Parallelizing the Floyd-Warshall Algorithm on Modern
Multicore Platforms: Lessons Learned

Students of the Parallel Processing Systems course
School of Electrical & Computer Engineering
National Technical University of Athens

Abstract—The well known Floyd-Warshall (FW) algorithm solves the
all-pairs shortest path problem on directed graphs. In this work, we
parallelize the standard FW and two cache-friendly versions using three
different parallel programming environments, namely OpenMP, Cilk and
Threading Building Blocks. We experimented with multiple alternative
parallel versions, in order to gain insight on the execution behavior
of the parallelized algorithms on modern multicore platforms, and on
the programmability of the aforementioned environments. We were able
to significantly accelerate FW performance utilizing the full capacity
provided by the multicore architectures used.

I. INTRODUCTION

Since Moore firstly formulated his famous "Moore’s Law” in
the mid-60’s, there was a rapid and massive evolution of computer
hardware. From the introduction of integrated circuits with thousands
of transistors on a single chip and the use of cache memory, to
the implementation and maintenance of enormous supercomputers
and multicore systems, there is a vast number of technological
improvements and ground-breaking ideas that made the computer
platform what we know today.

Computer architecture and its numerous pioneers have played
important role in this evolution. Firstly, Von Neumann defined his
classical Harvard model and proposed that a single storage structure
for holding both instructions and data would be both feasible and effi-
cient. Later, floating point arithmetic emerged and the first operating
systems appeared. Progressively, main memory became bigger and
faster by using more levels of cache and sophisticated architectures.
Nowadays, computer scientists are pushing computers’ performance
even further. This led to the realization that clock frequency has
already reached its peak and thus new optimizations are required.
So, they focused on designing systems with multiple cores, leading
to today’s supercomputers with thousands of cores and hardware
threads.

Clearly, the answers to many of the issues arising is parallel
computing i.e., accelerating applications by using multiple cores,
based on the notion that larger inputs may be divided into disjoint
parts which may be solved almost independently. Once all these
independent parts are solved, one must subsequently combine their
intermediate answers. The key-observation is that we may parallelize
those independent works by assigning each sub-problem to a different
processor or thread. There are two main policies or parallelizing
strategies: data centric and task centric. As the names indicate, the
first concentrates on the computation of the data, meaning that each
thread (or processor) contributes to the computation of a subset of the
original data, whereas the second strategy tries to split the necessary
work and assign it to all available processors.

To those familiar with parallel programming, it is commonly
acknowledged that parallelizing applications is neither trivial, nor
straightforward. Several algorithms need to be redesigned from
scratch in order to be parallelized and effectively utilize vital system
resources such as cache memory. The contribution of this work is

the study of three alternative versions of the well known Floyd-
Warshall (FW) algorithm by using three different parallel program-
ming environments (namely OpenMP, Cilk and Threading-Building
Blocks), and moreover draw conclusions about the drawbacks and
the advantages of each of them, for sufficiently large input graphs.

The outline of this work is as follows: Section II presents informa-
tion about FW and its alternative implementations. Section III focuses
on the parallel programming environments used. The methodology of
the most successful parallel implementations of FW are presented in
Section IV. Experiments establishing the performance characteristics
of each implementation are given in Section V. Finally, Section VI
summarizes the conclusions drawn from this work.

II. BACKGROUND

The FW is a classic dynamic programming algorithm that solves
the all-pairs shortest path (APSP) problem on directed weighted
graphs G(V,E,w), where V. = {1,..,n} is a set of nodes,
E C VXV are the edges and w is a weight function £ — R. The
number of nodes is denoted by n and the number of edges by m.
The output of the algorithm is typically in tabular form: The entry
in ¢’s row and j’s column is the weight of the shortest path between
nodes i and j. FW runs in ©(V®) time and is also used to compute
the transitive closure of a graph. FW can be applied to graphs with
negative weight edges to determine whether the graph has negative
cycles or not [9]. FW is used in many real-life applications, such
as bioinformatics for clustering correlated genes [6],[8], in database
systems for optimizing SQL queries [7] or in data mining [2]. The
standard FW algorithm in shown in Alg. 1.

Algorithm 1: The Floyd-Warshall (FW) algorithm

1: for k=1—n do
2: forj=1—ndo

3 for i =1—n do

4: Agliy §] = min(Ag—1[i, k] + Ag—1[k, j], Ak—1[i, 5])
5: end for

6 end for

7: end for

Regarding its execution behavior, FW is memory bound since,
in order to compute the Aj matrix, we need first to compute the
Aj_1 matrix. Two alternative implementations of FW have been
proposed in order to improve its cache performance, the first based
on recursion [3] and the second based on tiling [8]. The recursive
implementation (FW_SR) performs automatic blocking at every level
of the memory hierarchy. The pseudo-code of FW_SR is shown
in Alg. 2. The initial call to the recursive algorithm passes the
entire input matrix as each argument. Subsequent recursive calls pass
quadrants of the input arguments as shown in Fig. 1. At any level of
recursion, the arguments A, B and C point to the same or different
subsets of the input matrix. The recursive FW algorithm contains
certain computational dependencies which require a specific ordering
of subsequent recursive calls. Note that the first four recursive calls

operate on the matrix from the top left quadrant to the bottom right
quadrant and the last four calls in a reverse order of the first four calls.
By tweaking the size of the base case according to cache memory
size, we can effectively reduce the processor-memory traffic by a
factor of B, where B is v/ cachesize, achieving the optimal lower
bound on processor-memory traffic [8].

Fig. 1. FW_SR. The matrix divided into 4 submatrixes with names Aj1,
A12, Ao1, Az

Algorithm 2: Recursive FW (FW_SR)

1: FWI (A, B, ©C)
2:for k=1—>ndo

3: forj=1—ndo

4: for i =1 — n do

5: Alil[jl = min(A[i](j], BHIKI+CIKI[D;
6: end for

7. end for

8: end for

9: FWR (A, B, O)

10: if base case then

11: FWI (A, B, ©)

12: else

13: FWR (All, B11, C11);
14: FWR (Al2, Bll, C12);
15: FWR (A21, B21, C11);
16: FWR (A22, B21, C12);
17: FWR (A22, B21, C12);
18: FWR (A21, B21, C11);
19: FWR (A12, B11, C12);
20: FWR (All, BI11, C11);
21: end if

On the contrary, tiling is a commonly used technique to achieve
higher data reuse in looped code. The tiled version of FW
(FW_TILED) works as follows: Initially, the input matrix is divided
into tiles of size B. During the k-th block iteration, the algorithm
updates the k-th diagonal tile (black, CR tile in Figure 2) first, then
it updates the tiles in the remainder of the k-th block row and block
column (grey, E, W, N, S tiles) and finally it updates the remaining
tiles of the matrix (white, NE, NW, SE, SW tiles). This way, all
dependencies are satisfied. FW_TILED reduces processor-memory
traffic by a factor of B (where B is the order of the cache size) and
is asymptotically optimal among all implementations with respect to
processor-memory traffic [8§]. FW_TILED is shown in Alg. 3.

Algorithm 3: Tiled FW (FW_TILED)

1: for Kk =0 — n step B do
FW(CR);

3 for tile in E, W, N, S do

4 FW(tile);

5: end for

6: for tile in NE, NW, SE, SW do
7.

8

9:

FW(tile);
end for
end for

NW|NW] N |NE
d NWINW] N |NE
wilw E
SW|sSw| S | SE

FW_TILED. The matrix is divided into tiles of size B.

Fig. 2.
III. PARALLEL PROGRAMMING ENVIRONMENTS

In this section we briefly describe the parallel programming
environments used in our experimentation and outline their most
important characteristics. In order to illustrate the syntax used by
each tool, we implement a standard for-loop and a Fibonacci imple-
mentation in all three platforms. The standard serial implementations
are provided in code listings 1 and 2.

for (i=0; i!=100; ++i) Foo(a[i]);

Listing 1. Serial for-loop example

if (n==1) return O;
if (n==2) return 1;
return fibonaci(n—1) + fibonaci(n—2);

Listing 2. Code snippet from serial Fibonacci calculation

A. OpenMP

OpenMP (Open Multi-Processing) is an application programming
interface (API) for parallel programming intended to work on shared-
memory architectures. More specifically, it is a set of compiler
directives, library routines and environmental variables, which in-
fluence run-time behaviour. OpenMP enables parallel programming
in various languages, such as C, C++ and FORTRAN and runs on
most operating systems. The current version of OpenMP is 3.1 and
was released in 2011 [11].

The OpenMP API uses the fork-join model of parallel execution.
Multiple threads perform tasks defined implicitly or explicitly by
OpenMP directives. All OpenMP applications begin as a single thread
of execution, called the initial thread. The initial thread executes
sequentially, until it encounters a parallel construct. At that point,
this thread creates a group of itself and zero or more additional
threads and becomes the master thread of the new group. Each thread
executes the commands included in the parallel region, and their
execution may be differentiated, according to additional directives
provided by the programmer. At the end of the parallel region, all
threads are synchronized.

The runtime environment is responsible for effectively scheduling
threads. Each thread, receives a unique id, which differentiates it
during execution. Scheduling is performed according to memory
usage, machine load and other factors and may be adjusted by altering
environmental variables. In terms of memory usage, most variables in
OpenMP code are visible to all threads by default. However, OpenMP
provides a variety of options for data management, such as a thread-
private memory and private variables, as well as multiple ways of
passing values between sequential and parallel regions. Additionally,
recent OpenMP implementations introduced the concept of fasks,
as a solution for parallelizing applications that produce dynamic
workloads. Thus, OpenMP is enriched with a flexible model for
irregular parallelism, providing parallel while loops and recursive
data structures. The parallel_for construct on OpenMP along with
Fibonacci implementation, are shown in code listings 3 and 4.

#ipragma omp parallel for
for (int i=0; i!=100; ++i) Foo(al[i]);

Listing 3. OpenMP parallel for

if (n<16) return
else {
#pragma omp task shared(x)
x = RecFib(n—1);
#pragma omp task shared(y)
y = RecFib(n—-2);
#pragma omp taskwait
return x+y;

serialFibonacci(n);

Listing 4. OpenMP code snippet for parallel Fibonacci

B. Cilk

Cilk is a linguistic and runtime technology for algorithmic mul-
tithreaded programming developed at MIT. The philosophy behind
Cilk is that programmers should focus on structuring their program to
expose parallelism and exploit locality and Cilk’s runtime system will
take care of efficiently scheduling threads on a given platform. Cilk’s
runtime system is capable of handling issues, such as load balancing,
synchronization and communication protocols. Cilk is algorithmic
since its runtime system guarantees efficient and predictable perfor-
mance [5].

Cilk is a faithful extension of the C programming language that
adds three new keywords for parallel execution and synchronization.
The keyword cilk identifies a Cilk procedure definition, which is
the parallel analogue of a C function and consists of a list of
arguments and a function body. A Cilk procedure may also spawn
subprocedures in parallel and synchronize them upon completion.
Specifically, one may create new Cilk procedures (tasks) by using the
keyword spawn. When a Cilk procedure is spawned, its parent thread
continues to execute in parallel with the child, and the Cilk scheduler
is responsible for monitoring all subsequent spawned procedures. The
sync statement is used to define local barriers, in the sense that when
sync is used the parent procedure suspends and does not resume until
all its children complete their work. Listing 5 presents a recursive
implementation of the Fibonacci function in Cilk.

C. Threading Building Blocks

Threading Building Blocks (TBB) is a programming tool, initially
developed by Intel in 2004, which takes advantage of multi-core
processors over shared memory platforms. TBBs is not a new pro-
gramming language and therefore, does not require any customized
compilers. Consequently, it is portable to several operating systems
and architectures. TBB is actually a C++ template library which
provides algorithm templates and data structures for writing parallel
applications. Intel launched version 1.0 in 2006 and version 2.0 on
July, 2007 when the product actually became open source. As of
version 2.2 TBBs supports lambda expressions, a new feature of C++
that enables the use of anonymous functions.

TBBs treats operations as tasks and distributes them to cores
using two basic techniques; recursive splitting and task stealing. The
library recursively splits the load to small chunks until a minimum
limit (Grain-size) is reached. Tasks are allocated to individual cores,
which execute them depth-first in order to optimize cache memory
use. Additionally, idle cores (i.e, with no work assigned to their
queues) ’steal’ tasks from busy cores and either execute them or
further split them. The work stealing technique is effectively used
for load balancing and is implemented breadth-first in order to
maximize parallelism. TBBs are using tasks instead of threads,
because tasks are light-weight and therefore problems arising from
creating and synchronizing threads are avoided. TBBs provide a
wide variety of algorithm templates and data structures. Some of
them are task_group, parallel_for, parallel_reduce, parallel_scan and
parallel_pipeline.

Listings 7 and 8 show a parallel_for implementation for TBBs.
Initially we have to define a new class ApplyFoo and construct a
function object which contains the work to be executed in every loop
subspace.

if (n<16) return serialFibonacci(n);

else {
x = spawn fib (n—1);
y = spawn fib (n—2);
sync;

return (x+y);

}

class ApplyFoo {
float =const my_a;
public: ApplyFoo(float =a) : my_a(a) {}
void operator () (const blocked_range<int>& r)
const {
float =a=my_a;
for (int i=r.begin();
Foo(al[il]);

il=r.end (); ++1i)

Listing 5. Cilk code snippet for parallel Fibonacci

Since July 2009, Cilk language and its trademarks has been ac-
quired by Intel Corporation. Intel advanced the technology further and
released a commercial implementation along with Intel’s compilers,
featuring additional data parallel constructs with the name Intel Cilk
Plus [4] (Sep. 2010). Cilk Plus adds array extensions, eliminating the
need for several keywords and adding a new one. Intel Cilk Plus uses
only three keywords (cilk_spawn, cilk_sync and cilk_for) while also
adding the ability to spawn function involved in reduction operations.
Listing 6 shown the parallel_for construct supported by Cilk Plus.
In August 2011, Intel has announced that it is maintaining Cilk Plus
as a branch of gcc 4.7. The runtime library is available dual-licensed,
including a BSD-3 license. Cilk Plus [5] provides additional parallel
programming features like the inlet and abort keywords.

Listing 7. TBB parallel for

In order to use the new class ApplyFoo in the a function:

parallel_for (blocked_range<int >(0,100), ApplyFoo(a));

cilk_for(int i=0; i!=100; ++i) foo(a[i]);

Listing 6. Cilk Plus parallel for

Listing 8. TBB parallel for usage

In the previous example, blocked_range<int> is a class that indi-
cates an one dimensional range over the type int. Additionally, TBBs
provide blocked_range2D for two-dimensional ranges, in order to
allow programmers to define their own block range classes. Further-
more parallel_for constructs may have an optional argument, namely
the partitioner, which controls splitting. The simple_partitioner uses
recursive binary splitting, the affinity_partitioner uses ranges which
optimize the cache locality and auto_partitioner uses a heuristic
method to define the right range.

Finally, Listing 9 shows the combination of lambda expressions
and fask_group construct in the Fibonacci algorithm implementation.
In this function, if n > 16, a tbb task group is initialized and the
two recursive calls of ParallelFib are assigned to two new tasks that
are generated by the g.run method. The parameter [&] indicates that

variables X, y are passed by reference. Method g.waif() synchronizes
the two tasks.

Threading Building Blocks are also compatible with other thread-
ing packages, meaning that C++ applications may contain alternately
TBBs structures, OpenMP directives or Cilk code. TBBs promise
high performance and scalable applications and are especially focused
on programmers who are not thread experts, since the library uses
inherently high-level programming logic.

After our analysis of the three different FW algorithms and the
extracted guidelines for their parallelization presented above, our
research group split into three teams, in order to experiment with
the proposed parallel versions of the FW algorithm, on the platforms
environments presented in Sec. IIl. In the following paragraphs
we discuss the parallel implementations that provided interesting
performance results.

if (n<16) return
else {
tbb :: task_group
g.run([&] { x=
g.run([&] { y=
g.wait ();
return x+y;

serialFibonacci(n);

ParallelFib (n—2);

>

g3
ParallelFib(n—1);});
P

}

for (k=0; k<n; k++)

FW(CR);

foreach (tile in E, W, N, S)
task_spawn FW(tile);

synchronize ();

foreach (tile in NE, NW, SE, SW)
task_spawn FW(tile);

synchronize ();

Listing 9. TBB code snippet for parallel Fibonacci

IV. METHODOLOGY

In this section we present several parallel versions of FW, FW_SR
and FW_TILED. In the classic FW, one can easily notice, that
the nested ¢ and j for-loops are totally independent and therefore
parallelizable. A parallel_for construct, applied on the outer loop
of ¢ yields the first, straightforward parallelization of FW shown in
Listing 10.

for (k=0; k<n; k++)
parallel_for (i=0; i<n; i++)
for (int j=0; j<n; j++)
Ali][jl=min(A[i][j], A[i][k] + A[KI[jD)

Listing 10. Parallel FW with parallelized loop i

As far as the recursive FW is concerned, Fig. 1 shows that
the antidiagonal blocks A12 and A21 of the input matrix may be
computed in parallel. For this purpose, we implemented a task-centric
approach. Two parallel tasks are spawned (each of them executes
computations on the anti-diagonal A12 and A21 blocks) which must
be synchronized before continuing the execution of the remaining
blocks (Listing 11).

FW_SR(AI11);

task_spawn FW_SR(AI12);
task_spawn FW_SR(A21);
synchronize ();
FW_SR(A22);
FW_SR(A22);

task_spawn FW_SR(A21);
task_spawn FW_SR(A12);
synchronize ();
FW_SR(AI11);

Listing 11. Parallel FW_SR with tasks

The prospects of parallelizing the tiled FW algorithm have already
been implied by the analysis in Section II and Figure 2. At the k-
th iteration, after the central block is updated, all cross blocks (E,
W, S, N) may be executed concurrently, as their data-dependent NE,
NW and SE blocks have already been evaluated up to the (k-1)-th
iteration. Next, all exterior blocks may be executed concurrently, as
the formulation of the algorithm ensures that all data-dependencies
within the k-th iteration are satisfied. Listing 12 is an example of a
parallel implementation of the tiled version. At each iteration of the
outermost loop k, FW algorithm is executed on the current block. A
new task is spawned for each of the cross blocks. After those tasks
are synchronized, new tasks are spawned, one for each of the NW,
NE, SW and SE exterior blocks, and synchronized.

Listing 12. Parallel FW_TILED with tasks

A. OpenMP

As far as OpenMP is concerned, the versions implemented that
caught our attention were four. In the classic FW version, all iterations
of the i-loop can be performed totally in parallel. Using the directive
#pragma omp parallel for above the i-loop (Listing 10), the iterations
were distributed to a group of threads by one master thread. The
variables A, k were declared shared, whereas j was declared private,
since each thread uses a separate copy of this variable.

The recursive FW algorithm may be parallelized by applying the
#pragma omp task OpenMP directive, instead of using parallel for
loops, which led to poor performance for this particular algorithm. As
mentioned previously, some function calls need not wait for their turn
in the serial order, in order to take place (Listing 11). By placing the
directive #pragma omp task and embody the parallel calls, we create
a separate task for each call and place it in the parallel pool. After all
tasks are declared, each available thread *grabs’ a task from the task
pool in order to execute it. When all such tasks are completed, the
threads must synchronize (OpenMP directive taskwait) before moving
on to the rest of the program. Note that in the recursive FW, it was
more efficient to check the parallel pool - and grab idle threads from
it, the fewer possible times, in order to avoid the additional overhead
of creating new threads. Therefore, the use of #pragma omp parallel
was limited down to one, in the beginning of the code.

As for the tiled FW algorithm, the best parallel version required
the use of parallel for with dynamic scheduling, i.e., once a particular
thread finishes its loop iterations, it returns to get another one from
the iterations that are left - in each for-loop of the algorithm. Firstly,
we experimented on calculating all the chunks of the matrix, that
form the formerly mentioned cross, simultaneously, and afterwards
calculating the rest of the matrix, for each k iteration. The best results
were achieved when the calculation of the cross and the rest of
the matrix split into five and four parts respectively (Fig. 2). This
slight adjustment enabled us to parallelize the for-loops that appear
in the tiled FW algorithm, thus lowering the overhead of creating
more threads. Another worth mentioning parallel implementation of
the tiled FW version, used exclusively tasks. The directive #pragma
omp task is placed in each for-loop, and the variables involved, are
declared first private. This way, data is private to each thread, but is
initialized using the value of the variable using the same name from
the master thread. Although this version did not achieve very good
results, it was still compared with the rest, in the following sections.

Overall, despite the fact that several experimental measurements
had to be studied in order to find the best results for each parallel
version of the FW algorithm, once we understood the way OpenMP

operated in a lower level, it was quite easy to increase performance.
Consequently, it is obvious that OpenMP is a suitable platform for
quick, easy and safe parallelizing of ones already existing code. It is
easy to learn, quick to use and supported by most of the existing
compilers. Nevertheless, we should always be careful with some
details that have significant impact on performance, such as the decent
use of parallel pool, as mentioned previously.

B. Cilk

Regarding the classic FW algorithm, each iteration of the i loop
may be performed in parallel with the rest, i.e., each row of the
input matrix may be computed independently. A first approach
was to distribute the n = |V iterations of the i loop to a
group of Cilk processes. Each spawned Cilk process, undertakes
the task to compute the rows it has been committed to. We call
this version cilk_fw_parallel_for_i. The second version was the
cilk_fw_parallel_for_i_j version. Since our version of Cilk, does not
support cilk_for, we alternatively used the following pseudocode:

Cilk void run_loop(first, last)
if (last — first) < grainsize)
for (int i=first; i<last ++i) LOOP_BODY;
else {
int mid = (last—first)/2;
cilk_spawn run_loop(first , mid);
run_loop (mid, last);

Listing 13. Pseudocode for cilk_fw_parallel_for_i_j

At the first level, we keep “cutting” matrix A horizontally and
spawning Cilk processes (one process per slice), following the pattern
of the above pseudocode in order to distribute the iterations of the i
loop. When these slices become too small, we spawn one Cilk process
per slice row. At a second level, each Cilk process that was spawned
at this point, uses the same pattern of the above pseudocode to fill
in the row it has been committed.

Regarding the recursive FW algorithm, since the anti-diagonal
blocks A12 and A21 may be computed in parallel, we spawn Cilk
processes for each of them and sync them appropriately, as shown in
Listing 11. Cilk has performed very well on recursion and this fact is
mirrored in the analysis of the experimental results for this particular
version (cilk_fw_sr).

Finally, regarding the tiled FW algorithm, we developed two
additional versions: a) The first version, combines the recursive and
tiled algorithms, by setting the central, the cross and the exterior
blocks of the tiled version, to execute the recursive FW algorithm.
We refer to this version as cilk_fw_tiled_sr. b) In the second version,
which we call cilk_fw_tiled_parallel_for_i we grouped the tiles that
lie outside the cross in four groups. Not surprisingly, the tiled-
recursive approach yields the best performance, as is further discussed
in the experimental section.

C. TBBs

Concerning the classic FW algorithm, we built three different
versions, all based on the parallel_for construct. The first two focus
on the parallelization of the i-loop. Their only difference is the
type of partitioner used. The first version (tbb_fw-parallel_for_i-
simple) uses the simple_partitioner. The second one (named tbb_fw-
parallel_for_i-affinity) uses affinity_partitioner. The third implemen-
tation (tbb_fw-parallel_for_i_j-affinity) parallelizes both i and j loops
by applying parallel_for on the two-dimensional range object defined

by the loops’ bounds. As in the one-dimensional case, the two-
dimensional plane is recursively subdivided, simultaneously in both
dimensions. An affinity partitioner is used in this case, as well.

In the recursive FW algorithm, we have implemented two similar
parallel versions, where concurrent tasks are created for the execution
of Floyd-Warshall on the anti-diagonal blocks A12 and A21. The first
version spawns two tasks, each one executing the recursive parallel
algorithm on blocks A12 and A21, respectively. The rest of the
blocks need to be processed sequentially, so the waif() method is
used to synchronize concurrent tasks before entering a sequential
region. This version is referred to as thb_fw_rec-tasks. To decrease
the time spent on task creation and potential task stealing, the second
version tbb_fw_rec-tasks_one spawns a new task only for one of the
anti-diagonal blocks and leaves the execution of the second one to
the initial thread.

The parallelization scheme of the tiled FW algorithm unfolded nu-
merous possible implementation options, by employing tasks and par-
allel_for operations, or even blending them in a nested fashion. Four
of the implementations exhibited high performance levels and are
worth mentioning. The first version (tbb_fw_tiled-tasks_med_grain)
is depicted in Fig. 3. At first, the central block is being processed by a
single task. Then, the edges of the cross are mapped to four tasks and
processed in parallel. Finally, the exterior planes are cut horizontally
into rows of blocks, and each such row is assigned to a different task.
Creation, execution and synchronization of tasks between the three
phases have been described earlier.

6 4 9 9

Fig. 3. TBB: tbb_fw_tiled-tasks_fine_grain - Distribution of blocks to tasks

The second version (thb_fw_tiled-tasks_fine_grain) is a variant
of the previous one. Instead of having a single task processing
all blocks on an edge of the cross, we spawn a new task for
each different block. The exterior blocks are mapped in the same
way as in tbb_fw._tiled-tasks_med_grain. Apparently, tbb_fw_tiled-
tasks_fine_grain employs parallelism at a finer granularity compared
to thb_fw_tiled-tasks_med_grain. Figure 4 displays the tasks spawned
in this version. The third version (tbb_fw_tiled-tasks_parallel_for)
employs nested parallelism. At the higher level, a different task is
created for each edge of the cross and each one of the exterior planes.
Internally, using the parallel_for construct, each edge or plane is being
recursively split into smaller chunks which in their turn are mapped
to multiple tasks. Effectively, the assignment of blocks to tasks is the
same as in the case of thb_fw_tiled-tasks_fine_grain.

The fourth version (fw_tiled-parallel_for_mixed._tiles) uses solely
the parallel_for construct for implicit task creation. To minimize
parallelization and synchronization costs, the four loops originally
processing the edges of the cross are now merged into a single loop.
Likewise, the loops processing the exterior planes are combined into
a single, double-nested for-loop. A parallel_for construct is applied
on each of the new loops, but to enable efficient exception of blocks
that should not be processed in a given phase (e.g. all the cross
blocks in the third phase) we devised block-level indexing along with
conditional execution. Fig. 5 shows an example distribution of blocks

10 7 13 13

Fig. 4. TBB: fw_tiled-tasks_med_grain, fw_tiled-tasks-parallel_for - Distri-
bution of blocks to tasks

in this scheme.

Fig. 5.
tasks

TBB: fw_tiled-parallel_for_mixed_tiles - Distribution of blocks to

V. EXPERIMENTS

In this section we present performance results, in terms of execu-
tion time, for the various parallel versions of the FW algorithm and
aforementioned parallel programming environments. This section is
structured as follows: In Sec. V-A, we briefly describe the exper-
imental methodology along with the architecture of the multicore
testbeds. In Sec. V-B, V-C, and V-D, we present graphs of the
execution times for parallel versions created with OpenMP, Cilk and
TBBs respectively, which exhibited maximum speedup or otherwise
noteworthy behavior. In Sec. V-E we compare the best performing
versions produced with each tool. Moreover, we record the maximum
acceleration achieved in comparison to the sequential classic FW
algorithm.

A. Experimental Setup

The execution times of all parallel versions of the FW algorithm
were measured on two different platforms: a clovertown-based multi-
core node with 2 clovertown CPUs and a dunnington-based multicore
node with 4 dunnington CPUs. Henceforth, the clovertown-based
multicore node will be referred to as clovertown and the dunnington-
based multicore node as dunnington. The architecture of clovertown
is depicted in Fig. 6(a). This node contains 2 clovertown CPUs
which share one main memory module (2GB). Each clovertown CPU
contains 4 cores (Intel® Xeon® E5335 @ 2.00GHz). Each core has
a private 32KB Level 1 cache and each pair of adjacent cores shares
a 4MB Level 2 cache. The architecture of dunnington is depicted in
Fig. 6(b). This node contains 4 dunnington CPUs which also share
one main memory module (30GB). Each dunnington CPU contains 6
cores (Intel® Xeon X7460® @ 2.66GHz). Each core has 32KB Level
1 cache, each pair of adjacent cores shares a 3MB Level 2 cache and
every 4 cores share a 16MB Level 3 cache.

We measured serial and parallel execution times for matrices of
sizes 1024 x 1024, 2048 x 2048, and 4096 x 4096 and block sizes of
8,16, 32,64, 128,256, 512. For each parallel version, we took 3 time
measurements for each architecture and calculated the mean in order
to obtain an accurate time measurement for the respective version.
Due to space limitations, we present measurements for clovertown.

However, as explained earlier, experimentation was not limited to this
node and any noteworthy behaviour of a parallel version observed on
dunnington will also be mentioned.

B. OpenMP Experimental Results

250
-+ omp_fw-parallel_for_i
= omp_fw_rec-tasks, block size = 64
+ omp_fw_tiled-parallel_for_static, block size = 32
-o-omp_fw_tiled-tasks_fine_grain, block size = 512
200
— 150
CX
(]
E
[

50

Threads

Fig. 7. Execution times for matrix size 4096 x 4096, for the best performing
parallel versions created with the OpenMP framework (clovertown)

Figure 7 shows the execution times on clovertown of the best
performing parallel versions created using the OpenMP framework,
for matrix size 4096 x 4096. For the parallel classic FW algorithm
by using parallel-for (omp_fw-parallel_for_i), we observe that our
implementation does not scale for more than two cores on clovertown.
This was expected, because the Level 2 cache memory of the
clovertown CPUs is not big enough to fit the input matrix. Therefore,
transactions with the main memory are frequent, thus the time
advantage of parallel execution is negated.

The parallel recursive FW algorithm, in which we used tasks
with block size 64 (omp_fw_rec-tasks), scales much better than
omp_fw-parallel_for_i, since now each chunk fits in the Level 2
caches. Specifically, we achieved an overall decrease in time, from
131.65s in one core, to 28.26s when using 8 cores. However, in this
implementation, we should not open the parallel pool many times,
because in this case the overhead of creating new threads is big
enough to reduce performance.

Finally, for the parallel tiled FW algorithm, two implementations
are worth mentioning. The first one uses parallel-for with blocksize
32 (omp_fw_tiled-parallel_for), and is - by far - our most efficient
implementation achieving time of /8.29s. Note, that in this version,
we used static scheduling, since we know the number of iterations be-
forehand and therefore static is preferable to dynamic scheduling. The
second alternative version uses tasks - just like in the parallelization
of the recursive version- with dynamic scheduling and block size 512
(omp_fw_tiled-tasks_fine_grain). This version, scales in a manner
similar to omp_fw_rec-tasks, which is less than that for omp_fw_tiled-
parallel_for. This may be due to the overhead of task creation and
may not be a disadvantage in systems with greater processing power.
Note that since tasks are a relatively new feature in OpenMP, we may
see further improvement in the future.

C. Cilk Experimental Results

Figure 8 shows the execution times on clovertown of the best
performing parallel versions created using the Cilk language, for
matrix size 4096 x 4096. For the parallel classic FW algorithm,
the best times were achieved with the cilk_fw-parallel_for_i_j for
grain size b=256 (125.44s, workers=4). Although we observe that
our parallel program is faster than its serial counterpart, this happens

% Core0 Core 1 Core2 Core3
E ‘LiakB ||| vsxB || |[L1axB ||| L12ke|
v v ¥ ¥
| L24MB L24MB I
FB EE
O
=
A4
I L23uB L23MB |
- ! 3 3 !
% | Li3kB || || L1s2kB || || L13xB || || L132kB |
E Core0 Core 1 Core2 Core3

(a) Architecture of the clovertown-based multicore node
Fig. 6.

160 -+-cilk_fw-parallel_for_i_j, grain size = 256
-#-cilk_fw_rec, block size = 64

+- cilk_fw_tiled-parallel_for_i, block size = 64
140 -~ cilk_fw_tiled-rec, tile/recursion = 256/64

120
100 \
80 \
60 &

40 S
20 \

Time (s)

Threads

Fig. 8. Execution times for matrix size 4096 x 4096, for the best performing
parallel versions created using the Cilk language (clovertown)

only if the number of workers remains less than four. For bigger
values of workers the execution time remains the same or becomes
greater. So, the Cilk implementation of the classic FW algorithm does
not scale.

For the parallel recursive FW algorithm, the best performance
(28.96s) was achieved by cilk_fw_rec for grain size b=64. This is
a significant improvement due to the fact that computations were
executed in parallel, so that the utilization of cache memory is more
efficient. Unfortunately for more than 6 cores, this implementation
does not scale further.

For the parallel tiled FW algorithm, two different implementations
are worth mentioning, namely cilk_fw_tiled-rec and cilk_fw_tiled-
parallel_for_i. Figure 8 shows that those two implementations pro-
vided the best acceleration achieved. The best times (/7.96sec) were
achieved by using cilk_fw_tiled-parallel_for_i for b=64. The fact
that the parallel tiled FW version provided the best performance
gains was expected, since we use our caches optimally, thus avoiding
unnecessary memory transactions.

D. TBBs Experimental Results

Figure 9 shows the execution times on clovertown for the best
performing parallel versions created using the TBB library, for matrix
size 4096 x 4096. For the parallel classic FW algorithm, the best
performance on clovertown was achieved by tbb_fw-parallel_for_i-
affinity for block size 512. However, this parallel version does not
scale beyond 2 cores on this architecture, because a matrix of

Package 1

i
=
il

B

w

I N
. e
L

-]
e
= _"'l[=] \m-\ =]

(b) Architecture of the dunnington-based multicore node

Package 2

Package 3

Multicore architectures used as experimental testbeds.

250
-+-tbb_fw-parallel_for_i-affinity, grain size = 512
= thb_fw_rec-tasks_one, block size = 32
-+ tbb_fw_tiled-parallel_for-mixed_tiles, block size = 64
200
~ 150
)
)
E
=

N \\
50

Threads

Fig. 9. Execution times for matrix size 4096 x 4096 for the best performing
parallel versions created using the TBB library (clovertown)

4096 x 4096 integers exceeds the Level 2 cache capacity of the
clovertown CPUs. On the contrary, results on dunnington showed,
that this version scales almost linearly, due to the increased Level 2
cache capacity. However, even for dunnington, parallelizing any of the
two inner for loops of the classic FW algorithm, without specifying
the use of an affinity partitioner, significantly degrades performance.
Hence the affinity partitioner provided by the TBB library can indeed
efficiently allocate loop iterations to threads and ensures maximum
cache utilization.

For the parallel recursive FW algorithm, the best performance
on clovertown was achieved by tbb_fw_rec-tasks_one for block size
32. However, results showed that both versions thbb_fw_rec-tasks_one
and tbb_fw_rec-tasks exhibit similar performance and the difference
between execution times does not exceed 300ms, on any of the two
architectures, for matrix size 4096 x 4096 and for optimal block
sizes. This observation demonstrates that task creation using the TBB
library has small overhead. For optimal block sizes, these versions
scale linearly for up to 2 cores, sublinearly for up to 8 cores, but
then no further improvement is achieved for larger number of cores
(as dunnington results showed). This is due to the relatively small
amount of work that can be executed in parallel for the recursive
FW algorithm.

For the parallel tiled FW algorithm, the best performance (16.87s)
on clovertown was achieved by tbb_fw_tiled-parallel_for-mixed_tiles
for block size 64. It should be noted here that this parallel version ex-
hibits similar performance to tbb_fw_tiled-tasks_parallel_for. These

Tool Parallel Version Fastest Time (s)
OpenMP | tbb_fw_tiled-parallel_for-mixed_tiles 18.30
Cilk cilk_fw_tiled-parallel_for_i 17.96
TBBs tbb_fw_tiled-parallel_for-mixed_tiles 16.87

TABLE I
FASTEST EXECUTION TIMES ACHIEVED ON clovertown FOR EACH TOOL
FOR MATRIX SIZE 4096 x 4096

parallel versions scale almost linearly for all available cores. This can
be attributed to the fact that the tiled FW algorithm is cache oblivious
and therefore the majority of the memory accesses are cache hits and
all data may be computed in parallel.

E. Overall Comparison

50

-+ omp_fw_tiled-parallel_for_static, block size = 32
- cilk_fw_tiled-parallel_for_i, block size = 64
+ tbb_fw_tiled-parallel_for-mixed_tiles, block size = 64

40

Time (s)

30

20

10

0 T T T T T .
4 5
Threads

Fig. 10. Execution times for matrix size 4096 x 4096, for the best performing
parallel versions created utilizing all tools (clovertown)

Figure 10 shows the execution times on clovertown of the best
performing parallel versions constructed using the the three tools, for
matrix size 4096 x 4096. Note, that the best parallel versions for all
tools exhibit almost similar performance. Table I shows the fastest
execution times achieved for each tool, for the same matrix size.
Since, the sequential classic FW algorithm for matrix size 4096 x
4096 requires 145.11s on clovertown, the maximum overall speedup
relative to the sequential classic algorithm achieved was 8.6 and was
achieved using TBBs.

F. Summary

In this section, we have experimented with multiple parallel
versions of the FW algorithm and the available parallel platforms.
Results showed that for input matrix of size 4096 x 4096, the
classic FW algorithm’s performance in clovertown does not increase
beyond 2 cores. This was expected because a matrix of this size does
not fit into L2 memory cache of clovertown CPUs. Conversely, for
dunnington due to larger L2 memory, performance increases for larger
numbers of cores. For the recursive FW algorithm, results are better
and we achieve significant acceleration, up to 6-8 cores. Adding more
cores does not further increase performance, because for matrices of
the aforementioned size, a little work may be done in parallel beyond
a certain number of cores. Finally, the tiled FW algorithm achieved
the best results, due to its cache oblivious nature. In this case, we
achieved computation times of /7-18s for all available platforms.
Although TBBs achieved the best results (speedup greater than 8),
similar results were achieved for all platforms.

As far as ease of use is concerned, OpenMP it is a little more
mature (it is the older tool after all) and was the easiest tool for

adapting our existing codebase to its parallel counterpart. TBBs and

Cilk’s support of parallel_for constructs is relatively new or partly
incomplete and therefore those two platforms required additional

work to adapt our serial code to parallel.

VI. CONCLUSIONS

In this work we have experimented with the well known Floyd-
Warshall algorithm, which solves the all-pairs shortest path problem
on directed graphs. We parallelized the three most well known serial
implementations of this algorithm (classic FW, recursive FW and
tiled FW) by using three different parallel programming environ-
ments, namely OpenMP, Cilk and Threading Building Blocks. Our
experimentation on two separate architectures and with a multitude of
alternative parallel versions has showed that the cache friendly nature
of the tiled FW algorithm makes it more suitable for parallelization.
Moreover, although the various parallel platforms used had varying
degrees of learning curves, all platforms exhibited quite similar
performance and therefore it is up to the programmers to decide
which platform suits their needs best.

ACKNOWLEDGMENTS

The following students contributed effort for this paper (in
alphabetical order): loanna-Maria Alifieraki, Athanasios Andreou,
Christos Andrikos, Dimitrios Bliablias, Athanasios-Akanthos Chas-
apis, George Chatzikonstantis, Georgios Chatzopoulos, Alexandros
Daglis, Alexandros Efentakis, Nikolaos Eftaxiopoulos-Sarris, Athena
Elafrou, Nikolaos Grivas, Nefeli Halastani, Natalia Hering, George
Karachalias, Athanasios Karmas, Evdokia Kassela, Stefanos Koffas,
Dimitris Konomis, Emmanouil Koukoutos, Sofia-Ira Ktena, Leonidas
Lampropoulos, Dionysios Manousakas, Iosif Moulinos, Konstantinos
Mouzakitis, Vasileios Nakos, Evridiki-Vasileia Ntagiou, Avraam Pa-
padopoulos, Nikela Papadopoulou, Lydia Polyzou, Vasilios Priskas,
Georgios Psaropoulos, Alexios Pyrgiotis, Georgios Retsinas, Niko-
laos Sarris, Zisis-lason Skordilis, Ioannis Spiliopoulos, Konstanti-
nos Stamatoukos, Panagiotis Traganitis, Xaris Tsiboukakos, Anto-
nis Tsigkanos, Nikolaos Tsironis, Ilias Tsitsimpis, Vassilis Tsounis,
Vasileios Tsoutsouras, Thomas Vaiou, Georgios Zervakis, loannis
Zobolas.

REFERENCES
[1] Robert D. Blumofe and Charles E. Leiserson, Schedul-
ing Multithreaded Computations by Work Stealing,

http://supertech.csail.mit.edu/papers/steal.pdf

[2] Borgwardt, Kriege,Shortest-path kernels on graphs.

[3] Jeremy D. Frens and David S. Wise, Auto-blocking matrix-multiplication
or tracking BLAS3 performance from source code. In Proc. of the
Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, June 1997.

[4] Cilk 5.4.6 Manual, http://software.intel.com/en-us/articles/intel-cilk-plus-
specification

[5] Intel Cilk Plus, http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf

[6] Akihiro Nakaya, Susumu Goto, Minor Kanehisa,Extraction of Correlated
Gene Clusters by Multiple Graph Comparison

[7] C. Papadimitriou, M. Sideri,On the Floyd-Warshall Algorithm for Logic
Programs.

[8] J.S. Park, M. Penner, and V. K. Prasanna, Optimizing Graph Algorithms
for Improved Cache Performance IEEE TRANSACTIONS ON PARAL-
LEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER
2004.

[9] T.H. Cormen, C. Stein, R.L. Rivest and C.E. Leiserson, Introduction to
Algorithms, McGraw-Hill Higher Education

[10] R.D. Blumofe and C.E. Leierson, Scheduling Multithreaded Computa-
tions by Work Stealing, http://supertech.csail.mit.edu/papers/steal.pdf

[11] OpenMP, http://openmp.org

