6: Overall and main thread transaction abort rates.

cycles spent by all threads in aborted transactions with respect
to the total number of cycles spent in successfully committed
transactions. Again, for graphs of medium or high density
the amount of wasted work is relatively small, justifying the
observed speedups. On the contrary, a lot of work is wasted
for the sparse graph, explaining the absence of performance
improvements in this case.

In general, the small amount of wasted work shows that
most of the concurrent accesses to the shared data structures
are non-conflicting. The number of aborts depends also on the

size of the transactions’ write sets. The larger the write sets,
the higher the probability of a conflict. Table III presents the
range of the average write set size of all transactions, together
with that of the transactions that envelop theDecreaseKey
operations. Note that the average sizes are quite small, leading
to a low probability for conflicts. These findings confirm that,
due to its optimism, TM is a better approach than locks for the
implementation of our scheme, as explained in Section III-B.

Finally, Fig. 9 compares the cycles the main thread needs
for every 100 iterations of the algorithm’s outer loop for graph

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ai

n
th

re
ad

 c
yc

le
 b

re
ak

do
w

n

Number of threads

(a) 10Kx10K

total cycles
non-xact cycles
xact cycles
xact overhead cycles

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ai

n
th

re
ad

 c
yc

le
 b

re
ak

do
w

n

Number of threads

(b) 10Kx200K

total cycles
non-xact cycles
xact cycles
xact overhead cycles

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ai

n
th

re
ad

 c
yc

le
 b

re
ak

do
w

n

Number of threads

(c) 10Kx1000K

total cycles
non-xact cycles
xact cycles
xact overhead cycles

Fig. 7: Breakdown of main thread’s total cycles: non-transactional (non-xact), transactional (xact) and overhead (xact overhead).

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
C

yc
le

 b
re

ak
do

w
n

fo
r

av
er

ag
e

tr
an

sa
ct

io
n

Number of threads

(a) 10Kx10K

xact cycles
xact overhead cycles

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
C

yc
le

 b
re

ak
do

w
n

fo
r

av
er

ag
e

tr
an

sa
ct

io
n

Number of threads

(b) 10Kx200K

xact cycles
xact overhead cycles

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
C

yc
le

 b
re

ak
do

w
n

fo
r

av
er

ag
e

tr
an

sa
ct

io
n

Number of threads

(c) 10Kx1000K

xact cycles
xact overhead cycles

Fig. 8: Percentage of useful (xact) and wasted (xact overhead) transactional cycles.

Density Avg. write-set
size

Avg. write-set
size for

DecreaseKey
operations

Max
write-set

size

10K 1.31 - 3.14 12.44 - 20.02 28 - 31

50K 1.16 - 2.07 8.26 - 12.08 29 - 31

100K 1.08 - 1.71 7.84 - 10.79 28 - 30

200K 1.04 - 1.52 7.66 - 9.83 28 - 31

500K 1.02 - 1.20 7.54 - 8.81 27 - 31

1000K 1.01 - 1.12 7.67 - 8.68 29 - 36

TABLE III: Write-set size.

rmat-10Kx200K, when running in parallel with 0, 1, 3 and 13
helper threads. The first observation is that the majority of
the execution time is spent on the first 30% of the iterations.
The second observation is that as the algorithm proceeds, the
available parallelism is reduced and the gains from the use of
more helper threads are negligible. In fact, for the last 20%
of the iterations, the main thread spends the same amount of
time both in the serial case and with 13 helper threads. This
motivates us to explore adaptive schemes, where the number
of helper threads will be dynamically adjusted.

V. RELATED WORK

A significant part of Dijkstra’s execution is spent in updates
in the priority queue. Therefore, enabling concurrent accesses
to this structure seems a good approach to increase perfor-
mance. Brodal et al. [2] utilize a number of processors to
accelerate theDecreaseKey operation and discuss the ap-
plicability of their approach to Dijkstra’s algorithm. However,
this work is evaluated on a theoretical Parallel Random Access
Machine (PRAM) execution model. Hunt et al. [22] implement

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2000 4000 6000 8000 10000

C
yc

le
s

of
 m

ai
n

th
re

ad
 (

pe
r

10
0

ite
ra

tio
ns

)

Outer loop iterations

serial
HT-2thr
HT-4thr
HT-best

Fig. 9: The timeline of execution.

a concurrent priority queue which is based on binary heaps
and supports parallel Insertions and Deletions using fine-grain
locking on the nodes of the binary heap. Since these operations
do not traverse the entire data structure, local locking leads to
performance gains. However, in the case ofDecreaseKey
which performs wide traversals of the data structure it degrades
performance greatly, unless special hardware synchronization
is supported by the underlying platform.

To expose more parallelism, it would be beneficial to
concurrently extract a large number of nodes from the priority
queue. This can be achieved if several nodes have equal
distances from the setS of visited nodes. Thus, if the priority
queue is organized into buckets of nodes with equal distances,
then the extraction and neighbor updates can be done in
parallel per bucket (Dial’s algorithm [5]). A generalization
of Dial’s algorithm called∆-stepping is proposed by Meyer
and Sanders [3]. Madduri et al. [7] use∆-stepping as the
base algorithm on Cray MTA-2. In the Parallel Boost Graph
Library [6] Dijkstra’s algorithm is parallelized for a distributed

memory machine where the priority queue is distributed in
the local memories of the system nodes. The aforementioned
approaches are based on significant modifications to Dijk-
stra’s algorithm to enable coarse-grain parallelism and lead to
promising parallel implementations. In this paper we adhere
to the pure Dijkstra’s algorithm to face the challenges of its
parallelization and test the applicability of TM and HT.

TM has attracted extensive scientific research during the last
few years, focusing mainly on its design and implementation
details. Nevertheless, its efficacy on a wide set of real, non-
trivial applications is only now starting to be explored. Scott et
al. [15] use TM to parallelize Delaunay triangulation, Watson
et al. [14] exploit it to parallelize Lee’s routing algorithm
and Kang and Bader [16] employ it for computing minimum
spanning forests of sparse graphs.

VI. CONCLUSIONS- FUTURE WORK

In this work, we attempt to parallelize Dijkstra’s algo-
rithm, which is known to be inherently serial. Our scheme
utilizes the notion of “Helper Threads” (HT) to offload the
main thread by speculatively executing a notable portion of
its DecreaseKey operations. For the implementation, we
choose to employ Transactional Memory (TM), not only for
its ease of programmability, but also for its nature, which
allows to explore any optimistic parallelism inherent in our
scheme. The evaluation revealed that the proposed scheme
is able to provide significant speedups (reaching up to1.84)
in the majority of the simulated cases. The results further
confirmed the existence of optimistic parallelism, justifying
the selection of TM.

An important outcome of this work is the indication that
the TM mechanism could be efficiently leveraged for the
implementation of speculative multithreading, as it is also
discussed in [23]. We feel that studying the combination of
these two models is extremely important, especially as new
systems are coming that will provide support for TM[12].

As future work, we will investigate the application of this
technique on other algorithms solving the SSSP problem, such
as∆-stepping and Bellman-Ford. We also aim to explore the
impact of various TM characteristics, such as the resolution
policy, version management and conflict detection, on the
performance of our scheme. Moreover, results demonstrated
interesting variations in the available parallelism between
different execution phases, motivating us to explore more
adaptive schemes in terms of the number of parallel threads.
Finally, we aim to further explore the integration of the
two programming models, namely Transactional Memory and
Speculative Multithreading.

ACKNOWLEDGEMENTS

The experiments were executed on hardware platforms
generously provided by Intel Hellas S.A. This work was sup-
ported by the Greek Secreteriat of Research and Technology
(GSRT) and the European Commission under the program
05AKMWN95.

REFERENCES

[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms. The MIT Press, 2001.

[2] G. Brodal, J. Traff, C. Zaroliagis, and I. Stadtwald, “A parallel prior-
ity queue with constant time operations,”J. Parallel and Distributed
Computing, vol. 49, pp. 4–21, 1998.

[3] U. Meyer and P. Sanders, “Delta-stepping: A parallel single source short-
est path algorithm,” inProc. 6th Ann. European Symp. on Algorithms
(ESA’98), 1998.

[4] N. Anastopoulos, K. Nikas, G. Goumas, and N. Koziris, “Early experi-
ences on accelerating dijkstra’s algorithm using transactional memory,”
in Proc. 3rd Workshop on Multithreaded Architectures and Applications
(MTAAP’09), 2009.

[5] R. Dial, “Algorithm 360: Shortest path forest with topological ordering,”
Communications of the ACM, vol. 12, pp. 632–633, 1969.

[6] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine, “Single-source
shortest paths with the parallel boost graph library,” in9th DIMACS
Implementation Challenge – The Shortest Path Problem, 2006.

[7] K. Madduri, D. Bader, J. Berry, and J. Crobak, “Parallel shortest
path algorithms for solving large-scale instances,” in9th DIMACS
Implementation Challenge – The Shortest Path Problem, 2006.

[8] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee, D.Lavery,
and J. P. Shen, “Speculative precomputation: Long-range prefetching
of delinquent loads,” inProc. 28th Ann. Int’l Symp. on Computer
Architecture (ISCA’01), 2001.

[9] W. Zhang, B. Calder, and D. Tullsen, “An event-driven multithreaded
dynamic optimization framework,” inProc. 14th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT’05), 2005.

[10] M. Herlihy and E. Moss, “Transactional memory: Architectural support
for lock-free data structures,” inProc. 20th Ann. Int’l Symp. on Computer
Architecture (ISCA’93).

[11] A. Adl-Tabatabai, C. Kozyrakis, and B. Saha, “Unlocking concurrency:
Multicore programming with transactional memory,”ACM Queue, vol. 4,
no. 10, pp. 24–33, 2006.

[12] M. Tremblay and S. Chaudhry, “A third-generation 65nm 16-core 32-
thread plus 32-scout-thread CMT SPARC processor,” inProc. Int’l Solid
State Circuits Conf. (ISSCC ’08), 2008.

[13] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg, “Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime,” inProc. 11th Symp. on
Principles and Practice of Parallel Programming (PPoPP’06), 2006.

[14] I. Watson, C. Kirkham, and M. Lujan, “A study of a transactional parallel
routing algorithm,” inProc. 16th Int’l Conf. on Parallel Architecture and
Compilation Techniques (PACT’07), 2007.

[15] M. L. Scott, M. F. Spear, L. Daless, and V. J. Marathe, “Delaunay
triangulation with transactions and barriers,” inIEEE Intl. Symp. on
Workload Characterization (IISW’07), 2007.

[16] S. Kang and D. A. Bader, “An efficient transactional memoryalgorithm
for computing minimum spanning forest of sparse graphs,” inProc. 14th
Symp. on Principles and Practice of Parallel Programming (PPoPP’09),
2009.

[17] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset,”Comput. Archit. News, vol. 33,
no. 4, pp. 92–99, 2005.

[18] “Wisconsin multifacet gems simulator,” http://www.cs.wisc.edu/gems/.
[19] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: Afull
system simulation platform,”Computer, vol. 35, no. 2, pp. 50–58, 2002.

[20] L. Yen, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill, M.Swift,
and D. Wood, “Logtm-se: Decoupling hardware transactional memory
from caches,”Proc. 13th Int’l Symp. on High Performance Computer
Architecture (HPCA’07), 2007.

[21] D. Bader and K. Madduri, “Gtgraph: A suite of synthetic graph
generators,” 2006, http://www.cc.gatech.edu/∼kamesh/GTgraph/.

[22] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott, “Anefficient
algorithm for concurrent priority queue heaps,”Inf. Proc. Letters, vol. 60,
pp. 151–157, 1996.

[23] L. Porter, B. Choi, and D. Tullsen, “Mapping out a path from hardware
transactional memory to speculative multithreading,” inProc. 18th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT’09),
2009 – in press.

