
Parallel Processing Systems

Computing System Laboratory

January 13, 2012





Contents

1 Parallel Processing Platforms 3
1.1 PRAM: The ideal parallel platform . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Flynn’s Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Shared Memory Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Distributed Memory Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Analytical Modelling 9
2.1 Performance evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Amdahl’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Performance modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Modelling computation time . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Modelling communication time . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Modelling idle time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Parallel Programming: Design 15
3.1 Computation and data partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Task interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Mapping tasks to processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Communication and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Parallel Programming: Implementation 25
4.1 Parallel programming models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Shared address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Parallel programming constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 SPMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Fork / Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Task graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Parallel for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Languages, libraries and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 POSIX Threads (Pthreads) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Cilk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.4 Threading Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5 Java threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.6 Message passing interface (MPI) . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.7 PGAS languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Programming for Shared Memory 35
5.1 Hardware concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Data sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Memory bandwidth saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



1

6 Programming for Distributed Memory 41
6.1 Hardware concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Data distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Resource sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43





Chapter 1

Parallel Processing Platforms

1.1 PRAM: The ideal parallel platform

An important step in designing programs for serial computation is algorithmic asymptotic anal-

ysis. This gives us a solid view of the algorithmic behaviour at large input and forms a good

basis for comparison of various algorithms. The goal of asymptotic analysis is to categorize algo-

rithms in large complexity classes (using the “Big O” notation) without focusing on “constants”

that differentiate execution behaviour to a smaller extent. To perform algorithmic analysis for

serial computing, one needs a model of computation which can be defined in terms of an abstract

computer, e.g., the Random Access Machine (RAM) or the Turing machine, and/or by postu-

lating that certain operations are executed in unit time. To perform “Big O” analysis for serial

algorithms, the idealized RAM or Turing machines and any state-of-the art serial CPU following

the general von Neumann architectural model can be considered equivalent (recall: we do not

care about constants).

Theoretical computational models and algorithmic asymptotic analysis for real-life serial sys-

tems has been a nice success story for the coupling of theory and practice. Reasonably, one would

decide to extend this strategy to parallel computation as well, i.e., define an idealized parallel

platform, perform algorithmic analysis for this platform and use this analysis for algorithmic

design and evaluation on real hardware. A natural extension of the serial model of computation

RAM is called Parallel Random Access Machine (PRAM) and consists of p processors and a

global memory of unbounded size that is uniformly accessible to all processors. All processors

access the same address space. In PRAM synchronization and communication come at zero cost

while the machine provides any problem-dependent number of processors.

Since in PRAM all processors have a common view of global memory, common access needs

to be further defined. Thus, four PRAM models can be considered:

1. Exclusive Read Exclusive Write (EREW-PRAM ): Every memory cell can be read or written

to by only one processor at a time. This is the most weak PRAM model enforcing parallel

algorithms to be designed with processors operating on disjoint data sets at each time

step. Any concurrent access is illegal (e.g. the program will terminate or have undefined

behaviour).

2. Concurrent Read Exclusive Write (CREW-PRAM ): Multiple processors can read a memory

cell but only one can write at a time. Thus, algorithms can be designed with read-only

3



4

data sets accessed by all processors and disjoint write data sets per processor at each time

step.

3. Exclusive Read Concurrent Write (ERCW-PRAM ): Multiple processors can write a mem-

ory cell but only one can read at a time. Clearly, this model is of no theoretical or practical

use and thus is never considered.

4. Concurrent Read Concurrent Write (CRCW-PRAM ): Multiple processors can read and

write a memory cell. While concurrent reads (as in the CREW case) can be dealt by

serialization without altering the semantics of the algorithm, concurrent writes need further

elaboration. Again we distinguish four cases:

• Common: All processors write the same value, otherwise the operation is illegal.

• Arbitrary : Only one arbitrary attempt is successful, others retire.

• Priority : Processor with highest rank performs a successful write.

• Reduction: A collective operation (e.g. sum, and, max ) is applied to all data before

written to the memory cell.

Unlike RAM, PRAM makes several simplifying assumptions that deflect it from real plat-

forms. Apart from the severe assumption of the unlimited number of processors, PRAM implies

a uniform and switched access to shared memory. Thus for m memory cells and p processors

(recall: even if not unlimited, p should be quite large) memory-processor connectivity would re-

quire mp switches. For a reasonable memory size, such a switching network would be extremely

expensive to realize in practice. Although shared-memory systems have many common features

with PRAM, such hardware and cost considerations limit the number of processors that can be

included in these systems, making them of limited use for complexity analysis. Thus, PRAM

has mostly theoretical value and finds little space in algorithmic design for parallel computing

platforms.

1.2 Flynn’s Taxonomy

Flynn’s taxonomy is a classification of computer architectures, proposed by Michael J. Flynn

in 1966. The four classifications defined by Flynn are based upon the number of concurrent

instruction (or control) and data streams available in the architecture (see Figure 1.1):

• Single Instruction, Single Data stream (SISD) A sequential computer which exploits no

parallelism in either the instruction or data streams. Single control unit (CU) fetches

single Instruction Stream (IS) from memory. The CU then generates appropriate control

signals to direct single processing element (PE) to operate on single Data Stream (DS)

i.e. one operation at a time. Examples of SISD architecture are the traditional unipro-

cessor machines like a PC (currently manufactured PCs have multiple processors) or old

mainframes.

• Single Instruction, Multiple Data streams (SIMD). A computer which exploits multiple data

streams against a single instruction stream to perform operations which may be naturally

parallelized. For example, an array processor or GPU.



5

• Multiple Instruction, Single Data stream (MISD). Multiple instructions operate on a single

data stream. Uncommon architecture which is generally used for fault tolerance. Hetero-

geneous systems operate on the same data stream and must agree on the result. Examples

include the Space Shuttle flight control computer.

• Multiple Instruction, Multiple Data streams (MIMD). Multiple autonomous processors

simultaneously executing different instructions on different data. Distributed systems are

generally recognized to be MIMD architectures; either exploiting a single shared memory

space or a distributed memory space.

(a) SISD (b) SIMD

(c) MISD (d) MIMD

Figure 1.1: Flynn’s taxonomy

1.3 Shared Memory Platforms

Since theoretical computational models have not been very useful in designing parallel algorithms

for real systems, programmers and algorithm designers need to resort to abstractions of actual

parallel processing platforms. This has the advantage of leading to realistic analyses, but the

disadvantage of being dependent on current hardware. There is no guarantee that algorithms

developed for current systems will be efficient in future ones. Figure 1.2 demonstrates the

typical organization of a uniprocessor system. One CPU with a cache memory (denoted $) is

connected to main memory (M ) with a memory interconnect and to the peripherals with an I/O

interconnect. We can consider parallel processing platforms as an extension of this organization.



6

Depending on which interconnect we choose to attach multiple systems on, two major families

of parallel platforms are derived: shared memory systems and distributed memory systems.CPU$M memoryinterconnectI/Ointerconnect
Figure 1.2: Typical organization of a uniprocessor system.

Shared memory systems are built by attaching multiple CPUs on the memory interconnect.

If all memory chunks are equally distant from all CPUs, the system is called Uniform Memory

Access (UMA) (Figure 1.3(a)). If some memory banks are closer to some processors the system

is called Non-Uniform Memory Access (NUMA) (Figure 1.3(b)). Shared memory systems in

general provide the desired characteristic of shared address space between programs that execute

on multiple CPUs. Data structures can be shared among CPUs that are able to communicate

with standard load/store operations to main memory. Due to this common view of memory,

shared memory systems are traditionally considered as parallel platforms that make parallel

programming easier. This is to some extent correct, since parallel programming for shared

memory systems can be supported by moderate modifications to serial programming, due to

the efficient access of shared data. On the other hand, to deal with race conditions and data

dependencies on shared data requires special care and is extremely error-prone and counter-

productive.

The most common memory interconnect technology is the bus. Buses have the desirable

property that the cost of the network scales linearly as the number of processors p. This cost is

typically associated with the bus interfaces. Furthermore, the distance between any two nodes in

the network is constant. Buses are also ideal for broadcasting information and greatly facilitate

the implementation of snooping protocols for cache coherence. However, the bandwidth of a

bus is bounded, thus there is a physical limit to the number of nodes that can be attached in a

bus without greatly sacrificing performance. Typical bus-based systems are limited to dozens of

nodes.

An alternative to the bus for shared-memory systems is a crossbar network connecting p

processors with b memory banks. This family of interconnects employs a grid of switches that

enable concurrent communication between the nodes attached to the grid. The total number of

switching nodes required to implement such a network is pb. As the number of processing nodes

rises the switching complexity is difficult to realize at high data rates. Crossbar networks are

not scalable in terms of cost.

1.4 Distributed Memory Platforms

Enterprise parallel applications have enormous needs for processing power and request thou-

sands, even millions of processing cores. Clearly, this demand cannot be met by shared-memory



7 CPU$ MCPU$ CPU$... I/Ointerconnectmemoryinterconnect
(a) UMACPU$M CPU$M CPU$M... I/Ointerconnectmemoryinterconnect
(b) NUMA

Figure 1.3: Shared-memory systems

systems. To create systems that can scale up to thousands of cores processing nodes are con-

nected on the I/O bus as shown in Figure 1.4. In this paradigm, systems may be built upon

commodity interconnection technology like Gbit Ethernet or more advanced low, latency and

high-bandwidth networks like Myrinet or Infiniband. Large supercomputers are also built around

custom interconnects designed and implemented to cover the specific needs of these systems.CPU$M CPU$M CPU$M... I/Ointerconnectmemoryinterconnect
Figure 1.4: Distributed-memory system

In distributed memory platforms there is no view of global memory and thus processors

need to communicate explicitly through the communication network. This can be realized by

programming models that adopt a message-passing approach exposed to the programmer. Pro-

cesses have a view of local memory and exchange of information is made with explicit calls to

communication libraries, typically occurring both at the sender and receiver sides. Although

a difficult, effort-consuming and error-prone approach, message-passing is the dominant paral-

lel programming paradigm for distributed memory systems nowadays. Alternatively, a software



8

stack called Distributed Shared Memory (DSM) provides a shared address space implemented on

the distributed physical memory of the platform, but such approach suffers from severe perfor-

mance overheads. Recently, a novel programming model followed by Partitioned Global Address

Space (PGAS) languages assumes a global memory address space that is logically partitioned

and a portion of it is local to each processor. The PGAS model is the basis of Unified Parallel

C (UPC), Co-array Fortran, Titanium, Fortress, Chapel and X10. The PGAS model envisions

to achieve the programmability of the shared address space model together with the scalability

of the message-passing model. PGAS languages need strong hardware support, especially at the

communication network that is expected to support very fast one-sided communication.CPU$ M CPU$ ... I/OinterconnectmemoryinterconnectCPU$ M CPU$ CPU$ M CPU$
Figure 1.5: Hybrid system

The widespread of the multicore technology together with the good scalability properties of

distributed memory systems has normally led to the adoption of a hybrid, two-level parallel ar-

chitecture where shared memory systems are interconnected to form a large-scale parallel system

as depicted in Figure 1.5. In this case, either pure message-passing or a hybrid programming

model can be applied.



Chapter 2

Analytical Modelling

As mentioned in the previous section, sequential algorithms are evaluated in terms of execution

time expressed as a fraction of the size of its input. The execution time of a parallel algorithm

depends not only on the input size but also on the number of the processing elements used. To

make things even more complicated, the parallel execution time depends also on the architec-

ture and hardware characteristics of the parallel platform, e.g. memory organization (shared

vs. distributed), memory hierarchy (size and organization of cache memories), interconnection

network, hardware support for synchronization etc. This means that if we parallelize an initial

sequential algorithm that executes in time Ts across p processors, we cannot expect a parallel

execution time that equals Ts

p . This is due to three reasons:

1. Processor interaction: In the typical case, processors need to interact in order to synchronize

or communicate. Processor interaction is a major source of performance overhead in parallel

programs.

2. Processor idle times: Equal distribution of computation across p processors is not always

feasible. In several cases load imbalance may occur between processors leading to processor

idle times and subsequent performance degradation.

3. Algorithmic issues: A large number of sequential algorithms are inherently serial. This

means that in several cases in order to parallelize a serial algorithm with execution time T

we need to resort to an alternative algorithm with execution time T ′ and T ′ > T . This of

course needs to be considered when evaluating the performance gains of parallelization.

2.1 Performance evaluation metrics

The following evaluation metrics are important to assess the effectiveness of a parallelization

process:

• The parallel execution time denoted Tp is the overall execution time that elapses from the

moment a parallel computation starts to the moment the last processing elements completes

its work.

• The total parallel overhead expresses the extra work carried out by the parallel execution.

Since pTp is the total total work carried out by the parallel execution (p workers working

for Tp time) and Ts is the useful work, then the total parallel overhead is To = pTp − Ts.

9



10

• The Speedup is the most descriptive of the performance metrics used to assess the effec-

tiveness of parallelization. Speedupe S is defined as:

S =
Ts

Tp

where Ts is the serial time of the best performing serial algorithm and Tp is the parallel

execution time with p processors. Thus, speedup gives a good view of “how many times

faster is the parallel program compared to the serial one”. Ideally, programs would have

linear speedup, i.e. S = p, but in typical cases S < p, while in special cases programs may

achieve super-linear speedup (S > p).

• The Efficiency metric is a measure of the fraction of time devoted by each processing

element to the execution of the parallel algorithm. Efficiency E is defined as:

E =
S

p

Similar to the properties of speedup, perfect efficiency is 1 while in typical cases it holds

E < 1.

2.2 Amdahl’s law

Amdahl’s law is a fundamental law in parallel computing. It is used to find the maximum

expected improvement to an overall system when only part of the system is improved. It is

often used in parallel computing to predict the theoretical maximum speedup using multiple

processors. Amdahl’s law states that if f is the proportion of a program that can be made

parallel (i.e. benefit from parallelization), and 1−f is the proportion that cannot be parallelized

(remains serial), then the maximum speedup that can be achieved by using p processors is:

Smax =
1

(1− f) + f
p

For example, if 50% of an algorithm can be parallelized, then the maximum speedup that we

could expect for 4 processors is Smax = 1
1
2+

1
8

= 1.6. Although simple in its essence, Amdahl’s

law provides the initial and most significant guide to parallelization and in general to code opti-

mization: any optimization approach should focus on the part of the algorithm that dominates

the execution time. This is in line with the famous quote by D. Knuth: “We should forget about

small efficiencies, say about 97% of the time: premature optimization is the root of all evil”.

2.3 Scalability

Scalability is the property of parallel programs to increase their performance as the number of

processing nodes increases. There is no strict definition of scalability, but looking at the two

extremes, a program with linear speedup “scales well”, while on the other hand when a program

fails to increase performance or even degrades performance for p > p0 we say that “scalability

breaks at p0”. In the context of high performance computing there are two common notions

of scalability. The first is strong scaling, which is defined as how the solution time varies with



11

the number of processors for a fixed total problem size. The second is weak scaling, which is

defined as how the solution time varies with the number of processors for a fixed problem size

per processor.

2.4 Performance modelling

A good performance model, like a good scientific theory, is able to explain available observations

and predict future circumstances, while abstracting unimportant details. Amdahl’s law, empirical

observations, and asymptotic analysis do not satisfy the first of these requirements. On the

other hand, conventional computer system modelling techniques, which typically involve detailed

simulations of individual hardware components, introduce too many details to be of practical

use to parallel programmers. We discuss performance modelling techniques that provide an

intermediate level of detail. These techniques are certainly not appropriate for all purposes:

they consider simplified parallel architectures and do not take into account, for example, cache

behaviour. However, they have been proven useful in a wide range of parallel algorithm design

problems.

The performance models considered here specify a metric such as execution time T as a func-

tion of problem size N , number of processors p and other algorithm and hardware characteristics:

T = f(N, p, . . . )

As mentioned above, the execution time of a processor can be decomposed into computation

time (Tcomp), communication time (Tcomm) and idle time (Tidle). Thus for processor j it holds:

T j = T j
comp + T j

comm + T j
idle

We defined the execution time of a parallel program as the time that elapses from when the

first processor starts executing on the problem to when the last processor completes execution.

Thus, the parallel execution time can be modelled as:

T = max
(
T j
comp + T j

comm + T j
idle

)
, j = 1 . . . p

A good metric is also the average of the execution times of all processors:

T =
1

p

p∑
j=1

(
T j
comp + T j

comm + T j
idle

)
, j = 1 . . . p

2.4.1 Modelling computation time

The computation time of an algorithm is the time spent performing computation rather than

communicating or idling. If we have a sequential program that performs the same computation

as the parallel algorithm, we can determine by timing that program. Otherwise, we may have

to implement key kernels. Computation time will normally depend on some measure of problem

size, whether that size is represented by a single parameter N or by a set of parameters N1, N2 . . ..

If the parallel algorithm replicates computation, then computation time will also depend on the

number of tasks or processors. In a heterogeneous parallel computer (such as a workstation net-

work), computation time can vary according to the processor on which computation is performed.



12

Computation time will also depend on characteristics of processors and their memory systems.

For example, scaling problem size or number of processors can change cache performance or the

effectiveness of processor pipelining. As a consequence, one cannot automatically assume that

total computation time will stay constant as the number of processors changes.

A simple and straightforward way to model computation time (or at least an upper bound

of it) is to extract the number of operations (ops) required by an algorithm and multiply it by

the CPU speed provided by the vendor (in sec/op). Thus, one estimate of Tcomp is:

Tcomp = ops of Algorithm× CPU speed

The above model assumes that the CPU can be fed with data by the memory subsystem

at a rate that can always cover the CPU’s needs. However, this is not the case in modern

systems, especially in those containing multiple cores. Hence, we want a model that relates

processor performance to off-chip memory traffic. Towards this goal, we use the term “operational

intensity” (OI) (in operations/byte) to mean operations per byte of DRAM traffic, defining total

bytes accessed as those bytes that go to the main memory after they have been filtered by the

cache hierarchy. That is, we measure traffic between the caches and memory rather than between

the processor and the caches. Thus, operational intensity predicts the DRAM bandwidth needed

by a kernel on a particular computer. In this case, an upper bound of the computational time is

provided by the Roofline model as:

Tcomp = ops of Algorithm×max
(
CPU speed,

1

Memory bandwidth×OI

)
2.4.2 Modelling communication time

The communication time between two nodes in a distributed-memory platform can be decom-

posed into the sum of the time to prepare a message for transmission and the time taken by the

message to traverse the network to its destination. The principal parameters that determine the

communication latency are as follows:

1. Startup time (ts): The startup time is the time required to handle a message at the

sending and receiving nodes. This includes the time to copy the data from user space to

the communication engine, prepare the message (header, trailer, error correction, etc.),

execute the routing algorithm and establish the interface between the sender and receiver

nodes. This delay is incurred once per message.

2. Per-hop time (th): After a message leaves a node, it takes a finite amount of time to reach

the next node in its path within the communication network. The time taken by the header

of a message to travel between two directly-connected nodes in the network is called the

per-hop time. The per-hop time is related to the latency incurred by the interconnect’s

hardware.

3. Per-word transfer time (tw): This time is related to the channel bandwidth of the inter-

connection network (b). Each word takes tw = 1
b to traverse the link.

The communication cost for a message of size m transferred between two nodes that are l

hops away is:

Tcomm = ts + lth +mtw



13

In general, it is very difficult for the programmer to consider the effect of the per-hop time.

Many message passing libraries like MPI offer little control to the programmer on the mapping

of processes to physical processors. Even if this control was granted to the programmer, it

would be quite cumbersome to include such parameters in the design and implementation of the

algorithm. On the other hand, several network architectures rely on routing mechanisms that

include a constant number of steps (e.g. 2). This means that the effect of the per-hop time can

be included in ts. Finally, in typical cases it holds ts � th or mtw � th and since l can be

relatively small, the effect of the per-hop time can be ignored, leading to this simplified model

for the communication cost of a single message:

Tcomm = ts +mtw

Many communication scenarios in real-life applications involve collective communication in-

cluding multiple nodes. Broadcast (one-to-all) and reduction (all-to-one) operations are based

on point-to-point communication, but are implemented organizing the participating nodes in a

tree and utilizing concurrent point-to-point communication between the processes as shown in

Figure 2.1 for 8 processes. Thus, in this case the communication cost is modelled as:

Tcomm = (ts +mtw) log ptime steps1 2 1 32 4 1 52 63 74 8
Figure 2.1: Broadcast steps for 8 processes

2.4.3 Modelling idle time

Both computation and communication times are specified explicitly in a parallel algorithm; hence,

it is generally straightforward to determine their contribution to execution time. Idle time can

be more difficult to determine, however, since it often depends on the order in which operations

are performed.

A processor may be idle due to lack of computation or lack of data. In the first case, idle

time may be avoided by using load-balancing techniques. In the second case, the processor is idle

while the computation and communication required to generate remote data are performed. This

idle time can sometimes be avoided by structuring a program so that processors perform other

computation or communication while waiting for remote data. This technique is referred to as

overlapping computation and communication, since local computation is performed concurrently

with remote communication and computation. Such overlapping can be achieved in two ways. A



14

simple approach is to create multiple tasks on each processor. When one task blocks waiting for

remote data, execution may be able to switch to another task for which data are already available.

This approach has the advantage of simplicity but is efficient only if the cost of scheduling a new

task is less than the idle time cost that is avoided. Alternatively, a single task can be structured

so that requests for remote data are interleaved explicitly with other computation.



Chapter 3

Parallel Programming: Design

In this chapter we review some of the basic principles in the design of parallel programs. We

need to point out that in parallel programming there is no well established methodology to-

wards designing and implementing “good” parallel code. Driving forces in this process are high-

performance evaluated in terms speedup, efficiency and scalability as described in the previous

chapter, and code productivity evaluated in terms of reduced implementation cost, maintainabil-

ity and portability.

We can distinguish four major steps in the design of parallel programs:

1. Computation and data partitioning

2. Design of task interaction

3. Mapping of tasks to processes

4. Orchestration of communication/synchronization

At this point we need to clarify the key terms task, process and processor. We can think of

a task as a distinct unit of work, a process as a logical computing agent executing tasks and a

processor as the hardware unit that physically executes computations. Thus we may say that

tasks are assigned or mapped to processes and processes are scheduled on processors.

3.1 Computation and data partitioning

The first step in the parallelization design is to detect tasks from the serial algorithm that “seem”

to be able to validly execute concurrently. The actual verification of parallelism will be carried

out in the next step. Additionally, one needs to identify the data that need to be allocated in

each task. There are two main approaches to carry out partitioning: one task centric and one

data centric.

In the task centric approach partitioning starts from the definition of tasks with data parti-

tioning following. This is the most general and flexible approach, essentially capable of handling

all practical cases. As an example consider the computational kernel of matrix-vector multipli-

cation shown in Algorithm 1 and Figure 3.1. These are some of the task centric approaches one

could follow to define tasks:

15



16

• We consider as task the inner product of input vector x with matrix row A[i][∗] to calculate

output vector element y[i].

• We consider as task the multiplication of an element of input vector x (x[j]) with an element

of the matrix (A[i][j]). A different task is considered the summation of all products of x[j]

with A[i][j] to calculate y[i].

• We consider as task the multiplication of a submatrix of A of size B×B with the relevant

subvector of x. A different task is considered the summation of all previous subproducts

to calculate a subvector of y.

Algorithm 1: Matrix-vector multiplication.

Input: A: matrix of size N1 ×N2

Input: x: vector of size N2

Output: y: vector of size N1

for i← 0 to N1 do
y[i]=0.0;

for i← 0 to N1 do
for j ← 0 to N2 do

y[i]+=A[i][j]*x[j];

= *y Ax
Figure 3.1: Matrix-vector multiplication

On the other hand, in the data centric approach one would start by partitioning the data

and then form tasks to work on this data distribution. All tasks in this case are identical and

perform operations on different sets of data. On the matrix-vector multiplication example one

would choose to partition the matrix by element, by rows, by columns or by blocks and define

a task as the computations performed using this chunk of data. Note that the data centric

approach is not as general as the task centric approach and is suitable for regular data structures

like matrices and vectors and algorithms derived from numerical linear algebra, where the data

distribution leads to a straightforward parallel design and implementation. In several cases

the data centric approach constructs tasks that are completely independent and can operate

with little or no interaction at all. As a general rule of thumb, one could start the design by

considering the data centric approach first, and test if this can lead to a fluent parallel design



17

with load balanced and regularly interacting tasks. If this is not the case, then one can resort to

the more general task centric approach.

The sharing attributes of distributed data fall into three major categories: shared, distributed

or replicated:

• Shared data structures can be supported only by shared address space programming mod-

els. It is a convenient way of “partitioning” data (actually no partitioning is required in this

case) since no initialization or finalization is needed to distribute and collect data respec-

tively. It is a straightforward approach for read-only data but requires special care when

shared data are written by distinct tasks. This is what makes programming for shared

address space models look easy, but actually being extremely cumbersome and error prone.

• Distributed data structures are used to completely separate working sets between the ex-

ecution tasks. This is the main approach for message passing programming models. The

distribution and collection of data structures at the beginning and at the end of the exe-

cution incurs significant overhead to the programmer, but, on the other hand, since tasks

operate on disjoint data sets their interaction becomes much more clear. One can state that

programming with distributed data structures is more time consuming but less error-prone.

• Replicated data structures are used to copy data to the local address spaces of tasks. This

is a good practice for small read-only data structures whose distribution would incur extra

programming overhead without any significant gain. In several cases, replicated data may

be used as a design choice to replicate computation as well. In general, this approach

is followed when computation replication is more efficient than computation distribution

coupled with the necessary communication.

Figure 3.2: 3-dimensional computational grid

Regular data structures like algebraic matrices and N-dimensional computational grids (see

Figure 3.2) are typical in applications for parallel computing. Naturally, these data structures

are represented as multidimensional arrays in high-level programming languages. To parallelize

algorithms involving such data structures (e.g. matrix operations, solutions of Partial Differential

Equations) designers typically use the data-centric approach and distribute the data structures



18

dividing one or more of the array dimensions. Figure 3.3 1 and 2-dimensional distributions for

a two dimensional array, also called row-wise and block-wise. The choice of dimension(s) to be

distributed in an N-dimensional array affects several parameters in the execution behavior of an

application (memory access, communication, etc) and should be given serious attention.

(a) 1-dimensional (b) 2-dimensional

Figure 3.3: Array distributions

3.2 Task interaction

Apart from some exceptional cases of ridiculously parallel applications, tasks need to interact with

each other. As in all cases of cooperation, participating entities need to exchange information or

synchronize their work. In the case of parallel computing, task interaction needs to take place

when tasks share data and in particular, when this sharing involves modification of shared data.

We say that a race condition occurs when multiple tasks access and manipulate the same data

concurrently, and the outcome of the execution depends on the particular order in which the

access takes place.

Algorithm 2 shows the pseudocode of a kernel counting the prime numbers from 1 to N .

Function isPrime(i) decides if number i is prime, and is computationally intensive. For the

sake of our example, we can consider a naive distribution of this algorithm in two tasks, task A

calculating the number of primes from 1 to N/2 and task B from N/2 + 1 to N . We can verify

that there exists a race condition in the access of the output variable prime count. Recall that

the operation prime count++ is typically the abbreviation of the following more complex code:

tmp = prime_count;

tmp = tmp + 1;

prime_count = tmp;

Algorithm 2: Pseudocode for prime number counting.

Input: N : search primes from 1 to N
Output: prime count: number of primes found in 1 . . . N

for i← 1 to N do
if isPrime(i) then

prime count++

In this code fragment, prime count is shared among the tasks, but tmp is a local variable to

each task. Now imagine that tasks A and B have successfully found a prime number each, and



19

proceed concurrently to update the counter prime count which holds the value k. They might

simultaneously read k from prime count, set their local tmp variables to k + 1 and both write

k + 1 to prime count. This clearly is not what we expect from the parallel execution of task A

and task B. To keep the semantics of the sequential algorithm in this case, we need to orchestrate

the concurrent access to the shared variable prime count, e.g. by enforcing mutual exclusion to

the two tasks, i.e. enabling only one task to enter the critical section that modifies the shared

variable.

Apart from the general case of race conditions, in several cases tasks need to have an ordered

access to shared variables, i.e. there exists a dependence between task A and task B. Dependencies

between tasks can be represented by task graphs which are directed acyclic graphs, with the nodes

representing tasks and the edges representing dependencies between tasks (see Figure 3.4). Task

graphs can be also enhanced by node labels that describe task effort and edge labels that describe

amount of data (e.g. communication) that need to be transferred between tasks.

Figure 3.4: A task graph: nodes represent tasks and edges represent dependencies.

Algorithm 3 shows the kernel calculating the inner product between vectors x and y. We

can distribute this work by assigning tasks A and B the partial inner product of half vectors

(distributing the first half and second half of vectors x and y to tasks A and B respectively)

and task C the combination of the result (the summation of the partial dot products). The task

graph in this simple example in shown in Figure 3.5 where we can see that there is an ordering

between tasks: tasks A and B must execute before task C, since there is a dependence from task

A/B to task C.

Algorithm 3: Vector inner product.

Input: x: vector of size N
Input: y: vector of size N
Output: inner prod: scalar holding the inner product

inner prod = 0 for i← 0 to N do
inner prod+=x[i]*y[i];

Concluding, after task and data partitioning, the design phase involves the detection of race

conditions and dependencies between tasks. For some classes of algorithms, especially those

that operate on irregular data structures asynchronously, this can be an extremely tedious and

error-prone process.



20

Figure 3.5: A task graph for inner product.

3.3 Mapping tasks to processes

Until now, we have worked with tasks, a computational entity that is independent of the under-

lying execution platform. At this point we need to consider how tasks will be assigned (mapped)

to processes and executed by the actual execution engine. The goal of mapping is primarily to

assign a problem-specific set of tasks to a platform-specific number of processes P and minimize

overall parallel execution time. Driving forces for an efficient mapping approach are the max-

imization of parallelism and the minimization of interprocess synchronization/communication.

There exist two major mapping strategies depending on the nature of the computation and the

interactions between tasks: static and dynamic mapping.

Static mapping techniques distribute the tasks among processes prior to the execution of the

algorithm. Such techniques are used when task generation, size and interaction are known or

can be effectively predicted statically. Even when task sizes are known the problem of obtaining

an optimal mapping is NP-complete for non-uniform tasks. However, for several practical cases

good and easy to implement heuristics exist.

(a) 1-dimensional (b) 2-dimensional

Figure 3.6: Sequential array mappings

Revisiting the algorithms that operate on regular data structures like matrices or grids,

the mapping can be performed again in a data-centric approach similar to the one followed

to distribute the work into tasks. Sequential mappings group contiguous tasks into the same

process as shown in Figure 3.6. Cyclic mappings assign contiguous tasks into different processes

as shown in Figure 3.7. Sequential mappings are straightforward and easier to implement, but

fail to achieve load imbalance in algorithms that operate with different density on the various

parts of the array. In these cases cyclic mappings are preferable.

Dynamic mapping techniques map tasks to processes during the execution of the algorithm.

If tasks are generated dynamically, then they must be mapped dynamically too. If task sizes

are unknown then a static mapping can potentially lead to severe load imbalance, dynamic



21

(a) 1-dimensional (b) 2-dimensional

Figure 3.7: Cyclic array mappings

mappings are usually more effective in this case too. However, dynamic mapping has to pay the

cost of online decision taking, interaction between the processes, and is generally more complex

to implement, especially when data are distributed between tasks (and processes). Dynamic

mapping is also referred to as dynamic load balancing (as its primary goal is to distribute load

evenly between processes) or task scheduling. Dynamic mapping techniques are usually classified

as centralized or distributed.

In a centralized mapping scheme the orchestration of the mapping is carried out by a special

process that possesses an overall view of the tasks and their execution status. This master or

scheduling process interacts with slave or worker processes and assigned chunks of work to them.

Alternatively, unassigned work can be maintained in a central data structure. Whenever a worker

process has no work, it communicates with the scheduling process or accesses the central data

structure to obtain further work.

A characteristic and widely applied example of dynamic scheduling is that of the work carried

out at the iterations of a parallel loop, i.e. a loop whose iterations can be executed in parallel

without any kind of interaction. The calculation of prime numbers in the set 1 . . . N shown

in Algorithm 2 is such an example (for the sake of this example we can ignore the update of

the primer counter variable). Prime numbers are not uniformly distributed in the set under

consideration, and, furthermore, the calculations to decide whether numbers a and b are can

be significantly different. Therefore each iteration of the loop in Algorithm 2 can take different

amounts of time. A naive mapping (such as the one we used in Section 3.2) can lead to load-

imbalance and severe performance degradation due to processor idle times. A possible solution to

this problem would be to maintain a central pool of loop indices and, whenever a process is idle,

it can pick an index, delete it from the pool and perform the relevant calculations. This method

of scheduling independent iterations of a loop among parallel processes is called self scheduling.

There exist several interesting variations of this approach that distribute chunks of iterations to

processes in order to increase load balance and keep scheduling costs low.

Centralized mapping schemes are easier to implement and work well for a large number of

realistic cases. However, they suffer from scalability since there exist single points of congestion,

either these being the communication path to the master process, or the shared data structure

that keeps information on the work that waits to be scheduled. Moreover, shared data structures

are not easy to implement in distributed memory platforms. For these reasons, several classes of

applications benefit from distributed scheduling schemes, where each process maintains its own

work queue and interacts with other processes in the cases when it becomes idle or overloaded.



22

3.4 Communication and synchronization

The final step in the design of a parallel program is to insert synchronization and/or communica-

tion primitives between processes that will ensure the semantic equivalence of the serial with the

parallel program. In the previous step of task mapping several tasks have been allocated to the

same process, so their interactions remain within the same execution context. In this case task

interaction requires no or minor extra design overhead: it suffices to ensure that the initial task

dependencies are respected by the actual execution of the process. Interaction of tasks that have

been mapped to different processes require extra attention and special synchronization and/or

communication operations need to be inserted in this design phase.

(a) barrier (b) mutual exclusion

Figure 3.8: Synchronization primitives

Figure 3.8 shows two widely used mechanisms for process synchronization. A barrier is used

to gather all processes together before proceeding with the rest of the execution. Barriers are

typically associated with a specific number of processes (say p), so the first p − 1 processes

that reach the barrier will wait until the p-th process reaches that point of execution as well.

After that, all processes continue with their execution. Mutual exclusion is used to control the

concurrency of processes in a code segment called the critical section, i.e. access of a common

variable as discussed in Algorithm 2. Figure 3.8(b) implies the most typical cases of mutual

exclusion where only one process is allowed to enter a critical section. Other alternatives of

mutual exclusion may require a specific number of processes entering the critical section, allow

some combination of processes entering the critical section (e.g. readers-writers synchronization),

or enforce some ordering in the entrance of the section (e.g. enter in the order dictated by the

process id’s).

All modern languages and tools for parallel programming provide implementations of basic

and sometimes more advanced synchronization operations. Programmers can also build upon

the provided primitives to develop synchronization constructs that are suitable for the needs

of their applications. However, we need to consider that synchronization is one of the major

sources of performance degradation in parallel programs, thus we need to avoid unnecessary

synchronization operations or select the most efficient of the available ones, even at the design

phase.



23

The second widely applied form of process interaction is communication. Communication is

required when processes need to exchange data that are not shared among them. Communication

is typically implemented with messages, where a sender process sends data to a receiver process.

Several alternatives exist here as well, including point-to-point and collective communication (e.g.

broadcast or multicast), synchronous or asynchronous communication and others. Again here,

the designer needs to consider that communication overheads are responsible for low performance

and poor scalability for many classes of parallel applications, so special attention needs to be

paid to reduce both the volume of data and the number of messages that need to be exchanged.



24



Chapter 4

Parallel Programming:

Implementation

In this chapter we review concepts and technologies associated with the implementation phase

of a parallel program. The design phase has provided a conceptual distribution of a serial

algorithm (its computations and data) to a finite set of processes and has pointed out points

in the algorithm, where processes need to interact. We now need to translate this design to a

working parallel program. The first step is to select the programming model which affects the

view of data by the processes. In the next section we discuss the two major choices: shared

address space and message passing. The second step is employ parallel programming constructs

that express parallelism. This is discussed in Section 4.2. Finally, in Section 4.3 we review

existing technologies that are used to implement parallel programs.

4.1 Parallel programming models

There exist two major programming models depending on whether the processes have a common

view of the address space or not. When processes can have a common view and access data

with typical memory access operations, the programming model is called shared address space.

When each process has its own, local address space, the model is called message passing (be-

cause processes need to communicate with a messaging mechanism in order to exchange data).

Note that we can observe a clear correspondence of parallel programming models, with the par-

allel execution platforms discussed in Chapter 1. This is natural, since, as in other features of

programming languages supported or influencing hardware design, parallel programming models

are constructed to adapt to the underlying execution platforms. Thus, shared address space is

inspired by shared memory platforms, while message passing is inspired by distributed memory

platforms. Of course, any coupling of programming models and platforms can be implemented

with very interesting characteristics.

4.1.1 Shared address space

In the shared address space parallel programming model, processes have a common view of

memory (see Figure 4.1). Shared data can be accessed by regular memory operations (e.g.

load/store). This model can support all the sharing attributes for data discussed in Chapter 3,

25



26

i.e. shared, distributed or replicated. Especially the support for shared data structures is what

makes this programming model desirable, since it greatly simplifies the implementation and

drastically reduces the coding effort. However, the ability to share data at the existence of data

races may lead to programs with subtle and non-repeatable bugs that are sometimes almost

impossible to locate. This is what can make programming for shared address space less time-

consuming during implementation, but extremely time consuming during debugging.

Figure 4.1: Shared addres space

Shared address space programming models can be easily implemented for shared memory

platforms. Actually, data sharing mechanisms are supported by operating systems to enable

inter-process communication. However, implementing shared address space programming over

a distributed memory platform is far from being straightforward. It requires a special soft-

ware layer (traditionally called distributed shared memory - DSM), hardware support, or both.

Additional software layers such as DSM greatly degrade the performance of parallel programs,

while hardware extensions are always extremely costly without easily providing the expected

performance benefits. For these reasons, shared address space programming models are consid-

ered suitable for shared memory platforms and thus carry their major disadvantage: they have

limited scalability.

4.1.2 Message passing

To enable parallel programs scale to the number of processes offered by distributed memory

systems, the programming model needs to adapt to the constraints imposed by the underlying

execution platform. To this direction, the message passing programming model assumes that

there is no data sharing between the processes, and thus each process has access only to its local

data (see Figure 4.2). Only distributed and replicated data structures can be supported. Process

interaction can be realized only by message exchange (hence the name of the model).

The message passing model can be implemented both for shared memory and distributed

memory platforms. In the first case, messages are transferred over the interconnection network,

while in the second cases messages are exchanged through the physical memory. Programming

with the message passing model is tedious and requires a lot of effort to distribute data and

orchestrate explicitly the process interaction. On the other hand, the absence of data sharing

removes the risk of subtle bugs, making debugging more straightforward, yet in any case much

more complicated than sequential programming.

The selection of the programming model is critical for the implementation phase. The pro-

grammer needs to consider two important factors when taking this decision: performance and



27

Figure 4.2: Message passing

productivity. Regarding performance, there is no clear superiority of any of the models in shared

memory platforms. However, in distributed memory platforms, message passing has been tra-

ditionally the only choice. Thus, if we target for a scalable implementation we need to resort

to message passing. On the other hand, implementing a program in the shared address space

model can be as easy as inserting a couple of keywords in original serial program. If this pro-

gram does not have peculiar or subtle data races, then the programming task is accomplished

with minor overhead. On the other hand, message passing leads to fragmented code and extra

programming overhead to distribute data and collect results, being definitely a more burdensome

process. However, to make the selection process a little more interesting, bugs are much easier

to locate for code written in the message passing model.

4.2 Parallel programming constructs

In this section we discuss the most dominant parallel programming constructs, that is extensions

of languages or library support that enable a programmer to “speak a parallel language” and

include in a program notions used during the design phase. Key entities described by parallel

programming constructs are threads, tasks, task graphs, synchronization operations, parallel

loops etc. Typically, a parallel construct may impose a programming style, so we use these terms

interchangeably.

4.2.1 SPMD

Single Program Multiple data (SPMD) is a parallel programming construct where multiple au-

tonomous threads simultaneously execute the same program at independent points. SPMD is

a very common style of parallel programming. In this style the programmer makes use of the

process’ id to alter its execution path, either differentiating its role as shown in Figure 4.3 for

the implementation of a parallel program with one master and many workers, or directing it

to operate on different data segments as shown in Figure 4.4 for data parallel matrix-vector

multiplication.

SPMD is a straightforward extension of serial, imperative programming. The programmer has

full control of the execution path followed by the parallel program. SPMD parallel constructs

require minimal additional support by the language or run-time system. Typical operations

required by this style may include creation and destroy of threads, request for the thread’s

id and total number of executing threads in the parallel program, and some synchronization

mechanisms like barriers, locks or semaphores. Such operations are usually provided by the



28

i f ( id == 0) {
/∗ master code ∗/
}
else {
/∗ worker code ∗/
}

Figure 4.3: SPMD code segment for master and worker roles.

work chunk = N / N procs ; // N procs : t o t a l number o f p roce s s e s
mystart = id ∗ work chunk ;
myend = min ( mystart + work chunk , N) ;

for ( i=mystart ; i<myend ; i++)
for ( j =0; j<N; j++)

y [ i ]+= A[ i ] [ j ]∗ x [ j ] ;

Figure 4.4: SPMD code segment for data parallel matrix-vector multiplication.

operating system, thus an SPMD API can be implemented by providing to the programmer

access to the aforementioned mechanisms. POSIX Threads (Pthreads) and MPI follow the SPMD

philosophy, and OpenMP provides a wide set of SPMD-style mechanisms (see Section 4.3).

4.2.2 Fork / Join

Fork and Join are the two classical operating system calls to create a new child process (fork)

and synchronize it with its parent at the end of its execution (join). In the context of parallel

programming, fork and join are used to create and synchronize tasks. Figure 4.5 shows the

pseudocode of the parallel calculation of the Fibonacci numbers creating tasks in a recursive

way.

int f i b ( int n)
{

i f (n < 2) return n ;
else {

int x , y ;
x = fork f i b (n−1);
y = fork f i b (n−2);
join ;
return ( x+y ) ;

}
}

Figure 4.5: Parallel calculation of Fibonacci numbers using the fork/join construct.

Parallel programming using fork and join provides great flexibility during the execution of an

application. New tasks can be created dynamically at request in order to cover the needs of the

program. This style is particularly useful for the parallelization of algorithms on irregular data

structures (graphs, lists, trees, etc) and especially in the cases where parallelism can be expressed

in a recursive way (as in the calculation of Fibonacci numbers in Figure 4.5). Decomposing



29

the program in a large number of parallel tasks favours portability and efficiency: it allows the

execution to adapt to underlying platforms with a different number of processors, and at the same

time enables larger opportunities for load balancing. The approach where potential parallelism

exceeds hardware parallelism is called parallel slack. Parallel slack is an important property to

attain high performance through parallelism in applications implemented in the fork/join style.

Obviously, there is a correlation between the number of tasks and the amount of work performed

by each task: increasing the number of tasks will result in tasks that do less work. There is a

point after which reducing the amount of work each task performs, i.e., increasing parallel slack,

stops being beneficial for performance.

In an analogy to serial programming languages, the fork/join style resembles more declarative

programming: the programmer does not describe how the program will be parallelized (which

tasks will be assigned to which thread, etc) but what parallelism exists in the form of tasks. Obvi-

ously, we need run-time language support to orchestrate the execution of tasks into the available

threads. A task is similar to an OS process: it represents a computation that can be, for some

part, executed independently. This part is large for algorithms that are embarrassingly parallel

and small for algorithms with many dependencies. A run-time system needs to manage tasks the

same way an OS needs to manage processes. It needs to create them, terminate them, manage

their memory, and schedule them to processors. Task scheduling is one of the most significant

responsibilities of the run-time system in parallel languages that support fork/join constructs.

OpenMP and Cilk support fork/join parallel constructs. As for now, this programming style is

coupled with the shared address space programming model.

4.2.3 Task graphs

As we discussed in Chapter 3, a task graph is a key data structure when designing a parallel

program: it explicitly describes the decomposition of the algorithm into tasks and addition-

ally provides the interaction between the tasks. Clearly, it is a good choice to support parallel

programming constructs that are capable of expressing task graphs. Figure 4.6 shows the pseu-

docode that implements the task graph of Figure 4.7. One needs to explicitly define a starting

node (s in this example) and all the nodes of the task graph together with the functions each

node will execute. In the sequel, interactions (edges) between nodes are also defined. After the

definition of the graph, we can start its parallel execution.

As in the paradigm of fork/join, the run-time system is responsible for the efficient scheduling

of tasks to the available threads. The task graph construct enables the programmer to express

more complex task interactions. On the other hand, once its execution has started, the graph

cannot change, restricting in this way the applicability of this model to applications whose

behaviour does not change dynamically. Intel’s Thread Building Blocks support this parallel

programming construct.

4.2.4 Parallel for

The largest part of serial programs is consumed in iterative constructs like for or while loops.

Parallelizing such constructs is expected to lead to significant performance optimizations. In par-

ticular, parallelization of for-loops has attracted vivid research and technological interest during

the last decades. This is due to the fact that for-loops are ubiquitous in time-consuming serial

programs (especially in algorithms with regular computations on matrices and computational



30

graph g ;
source node s ; // source node

// each node execu t e s a d i f f e r e n t f unc t i on body
node a ( g , body A ( ) ) ;
node b( g , body B ( ) ) ;
node c ( g , body C ( ) ) ;
node d( g , body D ( ) ) ;
node e ( g , body E ( ) ) ;
node f ( g , body F ( ) ) ;
node h( g , body H ( ) ) ;
node i ( g , body I ( ) ) ;
node j ( g , body J ( ) ) ;

// crea t e edges
make edge ( s , a ) ;
make edge ( s , b ) ;
make edge ( s , c ) ;
make edge ( a , d ) ;
make edge ( b , e ) ;
make edge ( c , f ) ;
make edge ( d , h ) ;
make edge ( e , h ) ;
make edge ( f , i ) ;
make edge ( h , j ) ;
make edge ( i , j ) ;

s . s t a r t ( ) ; // s t a r t p a r a l l e l e xecu t i on o f t a s k graph
g . w a i t f o r a l l ( ) ; // wai t f o r a l l to complete

Figure 4.6: Pseudocode for the creation and execution of a task graph.

grids) and are rather easy to handle either at compiler or at run-time. In addition, the paral-

lelization of for-loops can be applied directly on serial code, bypassing to a large extend most

of the effort-consuming steps in design and implementation. For these reasons languages and

libraries for parallel computing (e.g. OpenMP and Cilk) support the parallel for construct that

translate a serial loop to a parallel one, i.e. all iterations of the loop are considered independent

and distributed to the executing threads in a proper way. Figure 4.8 shows the pseudocode for

the parallel matrix-vector multiplication using parallel-for.

In its basic functionality, the parallel-for construct can be considered as a syntactic sugar

that simplifies the SPMD style of Figure 4.4, performing statically a source-to-source translation.

However, parallel-for constructs can become more powerful by supporting dynamic scheduling

of iterations to threads to achieve load balancing, or handling each iteration of the loop as a

separate task and schedule it using a more sophisticated task scheduler (utilizing in this way the

available parallel slack).

However, one needs to be extremely cautious with the use of the parallel-for construct. It

is up to the programmer to decide whether a for-loop is parallel, i.e. all its iterations can be

legally executed independently. The research work on parallelizing compilers has provided a wide

theory to aid towards proving that a loop is parallel. In typical cases, however, the programmer

is able to decide whether a loop is parallel or not by simple inspection. If, nevertheless, the



31 SA B CD E FH IJ
Figure 4.7: Task graph

f o ra l l ( i =0; i<N; i++)
for ( j =0; j<N; j++)

y [ i ]+= A[ i ] [ j ]∗ x [ j ] ;

Figure 4.8: Code segment for data parallel matrix-vector multiplication using the parallel for
construct.

programmer is uncertain then he/she should act conservatively and leave the for-loop executed

serially in order to preserve the original semantics of the application.

4.3 Languages, libraries and tools

4.3.1 POSIX Threads (Pthreads)

POSIX Threads, usually referred to as Pthreads, is a POSIX standard for threads that defines an

API for creating and manipulating threads. Implementations of the API are available on many

Unix-like POSIX-conformant operating systems. Programming with Pthreads is very similar to

system programming, using low-level system calls provided by the operating system. Pthreads

programs follow the shared address space programming model, making use of the fork/join

constructs. The entity that is manipulated is the thread. Assigning tasks to threads is the pro-

grammer’s responsibility. The library provides functions to create, join and synchronize threads.

Pthreads provide a powerful, low-level mechanism for parallel processing in shared memory plat-

forms, and they grant full control to the programmer. On the other hand, programming the

Pthreads is quite counter productive.

4.3.2 OpenMP

OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory multi-

processing programming in C, C++, and Fortran, on most processor architectures and operating

systems. It consists of a set of compiler directives, library routines, and environment variables



32

that influence run-time behavior. OpenMP follows the shared address space programming model

and supports the SPMD, parallel for, and fork/join parallel constructs. OpenMP is a very pop-

ular API that greatly simplifies parallel programming for shared memory systems. OpenMP

directives can be easily inserted in serial programs to inject parallelism in a very productive way.

The OpenMP 3.0 standard released in 2008 provides support for irregular parallelism with the

creation and manipulation of tasks.

4.3.3 Cilk

The Cilk language is an extension of C for supporting shared-memory parallel programming fol-

lowing the fork-join model. The language provides two basic keywords for expressing parallelism

within a program, spawn and sync; the former is used to indicate procedures that can be executed

in parallel, and the latter provides barrier synchronization for previously spawned procedures.

At the low level, the Cilk runtime generates and manipulates parallel tasks, employing task

stealing as a key mechanism for dynamically balancing the load across processors. A common

parallelism pattern found in many Cilk programs is that of recursive parallelization, where a

problem is recursively subdivided into smaller, potentially parallel sub-problems. Under certain

occasions, this feature can facilitate the development of cache-oblivious parallel algorithms. Cilk

has been developed since 1994 at the MIT Laboratory for Computer Science. Its commercial

version supports both C and C++ and is distributed by Intel under the name Intel Cilk Plus.

4.3.4 Threading Building Blocks

Threading Building Blocks (TBBs) is a C++ template library developed by Intel for writing

multithreaded programs. Much like the serial algorithms found in C++ Standard Template

Library (STL), TBBs provide a rich set of algorithmic skeletons for expressing parallelism at dif-

ferent forms and levels. Typical constructs are the parallel for, parallel reduce and parallel scan

algorithms. Additionally, the library supports more advanced structures (e.g. classes for ex-

pressing pipeline parallelism and flow graphs), concurrent data structures, as well as a low-level

tasking interface. At its heart, the TBBs runtime system manipulates tasks, and adopts Cilk’s

major concepts for dealing with load balancing and locality, i.e. task stealing and recursion. Un-

like Cilk, the use of templates and function objects make it possible to write parallel programs

without special compiler support. For example, one can transform an STL for each loop into a

parallel one by simply replacing it with the parallel for construct.

4.3.5 Java threads

The performance available from current implementations of Java is not as good as that of pro-

gramming languages more typically used in high-performance computing. However, the ubiquity

and portability of Java make it an important platform. Java supports the creation of differ-

ent threads in a shared address space model. The language also provides a large number of

mechanisms to orchestrate synchronized access to shared data.

4.3.6 Message passing interface (MPI)

The Message Passing Interface (MPI) is a standardized and portable library designed by a group

of researchers from academia and industry to function on a wide variety of parallel computers.



33

As evident by its name, MPI follows the message-passing programming model, and is extensively

used for parallel programming. In fact, the vast majority of large scale enterprise simulations

running in supercomputers are implemented with MPI. The standard defines the syntax and

semantics of a core of library routines useful to a wide range of users writing portable message-

passing programs in Fortran, C and C++. Several well-tested and efficient implementations of

MPI include some that are free and in the public domain.

MPI programs follow the SPMD style. MPI processes are generated in various processing

nodes of a parallel platform, start their autonomous execution on distributed data and com-

municate explicitly with messages. MPI supports a large number of communication primitives

(point-to-point and collective), and a number of routines to manage processes, organize them

in logical groups and topologies etc. Originally in its first standard, MPI supported only static

generation of processes at the beginning of the program execution. To support more irregular

and dynamic parallelism the MPI 2.0 standard included dynamic process management. In addi-

tion, the MPI 2.0 standard supports one-sided communication and parallel I/O for concurrent,

efficient access to shared files.

4.3.7 PGAS languages

Partitioned global address space (PGAS) parallel languages assume a global memory address

space that is logically partitioned and a portion of it is local to each processor. The novelty of

PGAS is that the portions of the shared memory space may have an affinity for a particular

thread, thereby exploiting locality of reference. The PGAS model is the basis of Unified Parallel

C, Co-array Fortran, Titanium, Fortress, Chapel and X10. The goal here is to keep the best

of both worlds: the scalability of the message-passing model and the productivity of the shared

address space model.



34



Chapter 5

Programming for Shared Memory

In this chapter we discuss issues related to the implementation of parallel programs on shared

memory platforms. As mentioned earlier, shared memory architectures provide a common view

of the address space to the processors and thus easily support shared address space as a pro-

gramming model. Common access to shared data is a powerful programming feature that greatly

simplifies parallel programming. However, the programmer needs to keep in mind that in sev-

eral cases this simplicity comes at the cost of performance. To develop efficient programs in

shared-memory architectures, the programmer needs to understand several hardware and ar-

chitectural features that affect performance. We briefly review some hardware concepts in the

next paragraph and continue with a discussion on performance issues affecting data sharing and

synchronization.

5.1 Hardware concepts

In Figure 1.3(a) we showed a simple organization of a shared memory platform. Based on the

performance improvements of caches on the execution of serial programs, computer architects

have included local caches in each processor of a shared memory system as well. This design

choice would not affect program execution, if serial programs were to be scheduled on the system

only. However, when parallel execution is concerned, then in the existence of caches several

copies of data may exist in main memory and in the local caches of the processors. Without any

additional support, processors would have an inconsistent view of shared data, a fact that would

greatly limit the power of such platforms, that being the ability to provide a common view of

memory space. Cache coherence is intended to manage data conflicts and maintain consistency

between cache and memory.

Cache coherence defines the behavior of reads and writes to the same memory location. The

coherence of caches is obtained if the following conditions are met:

1. A read made by a processor P to a location X that follows a write by the same processor

P to X, with no writes of X by another processor occurring between the write and the

read instructions made by P, X must always return the value written by P. This condi-

tion is related with the program order preservation, and this must be achieved even in

monoprocessed architectures.

2. A read made by a processor P1 to location X that follows a write by another processor

35



36

P2 to X must return the written value made by P2 if no other writes to X made by any

processor occur between the two accesses. This condition defines the concept of coherent

view of memory. If processors can read the same old value after the write made by P2, we

can say that the memory is incoherent.

3. Writes to the same location must be sequenced. In other words, if location X received two

different values A and B, in this order, by any two processors, the processors can never

read location X as B and then read it as A. The location X must be seen with values A

and B in that order.

Caches in modern multiprocessor systems are augmented with special hardware that keeps

the cache blocks coherent. This is done by the implementation of a cache coherence protocol

which maintains a Finite State Machine for each cache block. Bus traffic is snooped and cache

blocks’ states change according to the protocol. Figure 5.1 shows the state transitions and the

consequent bus transactions in the MESI cache coherence protocol. The responsibility of any

cache coherence protocol is to ensure that all the processors’ caches share data from system

memory properly and do not use stale data that has been modified in another processor’s cache.

In other words, the protocol makes it possible for all processors to work like they are all connected

directly to a single, globally shared memory module, while actually working with caches and

multiple cached copies of data. This abstraction of shared memory provided by the protocol

eases parallel programming significantly, since the parallel threads of an application can refer

directly to memory locations (just as in sequential programs), but may hide serious performance

pitfalls.

Figure 5.1: State transitions and bus transactions in the MESI cache coherence protocol



37

5.2 Data sharing

Excessive read-write sharing between processors on a centralized data structure can introduce

a large amount of traffic on the bus. This is because on every write operation a processor has

to invalidate all existing copies of the cache line holding the data structure, and on subsequent

reads from other processors the modified cache line has to be transferred to their caches. This

”ping-pong” effect usually introduces large performance penalties, not only because of the actual

data transfers but also due to the large amount of protocol control messages being exchanged.

The cost associated with each such read or write operation can be many times larger than an

ordinary read or write to private data, and increases with the number of sharers, the distance

(in terms of processor topology) of the requestors, the frequency of read-write operations, etc.

Typical examples of variables being heavily shared across processors under a read-write pattern

are reduction and synchronization variables.

Another common issue is when threads on different processors modify variables that happen

to reside on the same cache line. This problem is known as false sharing, because it occurs un-

intentionally (i.e. threads do not actually access the same variable), but has all the performance

drawbacks of true readwrite sharing discussed above. While the programmer cannot usually do

many things to avoid or eliminate true sharing at the application level, he can do much more to

remedy false sharing, as we will discuss in following sections.

Interesting implications in data sharing occur in modern multicore platforms that have a typ-

ical organization as shown in Figure 5.2. Note that this organization may couple with both UMA

and NUMA memory organizations that were discussed in Chapter 1. A multicore system consists

of one or more processors (often called packages) that are based on a multicore architecture, thus

incorporating more than one processing cores in each package. Typically, there may also exist

some form of cache sharing between the cores within one package (intra package cache sharing is

not common among multicore platforms). Especially in the existence of a NUMA technology to

access main memory, the placement of threads in such platform organization may significantly

affect performance.

Consider the scenario where two threads are placed on the same package and additionally

share some level of cache memory. Depending on the memory access patterns this sharing can be

constructive, because for example the two threads read the same data structures that fit in the

shared cache and actually one loads data the will be used by the other, or destructive, because

the one thread’s memory accesses evict from the cache the other thread’s data (due to conflict or

capacity misses) dramatically increasing the overall miss rate. Now consider the scenario where

two threads are places on different packages and share some read-only data structures. The

execution may end up in an excessive cache-to-cache data transfer between the two packages,

which can potentially create hotspots in the memory bus and degrade performance.

Overall, data sharing in a shared memory architecture is well supported providing a powerful

programming mechanism. However, architectural details may impose subtle overheads to the

execution that are not easily traced by the programmer. One needs to keep in mind that, as

in several other aspects of computer science, programming convenience may come at the cost

of performance overhead. As multicore architectures will become more complex, with larger

number of cores, more sophisticated data access channels and deeper cache hierarchies, the pro-

grammer may need to drastically reduce the amount of data that need to be shared and resort

to programming techniques that are enforced by distributed-memory platforms like data distri-



38

Figure 5.2: A typical organization of modern multicore platforms

bution and replication. In the next paragraph we discuss another important aspect with data

sharing, that of synchronization, which may also impose significant overhead to the execution of

an application.

5.3 Synchronization

Parallel applications use locks to synchronize entry to program regions where access should be

atomic, usually to protect some shared resource from concurrent updates, such as a shared

variable or an output file. Such regions are known as critical sections. While a thread is inside

a critical section no other thread can enter, implying that all threads requesting access should

wait. As a result the execution of critical sections is serialized. There are many parameters of

lock usage and implementation that can affect performance of a parallel application. Below we

mention the most important of them:

• critical section extent : Since critical sections constitute a serialization point in parallel

execution, they should be as small as possible to reduce the amount of time other threads

sit idle waiting to enter the critical section and to therefore allow the application to scale

efficiently.

• lock contention: If there is high demand among threads for accessing the resource protected

by a critical section, there could be simultaneously many threads contending for the corre-

sponding lock. In the best case, the waiting time for a thread could scale linearly with the

total number of competing threads. In practice, however, things can be even worse, as the



39

period a thread spends waiting can introduce significant coherence traffic due to read-write

sharing on the lock variable.

• locking overhead : The operations to acquire and release a lock entail by themselves some

measurable overhead. In general, there are two main classes of lock implementations with

different characteristics with respect to cost and scalability: user-level spinning and OS-

level blocking. In the first case, threads poll continuously the value of a user-level lock

variable until it appears to be free. Spin-based locks are efficient and thus preferable for

small thread counts (e.g. less than 10) and short critical sections. Because they operate

entirely at user space, the acquire and release operations have low latency and are easier to

implement. However, in critical sections which incur long waiting times (i.e., large extent

and/or high contention) they can introduce notable coherence traffic. The same happens

also for large thread counts. In these cases spin-based locks do not scale well, and OS-

based ones may perform better. A thread that uses an OS-based lock goes to sleep in

kernel mode if it fails to acquire the lock. This action, as well as the action of waking up a

sleeping thread comes at the cost of executing a system call. It is harder to implement, it

penalizes short critical sections (e.g., critical sections with execution time almost equal or

less than the invocation time of acquire/release operations) but it is much more efficient

and scalable for long-term waiting and large thread counts, since waiters do not consume

resources (CPU, memory).

• lock granularity : The granularity is a measure of the amount of data the lock is protect-

ing. In many cases, the programmer can have the freedom of choice on how to implement

synchronized access on a data structure between coarse-grain schemes and fine-grain ones.

In the former, a small number of locks is utilized to protect large segments in the data

structure. This approach is easy in its conception and implementation, but entails a lot of

performance drawbacks, i.e. large critical sections and increased likelihood for contention.

Conversely, finegrain schemes use many locks to protect small pieces of data. They are

usually more difficult and error-prone to program, but yield smaller critical sections with

reduced contention. However, such small critical sections, even completely uncontended,

can introduce overhead in two ways: first, because of the additional bus traffic due to the

large number of lock variables, and second, because of the increased locking overhead asso-

ciated with each memory operation on the protected data structure (relative to a coarser-

grain scheme). Finding the best granularity level is not trivial and requires considering all

the aforementioned factors.

5.4 Memory bandwidth saturation

Memory access can still become a serious bottleneck even when threads of a parallel application

work mostly on private data, without incurring notable interprocessor traffic. This is particularly

true for memory-intensive parallel applications with large working sets (e.g. streaming applica-

tions), which may suffer from memory bandwidth saturation as more threads are introduced. In

such cases, the application will not probably scale as expected, however efficiently parallelized it

is, and the performance will be rather poor.

Each socket in the platform has a maximum bandwidth to memory which is shared by all pro-

cessing elements it encompasses (cores, hardware threads, etc.). Depending on the architecture,



40

even multiple sockets might share access to main memory through a common bus. Given that

even under perfect conditions (e.g. full software optimizations) the memory subsystem cannot

fulfill a single thread’s requests without having its core stalled, we can imagine the amount of

pressure put on memory bus and how quickly it can be saturated when the number of cores

increases. This is why the processor industry strives to provide improved bus speeds or alternate

memory paths on each new processor generation (e.g. through Non-Uniform Memory Access

designs), but unfortunately these enhancements have never been enough to make the memory

subsystem keep pace with the increasing core counts.



Chapter 6

Programming for Distributed

Memory

6.1 Hardware concepts

Distributed memory are the most generic parallel execution platforms. As shown in Figures 1.4

and 1.5 distributed memory systems are built by connecting single or multicore nodes through an

interconnection network. Modern distributed memory systems are typically based on multicore

nodes (Figure 1.5). This architectural approach has two significant effects on the implementation

and execution of parallel applications. First, the system does not support a global, common view

of the program’s address space, and thus the programmer needs to implement parallel programs

in a fragmented way, using the message-passing model (e.g. with MPI). Each parallel process has

its own, local address space and thus data need to be distributed among the physical memories

of participating nodes1. Second, despite the great advancements in interconnect technology, data

transfers between the system nodes are time-consuming and thus, communication is the major

bottleneck in large classes of applications. Similar to the well known CPU-memory gap, there is

also a CPU-interconnect gap. In the following paragraphs we further discuss these issues together

with the implications created by resource sharing in distributed memory systems with multicore

nodes.

6.2 Data distribution

There exist two options when partitioning data for distributed memory: data distribution and

data replication. Replicating read-only data eases programming but may create heavy and

possibly unnecessary initialization traffic, and increase the total working set during execution,

with a negative effect on cache utilization and memory traffic. A good compromise would be

to replicate “small” read-only data structures and distribute larger ones, ensuring that each

node maintains its read set locally. Imposing communication traffic for read-only data during

application execution should be avoided, unless absolutely necessary (e.g. the data structure

does not fit in main memory).

1Current parallel language trends try to break this paradigm by implementing partitioned, global address space
(PGAS).

41



42

More critical decisions need to be taken for data that are both read and written during

application execution. If the read and write operations are performed by different processes, this

creates a need for inter-process communication. Typically, data are allocated to the writer’s main

memory (computer-owns rule), so we need to insert communication primitives that implement

data sending from the writer towards the reader. The key goal in this case is to allocate write

sets in a way that inter-process communication is minimized.

A simple example of how data distribution policies affect the communication is demonstrated

in Figure 6.1. In this case a two dimensional matrix A[L][2L] is distributed among four processes

by row (on the left) or by column (on the right). The matrix is used to store in-place computations

where each matrix element is iteratively updated using the values of its four neighbours. This

is a typical computation in computational science to solve partial differential equations. This

form of computations creates the “nearest neighbour” communication pattern. In the case where

data are distributed by rows this creates data exchange upwards and downwards, while in the

case where data are distributed by columns this creates data exchange towards left and right.

Communication data are designated in grey. Clearly, the first approach is less communication

efficient, since it leads to double the amount of data that need to be exchanged (12L vs. 6L).

Figure 6.1: Difference in communication volume for two data distribution schemes.

6.3 Communication

Minimizing the communication overhead should be one of the primary concerns when designing

and implementing a parallel application for distributed memory. This effort affects all steps

in the development process, from the highest algorithmic level, where one can select between

algorithms that reduce or even eliminate communication, to the level of implementation and

system tuning. The most important techniques to mitigate the communication overhead are as

follows:

• Bulk communication: Recall that the communication time Tcomm for a message with size

m is Tcomm = ts + mtw where ts is the startup time and tw the per-word transfer time.

If we are able to coalesce a number of messages into a single message, then we are able

to drastically reduce the effect of the startup communication latency. This is especially

critical in commodity interconnection networks, where the startup latencies are quite high.

• Point-to-point vs. collective: Collective communication is a neat approach that can greatly

facilitate communication between parallel processes. However, this mode of communication

should be used sparingly and only when absolutely necessary, since it is very time consuming



43

and not scalable. In modern supercomputing platforms with thousands or even millions of

cores, broadcasting information even with the most efficient logarithmic path, may lead to

significant performance overheads.

• Communication to computation overlapping : The idea behind this approach is to per-

form computation and communication in parallel. Figure 6.2 shows the standard mode

of communication, where the process communicates and computes in a serialized man-

ner. To overlap computation and communication we can initiate communication before

computation and finalize it after the completion of computation, as shown in Figure 6.3.

However, two important issues need to be pointed out: first, in the majority of the cases

this overlapping is not straightforward since the two operations may be interdependent,

i.e. the computations need the provided by the communication operation. In this case

the algorithm needs some redesign to enable this overlapping. Second, this offloading of

communication implies that the operations involved in the communication function are of-

floaded to some other piece of hardware. The typical case is that a sophisticated Network

Interface Card (NIC) with a special network processor can undertake the communication

operations. In an alternative scenario, communication can be offloaded to a different core

in a multicore platform.

while (1){
communicate ( ) ;
compute ( ) ;

}

Figure 6.2: Standard mix of computation and communication.

while (1){
i n i t i a l i z e c ommun i c a t i on ( ) ;
compute ( ) ;
f i na l i z e commun i ca t i on ( ) ;

}

Figure 6.3: Overlapping computation with communication

6.4 Resource sharing

Modern distributed memory systems follow the hybrid design, where multiple multicore nodes

are interconnected to build a scalable, large scale system (see Figure 1.5). In this architecture,

the memory hierarchy and the I/O bus are shared among the cores of each node. Recall from

previous discussions that CPU technology is advancing more rapidly than memory and inter-

connect technology, so these “slow” resources are being shared by a number of “fast” processing

cores. If the algorithm is not CPU intensive, but is rather memory of communication intensive,

then this sharing is expected to lead to reduced scalability when all cores a utilized. This issue is

expected to be more severe in the future, as CPU/memory and CPU/interconnect gaps increase

and the number of cores included within one node increases as well.

Figure 6.4 demonstrates a frequent performance behaviour of parallel applications when ex-

ecuted in hybrid platforms. In the chart we assume that the system constitutes of P nodes with



44Speedup
Figure 6.4: Reduced scalability due to resource sharing: as more cores within one node participate
in the execution, the scaling of the applications drops.

eight cores each. In the x-axis (logarithmic scale) we represent the number of cores (C) partic-

ipating in the execution, while in the y-axis we represent the achieved speedup. In the first P

cores, only one core per node is used. At this point additional processes are allocated cyclically

to gradually fill the whole system at 8P . We may observe that as more cores are activated in

each node, the scalability of the application drops, resulting in even performance degradation

due to resource contention. Depending on the memory intensity and the communication needs

of the application, the scalability of the algorithm may be even worse.

Resource sharing is a significant issue in modern HPC platforms. Poor resource utilization is

the main reason why extremely powerful supercomputers may fail to deliver they high capacity

to user applications. In several cases, the combination of algorithm and underlying execution

platform, may pose hard limits to the upper bounds of the achieved performance. Current

research trends propose the drastic redesign of applications and system software in order to

effectively utilize the computing resources offered by existing and future systems. This redesign

may affect diverse applications from hand-held computers up to exascale supercomputers.


