
Employing Transactional Memory and
Helper Threads to Speedup Dijkstra’s
Algorithm
Nikos Anastopoulos, Konstantinos Nikas, Georgios Goumas
and Nectarios Koziris1

Computing Systems Laboratory, School of Electrical and Computer Engineering,
National Technical University of Athens, Zografou Campus, Zografou 15780, Greece

ABSTRACT

In this work we deal with the parallelization of the inherently serial Dijkstra’s algorithm onmod-

ern multicore platforms. Dijkstra’s algorithm is a greedy algorithm that computes Single Source
Shortest Paths for graphswith non-negative edges and is based on the iterative extraction of nodes

from a priority queue. This property limits the explicit parallelism of the algorithm and any at-

tempt to utilize the remaining parallelism results in significant slowdownsdue to synchronization

overheads. To deal with these problems, we employ the concept of Helper Threads (HT) to extract

parallelism on a non-traditional fashion and Transactional Memory (TM) to efficiently orchestrate

the concurrent threads’ accesses to shared data structures. Simulation results demonstrate that the

proposed HT+TM based implementation is able to achieve performance speedups up to 1.84.

1 Motivation

Parallel programming is a very intricate, yet increasingly important, task as we have entered
the multicore era and more cores are made available to the programmer. Although sepa-
rate applications or independent tasks within a single application can be easily mapped on
multicore platforms, the same is not true for applications that do not expose parallelism in
a straightforward way. Dijkstra’s algorithm [CLRS01] is a challenging example of such an
application that is difficult to accelerate when executed in a multithreaded fashion. It is a
fundamental algorithm applied to compute single source shortest paths (SSSP) for graphs
with non-negative edges and is used in a variety of applications, like network routing or
VLSI design.

Dijkstra’s algorithm iteratively extracts one node from a min-priority queue and per-
forms relaxations to this node’s neighbors. To preserve the semantics of the algorithm the
extractions must be performed sequentially, a fact that greatly prohibits efficient paralleliza-
tion. Straightforward parallelism can be sought in the relaxation of the neighbors, but this
approach leads to significant performance slowdowns, since the threads need to synchronize
their concurrent access to shared data very frequently [ANGK09]. Its fundamentally serial

1E-mail: {anastop,knikas,goumas,nkoziris}@cslab.ece.ntua.gr



nature has led researchers to seek performance through significant modifications of the al-
gorithm. However, in this work we adhere to the original version and attempt to improve
its performance by utilizing the capabilities provided by modern multicore processors. To
this direction, we need to face the two major issues inherent to the algorithm: limited explicit
parallelism and excessive synchronization.

Since Dijkstra’s algorithm does not favor the utilization of multiple symmetric threads in
any standard parallelization scheme (e.g. data-parallel, task-parallel, pipeline), we elaborate
on the concept of Helper Threads (HT) and test whether the incorporation of helper threads
is a good strategy to provide performance speedups. The key idea is to employ a number of
threads that will offload operations from the main thread in a transparent way.

To amortize the cost of excessive synchronization, we employ Transactional Memory (TM)
[HM93]. TM is a novel programming model for multicore architectures that allows con-
currency control over multiple threads and is getting adopted by the industry. It seems a
promising approach which increases programmability, while being capable of providing
performance gains through the concept of optimistic parallelism. Lately, TM’s usage in the
parallelization of specific algorithms has attracted scientific attention [WKL07, SSDM07,
KB09], as its potential on speeding up real-world applications is still under investigation.

2 Helper Threading Scheme

The rationale of our proposed scheme is largely based on the greedy nature of the algo-
rithm, i.e. its attempt to make in each step locally optimal choices. In the serial algorithm
the relaxations are performed only from the extracted vertex, which is known to have at this
point an optimal distance. In our scheme, we relax this limitation by allowing relaxations
to happen from queued vertices, hoping that some of them might already have their opti-
mal, final distances. Therefore, we employ parallel threads to serve as Helper Threads and
perform relaxations for neighbors of nodes belonging to the queued set. Optimistically, the
load corresponding to some of these relaxations will be taken off the main thread.

The helper threads are assigned the vertices occupying the top k positions in the queue,
which are the next best choices with respect to the vertex being extracted and the most likely
ones to have their distances optimal. Thus, when the helper threads read their distances and
relax their outgoing edges, there is a high probability theywill make correct relaxations. As a
result, when the main thread checks these vertices later, it will avoid any further relaxations.
On the contrary, if a helper thread reads a node that has not been settled yet, it will update its
neighbors to suboptimal tentative values. When, though, the node is extracted by the main
thread later on, all its outgoing edges will be re-relaxed using the correct final distance.

This is illustrated in Fig. 1a, where the i-th iteration of the algorithm is depicted. In the
previous step, node A was extracted and its neighbors were relaxed to the values shown.
In the current step, the main thread extracts node B, while the helper threads are assigned
the next three nodes in the priority queue, namely C, D and E. Thus, C’s neighbors will be
relaxed using value 60. However, at the end of this step,C’s distance will be updated to 57 by
the main thread. So, in step i+1 the main thread will extract C and relax again its neighbors
using now the correct distance. In this case, the helper thread’s work has been wasted. On
the contrary, the distances for nodes D and E will not change, as they have already obtained
their minimum value in the i − 1 step. Therefore, in step i, the helper threads relax their
neighbors correctly and when the main thread extracts them it will not have to perform any



50

55

60 65

70

5

2

10

10 15

20

7

i-1

i

S

A

B

C
D

E

8

8

8

(a) Example of HT scheme’s functionality.

extract-min relax outgoing edgesread tid
th
-min

k
ill

k
ill

k
ill

Thread 1

Thread 2

Thread 3

Thread 4

k
ill

k
ill

step k step k+1 step k+2

Time 

(b) Execution pattern of the HT scheme.

relaxations.

In our implementation, the main thread operates like in the sequential version, extracting
in each iteration the minimum vertex from the priority queue and relaxing all its outgoing
edges. At the same time, the k-th helper thread reads the tentative distance of the k-th vertex
in the queue (let us call it xk for short) and attempts to relax its outgoing edges based on this
value. When the main thread accomplishes all its relaxations, it notifies the helper threads
to stop their relaxations, and they all proceed to the next iteration. This execution pattern is
illustrated in Fig. 1b. It is possible, that at this point, a helper thread might have updated
only some of the neighbors of its vertex xk, leaving the other ones with their old, possibly
suboptimal, distances. As explained above, however, this is not a problem since all neighbors
of xk with suboptimal distances will be correctly updated when xk reaches the top of the
priority queue.

In our scheme the parallel threads need to access the priority queue as well as the data
structures that implement the graph in parallel. For efficient concurrency control, we pro-
pose the use of Transactional Memory. In each thread (main or helper), we enclose the check
for relaxation, the update to the priority queue and the update to the distance and prede-
cessor arrays within a single transaction. This guarantees that these dependent operations
will be performed in an “all-or-none” fashion, and that on a conflict, only one thread will
be allowed to commit. Transactional Memory is the option that makes feasible the compo-
sition of these sub-operations into a larger atomic operation, without limiting concurrency,
without suffering the overhead of any lock-based scheme and with minimal additions to the
original code.

3 Performance Evaluation

The performance of the proposed scheme was evaluated through full-system simulation, us-
ing the Wisconsin GEMS toolset [gem] in conjunction with Simics simulator. Hardware TM
is supported in GEMS through the LogTM-SE subsystem. It is built upon a single-chip CMP
system with private per-processor L1 caches and a shared L2 cache. It features eager ver-
sion management and eager conflict detection. In our experiments we used the HYBRID conflict
resolution policy, which tends to favor older transactions against younger ones.



In our evaluation, we worked on graphs which varied in terms of density and structure.
Our scheme yielded speedups in 15 out of 18 graphs, reaching up to 1.84 [NAGKar]. The
evaluation revealed the existence of optimistic parallelism in the concurrent updates of the
priority queue, justifying the selection of TM. It also showed the robustness of our scheme,
since in any case the abort rate of the main thread was significantly low, which means that
it was not obstructed by the helper threads (less than 0.95 slowdown in the worst case).

4 Conclusions and Future Work

In this work, we attempt to parallelize Dijkstra’s algorithm, which is known to be inherently
serial. Our scheme utilizes the notion of “Helper Threads” (HT) to offload the main thread
by executing a notable portion of edge relaxations. For the implementation, we choose to
employ Transactional Memory (TM), not only for its ease of programmability, but also for
its nature, which allows to explore any optimistic parallelism inherent in our scheme. The
evaluation revealed that the proposed scheme is able to provide significant speedups in the
majority of the simulated cases.

As future work, we will investigate the applicability of our proposed scheme on other
algorithms that have similar nature (“greedy”). We also aim to explore the impact of vari-
ous TM characteristics on the scheme’s performance, such as the resolution policy, version
management and conflict detection. Finally, results demonstrated interesting variations in
the available parallelism between different execution phases, motivating us to explore more
adaptive schemes in terms of the number of parallel threads.

References

[ANGK09] N. Anastopoulos, K. Nikas, G. Goumas, and N. Koziris. Early experiences on
accelerating dijkstra’s algorithm using transactional memory. In MTAAP’09.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2001.

[gem] Wisconsin multifacet gems simulator. http://www.cs.wisc.edu/gems/.

[HM93] M. Herlihy and E. Moss. Transactional memory: Architectural support for lock-
free data structures. In ISCA’93.

[KB09] S. Kang and D. A. Bader. An efficient transactional memory algorithm for com-
puting minimum spanning forest of sparse graphs. In PPoPP’09.

[NAGKar] K. Nikas, N. Anastopoulos, G. Goumas, andN. Koziris. Employing transactional
memory and helper threads to speedup dijkstra’s algorithm. In ICPP’09 – to
appear.

[SSDM07] M. L. Scott, M. F. Spear, L. Daless, and V. J. Marathe. Delaunay triangulation with
transactions and barriers. In IISWC’07.

[WKL07] I. Watson, C. Kirkham, and M. Lujan. A study of a transactional parallel routing
algorithm. In PACT’07

http://www.cs.wisc.edu/gems/

	Motivation
	Helper Threading Scheme
	Performance Evaluation
	Conclusions and Future Work

