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What software developers/users want

% OF RESPONDENTS WHO CONSIDERED THE FEATURE

VERY IMPORTANT
69%

More than one feature could be selected.

76°%

EASE OF
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Source: Databricks, Apache Spark Survey 2016, Report



What software developers/users want
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More than one feature could be selected.
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A short history of computing performance

End of the Line = 2X/20 years (3%/yr) o

Amdahl's Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) s
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Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018
A domain-specific architecture for deep neural networks
Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson



What'’s left for faster computing?

End of the Line = 2X/20 years (3%/yr) ¢

Amdahl's Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) s

v

¢ CISC 2X/2.5 years ? RISC 2X/1.5years
(22%/year) (52%/year)

100,000
o What'’s Left?
2 10,000
'.-:: Only path left isjDomain Specific Accelerators (DSA)
-] « Just do a few tasks, but extremely well
: 1,000 Standard computer for legacy software + accelerators to improve
: performance per Watt of critical computation
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Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018
A domain-specific architecture for deep neural networks
Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson



zroprocesesra Laboratory

Computing power to train a model

Two Distinct Eras of Compute Usage in Training AI Systems
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In 2018, OpenAl
found that the
amount of
computational
power used to train
the largest Al
models had
doubled every 3.4
months since 2012.

https://www.techn
ologyreview.com/
s/614700/the-
computing-power-
needed-to-train-
ai-is-now-rising-
seven-times-
faster-than-ever-
before/

Open Al

https://openai.com/blog/ai-and-compute/#addendum
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Processing requirements in DNN
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Data Center traffic

B Traditional Data Center (9% CAGR) 27% CAGR
Cloud Data Center (30% CAGR) 2015-2020
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Data Center Requirements

Traffic growth in Data centers versous Power constraints
10

—e—Traffic growth
—e—Heat load per rack
—e—Power per chip

—e—Transistor count

Traffic growth
in Data Centers

Power per chip § v

=
e e ‘Heat load per rack
e ——————+———o——

2012 2013 2014 2015 2016 2017 2018 2019

> Traffic requirements increase significantly in the data centers but
the power budget remains the same (Source: ITRS, HIPEAC, Cisco)
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Internet traffic

. Data centre workloads

Data centre energy use

| T T | | | I | | I
2010 20M 20M2 2013 204 2015 2016 2017 2018 2019

Internet traffic @ Data centre workloads Data centre energy use

https://www.iea.org/reports/data-centres-and-data-transmission-networks



https://www.iea.org/reports/data-centres-and-data-transmission-networks
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Advanced Analytics Maturity Path:
Moving to Real-Time Enterprise

Self-Learning and Completely Automated Enterprise

Computerized Human Thought Simulation and Actions Cognitive

Towards Autonomic Enterprise Analytics
Prescriptive

Simulation-Driven Analysis Analytics
and Decision-Making

Mature Data Lake -
Predictive

Analytics

Foresight—What Will

Happen, When, No/New-SQL, Mature In-Memory DB
and Why and Processing, Early Data Lake

Diagnostic

Analytics Insight—What Happened and Why

Enterprise Data Warehouse,
In-Memory DBs + Processing

Hindsight—What Happened
Files, RDBMS, ODS,

Descriptive
Analytics Early Data Warehouse, OLAP

SILOED VIRTUALIZED/INTEGRATED APPLIANCES SDI/HPC



How Big are Data Centers

Facebook (Santa Clara) 86,000
Google (South Carolina) 200,000
HP (Atlanta) 200,000
IBM (Colorado) 300,000
Microsoft (Chicago) 700,000

[Source: “How Clean is Your Cloud?”, Greenpeace 2011]

Wembley Stadium:172,000 éduare ft

Christoforos Kachris, Microlab@NTUA 13
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Data Centers Power Consumption

e Data centers consumed 330 Billion KWh in 2007 and is expected to
reach 1012 Billion KWh in 2020

2007 (Billion KWh) 2020 (Billion KWh)

Data Centers 330 1012
Telecoms 293 951
Total Cloud 623 1963

2007 electricity consumption. Billion kwH

us
China

Russia

Japan

Cloud computing

Soon we are going to need a power plant next to
the Data Centers

India 568

Gemany

Canada
France
Brazil
UK

I | | | |
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[Source: How Clean is Your Data Center, Greenpeace, 2012
Christoforos Kachris, Microlab@NTUA 15




Data Center power consumtion

HOW MUCH OF WORLDWIDE POWER IS NEEDED BY DATA CENTERS?
Required power evolution for the period 2010-2020

Data Center facilities installed power (in GW)
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Data Center

41% 28% 31% } B IT equipment
N “ | 1l Power delivery
R RO 1 Cooling equipment
IT Equipment B
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Hardware acceleration

Hardware acceleration is the use of specialized hardware
components to perform some functions faster (10x-100x) than is
possible in software running on a more general-purpose CPU.

> Hardware acceleration can be performed either by specialized
chips (ASICS) or

> By programmable specialized chips (FPGASs) that can be
configured for specific applications
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Accelerators can increase performance at lower TCO for targeted workloads
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Hardware Accelerators — Why Is It faster?

Switch from sequential processing to parallel processing

Standard DSP Processor -
Sequential FPGA - Fully Parallel Implementation

(Generic DSP) ; (Generic FPGA)

Data In |
T
Coefficients - @ co @ o1 @ cz.@ ca o czo1s®

Single-MAC Unit
2016 clock @
cycles

needed 2016 operations
in 1 clock cycle
Data Out

=595 KSPS

Data Out

1.2 GHz 600 MHz

= 600 MSPS

2016 clock cycles 1. clock cycle
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Hardware accelerators

« HW acceleration can be used to reduce
significantly the execution time and the energy
consumption of several applications (10x-100x)

The Dilemma: Flexibility vs. Efficiency

10,000 -
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1000 .4
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Programmable Processing

Source: “High-performance Energy-Efficient Reconfigurable Accelerator Circuits for the Sub-45nm Era” July 2011
hy, Circuits R

by Ram K. Krisk irthy, Ci h Labs, Intel Corp.

FPL 2016, Christoforos Kachris, ICCS/NTUA, September 2016

@ 8owcCPU
B8 225w GPU

22x Faster / Watt Than GPU <IN FEGA

[Source: Xilinx, 2016]
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FPGAS In the data centers

Cloud Example: Data Center FPGA Acceleration
Up to 1/3 of Cloud Service Provider Nodes to Use FPGAs by 2020

Applications: Image Ideuﬁ.cauon : Security _ 3.3 Dafi .

Algorithms: Convolutinal Neural 3 : 5
Netuor Encryption Compression

CPU FPGA CPU FPGA CPU + FPGA

Discrete FPGA Co-Packaged CPU + FPGA Iintegrated CPU + FPGA
Today

>2X performance increase through integration
Reduces total cost of ownership (TCO) by using standard server infrastructure
Increases flexibility by allowing for rapid implementation of customer IP and algorithms

Christoforos Kachris, Microlab@NTUA




CPU vs GPU vs FPGA

A GPU is effective at processing the same set of operations in parallel —
single instruction, multiple data (SIMD).

— DRAM DRAM
— - - - - -
ALU ALU I' 1
Control :
ALU ALU g S S
— < =
— . i S 2
Cache p— % F?
]
) - -
Al DRAM L Q\'
\ oo~ = " Each FPGA has
DRAM
CPU GPU  Each GpU EPGA more than 2M of
(one core) has 2880 of these cells

these cores

An FPGA is effective at processing the same or different operations in parallel —
multiple instructions, multiple data (MIMD). Specialized circuits for functions.
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Processing Platforms

> HW acceleration can be used to reduce significantly the
execution time and the energy consumption of several
applications (10x-100x)

The Dilemma: Flexibility vs. Efficiency

Programmable Processing
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Source: “High-performance Energy-Efficient Reconfigurable Accelerator Circuits for the Sub-45nm Era” July 2011
by Ram K. Krishnamurthy, Circuits Research Labs, Intel Corp.
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Intel Xeon + FPGAS

Software Development for Accelerating Workloads using Xeon and coherently attached FPGA in-socket

Intel’ Xeon®
E5-2600 v2
Product Family

|

QPI

]

Christoforos Kachris, Microlab@NTUA

Cle*3.0x8

DDR3

DDR3

Intel® Xeon® E5-26xx v2

Processor

Processor
FPGA Module Altera Stratix V
QPI Speed 6.4 GT/s full width

(target 8.0 GT/s at full width)

Memory to FPGA
Module

2 channels of DDR3
{up to 64 GB)

Expansion
connector
to FPGA Module

PCle 3.0 x8 lanes - maybe used
for direct IO e_g. Ethernet

Configuration Agent, Caching

Features Agent,, (optional) Memory
Controller
Accelerator Abstraction Layer
Software (AAL) runtime, drivers, sample

applications
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Xeon and FPGA In the Cloud

IP

Intel
-
L CLEERE  JA Optimized Software

SDI (Exposing IA capabilities)

Cloud Controller Intel HAAS |"t81_ Store
Client

Placing
workload

-IP Catalogue

static/dynamic
FPGA programming

I1A Node
XEON+FPGA

Christoforos Kachris, Microlab@NTUA 27



FPGASs for DNN

> The XDNN processing engine has A i !
dedicated execution paths for each type |
of command (download, conv, pooling,
element-wise, and upload). This allows fc

Image Queue | I I
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convolution commands to be run in aal o
parallel with other commands if the g 3
. o E e
network graph allows it e S oystolc Array
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FPGASs for DNN — Throughput & Latency

GooglLeNet V1 Batch=1 Thoughput and Latency 4,127
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FPGASs for DNN — Throughput & Latency
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Intel FPGAS for DNN

Gain Significant Performance for Deep Learning Workloads

Increase Deep Learning Workload Performance on Public Models

using OpenVINO™ toolkit & Intel® Architecture

Comparison of Frames per Second (FPS) 19.9x"
20
18
16
14
12

Relative Performance
Improvement

Standard

Caffe*
Baseline  ©
T GooglLeNet v1 Vgg16* Squeezenet* 1.1 GoogleNet v1 Vgg16* (32)  Squeezenet* 1.1
Public Models (Batch Size) (32) (32)
Std. Caffe on CPU m OpenCV on CPU m OpenVINO on CPU m OpenVINO on GPU ®m OpenVINO on FPGA

Get an even Bigger Performance Boost with Intel® FPGA

https://software.intel.com/content/www/us/en/develop/blogs/accelerate-computer-vision-from-edge-to-cloud-with-openvino-toolkit.html
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FPGAs vs GPUs in DNN

FPGA Benefits: Low Latency, High Throughput

Batch : =

[ Input1 | ==—=p | inpu esul [ Input 1 | = | Result 1 ]
l — :ngu:; [:> GPU 2esul:; Ig FPGA | R

.1 Linput3 | == | input3 DNN Result 3 | input3 | == | DNN | Result 3
} 1 | Input4 Input 4 Result4 | ! | Input4 | Resgni: ;
| e Latency3 > T — Latency3 ;
- Latency2 = ——————  Latency? -

< Latency1 ” Latency1 >

» Inference with batches » “Batch-less” inference

— Require parallel batch of data for SIMD — Low and deterministic latency
— High batch => high latency, higher throughput — High throughput regardless of batch size
— Lower compute efficiency at low batch — Consistent compute efficiency

Customers, from edge to Cloud,
require low latency inference (batch=1)
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GPU vs FPGA for DNN

Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks?

Eriko Nurvitadhi1, Ganesh Venkatesh', Jaewoong Sim1, Debbie Marr',
Randy Huang?, Jason Gee Hock Ong?, Yeong Tat Liew?,
Krishnan Srivatsan®, Duncan Moss®, Suchit Subhaschandra®, Guy Boudoukh®

"Accelerator Architecture Lab, Programmable Sclutions Group, *FPGA Product Team, ‘Computer Vision Group
Intel Corporation
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A Survey on Reconfigurable Accelerators for Cloud Computing, FPL 2016 Kachris

Tvpe
Paper | Institute Application Batch | Stream | Speedup | Energy | Interface Design Integration
[29] Microsoft Search engine [ . | 1.95x PCle HDL Coprocessor
[30] NUDT RankBoost (MapReduce) . 4x Ethernet HDL Coprocessor
[32] TU, Microsoft RankBoost (MapReduce) . 31.8x | - PCle HLL Coprocessor
[35] NTT MapReduce (Sort, Grep) . 4. 8x 37x PCle C Coprocessor
[36] DUTh, NTUA ML (average) . 4.3x 33x AXI4 HDL-HLL | Coprocessor
[38].1 GMU, UCLA ML (K-Means) . 2.7x 15.2x AXI4 HLL Coprocessor
[38].2 | GMU, UCLA ML (KNN) . 1.7x 5.8x AXI4 HLL Coprocessor
[38].3 | GMU., UCLA ML {(5VM) . 1.5% 2.9x% AXI4 HLL Coprocessor
[38].4 | GMU, UCLA ML (Naive Bayes) . l.dx 8% AXI4 HLL Coprogessor
[40] HEU ML (K-Means.MapReduce) . 20x = PCle HDL Coprocessor
[39] UCLA DNA Sequencing . 2.8 24x PCle HLL Coprocessor .
[41] Toronte U ML (K-Means - Spark) . 4x PCle HLL Coprocessor |
[43].1 UCLA-87yng ML (K-Means - Spark) . | .44x 2.32x Ethernet HLL Coprocessor
[43).2 | UCLA-Virtex7 ML (K-Means - Spark) . ix 2.63x Ethernet HLL Coprocessor
[43].3 | UCLA-8Zyng ML (LogRegr.- Spark) . 1x 1.55x PCle HLL Coprocessor
[43].4 | UCLA-Virtex7 ML {(LogRegr.- Spark) . l.47x l.78x PCle HLL Coprocessor
[44] HF, UML Memcached . 1% 110.9% Ethernet HIL Standalone
[45] Xilinx Memcached . 1.35x | 36x ]| Ethernet HDL Standalone
[48] HP, AEM. Facebook Memcached . 0.7% 6x Custom HDL Coprogessor
[49] UTAustn Memcached . 3x 9.15x Cusiom HDL Coprocessor
[38] Berkeley Memcuached . l.dx - PCle HDL Coprogessor
[50] AlgolLogic Memcached . [0 20x PCle HDL Coprocessor |
[51] IBEM Database . |4.6x PCle HDL Coprocessor
[53] Stanford Database . 5.7x PCle OpenSPL | Coprocessor
[54] EPFL.HFUE,Google Database . 3x 3.7x Custom HDL Coprocessor

FPL 2016, Christoforos Kachris, ICCS/NTUA, September 2016
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Speedup vs Energy efficiency

A Survey on Reconfigurable Accelerators for Cloud Computing, FPL 2016 Kachris

System Speedup vs Energy Efficiency for the Hardware accelerators

100
A [45]
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2 W [38.4]
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M (383]
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Speedup

Application
® PageRank
B Machine Learning
A Memcached

Database

Copyright: Christoforos
Kachris, ICCS/NTUA
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Speedup per category

Speedup and Energy efficiency per category
20

18
16
14

12

18
10.7

10
. 7.8 75
| I I
, 3.8 3.7 3.7
Al EENE
' —

Speedup Energy Efficiency

mPageRank ®mML ®Memcached mDatabases

> Page Rank applications achieve the higher speedup

> Memcached application achieve higher energy efficiency

FPL 2016, Christoforos Kachris, ICCS/NTUA, September 2016 37



Catapult FPGA Acceleration Card

- Altera Stratix V D5

- 172,600 ALMs, 2,014 M20Ks, 1,590 DSPs
« PCle Gen 3 x8

- 8GB DDR3-1333

- Powered by PCle slot

 Torus Network
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{
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p:
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EMEE FPGA as a Service

VINEYARD

. Amazon EC F1’s Xilinx FPGA amazon

webservices

AWS MARKETPLACE
HARDWARE

CUSTOM AMAZON -

ssociate your

DEVELOPMENT KIT LOGIC FPGA IMAGE (AFI) AF! with an AMI

Lt D and offer on the

el 5] 0 AWS Marivefplace

pan D ............... b d .............

onn

Wirita your rp;_'.,q coda Register compiled T, D E @ g Attach your AF to

with the FPGA Herdware code 25 Amazon Attach your AFT fo C ul an F1 instance
Davelopment Kif and FPGA Imaga [AFl) 2n F1 Instance

FPGA Developer AN :

auu
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Is there a market?

Official At Last: Intel Completes $16.7 Billion Buy
of Altera

Up to 1/3 of Cloud Service Provider Nodes to Use FPGAs by 2020 B

Claibabacows  AWS o _one W nimaix & Available FPGAs

HUAWEI Tencent Cloud

v’

Microsoft's Bing search engine uses FPGA chips to provide
more intelligent answers

* The global Data Center Accelerator market size is expected to o
reach 35 billion S by the end of 2025 [1]. ==
* The market for FPGA is expected to grow at the highest rate owing to the E

increasing adoption of FPGAs for acceleration of enterprise workloads [1] S

[1] https://www.marketwatch.com/press-release/at-387-cagr-data-center-accelerator-market-size-is-expected-to-exhibit-35020-million-usd-by-2025-2019-10-15
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Heterogeneous DCs for energy efficiency
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“The only way to differentiate server offerings is through accelerators, like we saw
with cell phones”, OpenServer Summit 2014 Leendert
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VINEYARD Heterogeneous Accelerators-based Data
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VINEYARD Framework
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8 AWS options

vCPU ECU Memory (GiB) Instance Storage (GB) Linux/UNIX Usage GPU Instances - Current Generation
General Purpose - Current Generation p3.2xlarge 8 31 61 GiB EBS Only $3.06 per Hour
at.medium 1 N/A 2GiB EBS Only $0.0255 per Hour p3.8xlarge 52 = 244 GiB EBS Only $12.24 per Hour
allarge 2 N/A 4GiB EBS Only $0.051 per Hour p3.16xlarge 64 201 488 GiB EBS Only $24.48 per Hour
alxlarge 4 N/A 8 GiB EBS Only $0.102 per Hour p3dn.24xlarge 96 337 768 GIB 2 x 900 NVMe S5D $31.212 per Hour
al.2xlarge 8 N/A 16 GiB EBS Only $0.204 per Hour p2.xlarge 4 16 61GiB EBS Only $0.50 per Hour
al.4xlarge 16 N/A 32 GiB EBS Only $0.408 per Hour p2.8xlarge 32 97 488 GiB EBS Only $7.20 per Hour
al.metal 16 N/A 32 GiB EBS Only $0.408 per Hour p2.16xlarge 64 201 732 GiB EBS Only $14.40 per Hour
t3.nano 2 Variable 0.5 GiB EBS Only $0.0052 per Hour gddn.xlarge 4 N/A 16 GiB 125 GB NVMe SSD $0.526 per Hour
t3.micro 2 Variable 1GiB EBS Only $0.0104 per Hour gddn.2xlarge 8 N/A 32 GiB 225 GB NVMe 55D $0.752 per Hour
t3.small 2 Variable 2GiB EBS Only $0.0208 per Hour g4ddn.4xlarge 16 N/A 64 GiB 225 GB NVMe SSD $1.204 per Hour
t3.medium 2 Variable 4 GiB EBS Only $0.0416 per Hour g4dn.8xlarge 32 N/A 128 GiB 900 GB NVMe 55D $2.176 per Hour
t3.large 2 Variable 8GiB EBS Only $0.0832 per Hour g4dn.12xlarge 48 N/A 192 GiB 900 GB NVMe 55D $3.912 per Hour
t3.xlarge 4 Variable 16 GiB EBS Only $0.1664 per Hour
t3.2xlarge 8 Variable 32GiB EBS Only $0.3328 per Hour
Memory Optimized - Current Generation
t3a.nano 2 Variable 0.5 GiB EBS Only $0.0047 per Hour
x1.16xlarge 64 1745 976 GiB 1x 1920 SSD $6.669 per Hour
FPGA Instances - Current Generation
x1.32xlarge 128 348 1,952 GiB 2 x 1920 SSD $13.338 per Hour
f1.2xlarge 8 31 122 GiB 1 x 470 NVMe 55D $1.65 per Hour x1exlarge 4 12 122 GiB 1x 120 SSD $0.834 per Hour
f1.4xlarge 16 58 244 GiB 1x 940 NVMe SSD $3.30 per Hour *le2ularge 8 3 24466 1% 240550 51668 per Hour
x1e.dxlarge 16 47 488 GiB 1x 480 55D $3.336 per Hour
f1.16xlarge 64 201 976 GiB 4 x 940 NVMe 55D $13.20 per Hour
x1e.8xlarge 32 91 976 GiB 1x 960 55D $6.672 per Hour
Machine Learning ASIC Instances x1e.16xlarge 64 179 1,952 GiB 1x 1920 55D $13.344 per Hour
inf1.xlarge 4 N/A 8 GiB EBS Only $0.368 per Hour x1e.32xlarge 128 340 3,904 GiB 2x 1920 55D $26.688 per Hour
. i r5.large 2 10 16 GiB EBS Only $0.126 per Hour
inf1.2xlarge 8 N/A 16 GiB EBS Only $0.584 per Hour
r5.xlarge 4 19 32 GiB EBS Only $0.252 per Hour
inf1.6xlarge 24 N/A 48 GiB EBS Only $1.904 per Hour
r5.2xlarge 8 37 64 GiB EBS Only $0.504 per Hour
inf1.24xlarge 96 N/A 192 GiB EBS Only $7.615 per Hour r5.4xlarge 16 70 128 GiB EBS Only $1.008 per Hour

r5.8xlarge 32 128 256 GiB EBS Only $2.016 per Hour



> Up to 15x speedup for
Logistic regression
classification

> Up to 14x speedup for
K-means clustering

= Y o 1stto offer ML-acceleration on
the cloud using FPGAs

> Spark- GPU* (3.8x — 5.7x)

*[Spark-GPU: An Accelerated In-Memory Data Processing Engine on Clusters]

Performance evaluation on Machine Learning

Logistic Regression execution time MNIST
24GB, 100 iter. (secs)

f1.4x (InAccel)

0 200 400 600 800 1000 1200 1400

B Data preprocessing M Data transformation B ML training

K-Means clustering exection time
MNIST 24GB, 100 iter. (secs)

f1.4x (InAccel)

0 500 1000 1500 2000

B Data preprocessing M Data transformation B ML training
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https://inaccel.com/cpu-gpu-or-fpga-performance-evaluation-of-cloud-computing-platforms-for-machine-learning-training/
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Uniqgue FPGA orchestrator by InAccel

Automating deployment, scaling, and
management of FPGA clusters

Applications

h InAccel Coral
a Resource

inaccel Manager

InAccel Runtime
- Resource isolation

i) Seamless integration with C/C++,
Python, Java and Scala

FPGA drivers

@ Automatic virtualization and scheduling
Kemels -—— of the applications to the FPGA cluster
N __

Fully scalable: Scale-up (multiple
FPGASs per node) and Scale-out (multiple
FPGA-based servers over Spark)
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Current limitations for FPGA deployment

> Currently only one application can talk to
a single FPGA accelerator through
OpenCL

> Application can talk to a single FPGA.
> Complex device sharing .

* From multiple threads/processes

« Even from the same thread

> Explicit allocation of the resources
(memory/compute units)

]

> User need to specify which FPGA to use Single FPGA
(device ID, etc.)

48



From single instance to data centers

S,
> Easy deployment @ python’ Java 0 o Id Keras
O [ ] [_] [
> Instant scaling ® ) ) ) @
. Seamless sharing @
0> ,
> Multiple-users @maccel A
. oL € o) InAccel FPGA Orchestrator
> Multiple applications inavcel

> |solation

> Privacy

Kubernetes cluster
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Universities

> How do you allow multiple students to
share the available FPGAs?

> Many universities have limited number of
FPGA cards that want to share with multiple
students.

> InAccel FPGA orchestrator allows multiple
students to share one or more FPGAS #Y InAccel FPGA Orchestrator
seamlessly.

inaccel

> It allows students to just invoke the function
that want to accelerate and InAccel FPGA
manager performs the serialization and the
scheduling of the functions to the available
FPGA resources.

50



Universities

> But the researchers want exclusive access Lab1l Lab2 Researcher
N N /[

> InAccel orchestrator allows to select which e O e O
FPGA cards will be available for multiple (- L O
students and which FPGAs can be allocated e O @ O @
exclusively to researchers and Ph.D. students \ @ @ ) | @ @ ) ,
(so they can get accurate measurements for
their papers). @ InAccel FPGA Orchestrator

inaccel

> The FPGASs that are shared with multiple
students will perform on a best-effort approach
(InAccel manager performs the serialization of
the requested access) while the researchers
have exclusive access to the FPGAs with zero
overhead.

51



Instant
Scalability

-»@”

inaccel
Distribution of

multi-thread

inaccel coral start [command options]

applications to

multiple clusters
With a single
command
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From laaS to PaaS and SaaS for FPGAS

Infrastructure Platform Software
as a Service as a Service as a Service
Applications Applications Applications
Runtime ‘Q. Runtime - Runtime
inaccel inaccel
Middleware - Middleware Middleware
FPGA

Operating System Operating System Operating System

Orchestrator

Virtualization/Sharing Virtualization/Sharing Virtualization/Sharing

FPGA
Repository
with accelerators

Servers with FPGAs

Servers with FPGAs

Servers with FPGAs
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Seamless Integration with any framework

kubernetes _“<

Microso fte

SOL Server
- @ python’ Keras

?TiRow>>> J\Z

KUBESPHERE & _ SprKW
ﬁ} d \ﬁ O OPENSHIFT

o binder
FIink Y
: Jjupyter E

% Kubeflow



Lab Exercise

> |n this lab you are going to create your first accelerated application

> Use scikit learn to find out the speedup you get upon running Naive Bayes
algorithm using the original (CPU) and FPGA implementation.



Conclusions

> Future Data Center will have to sustain huge amount of network traffic
> However the power consumption will have to remain almost the same

> FPGA acceleration as a promising solution for Machine Learning providing
>> high throughput,
> |ow latency and
>> energy efficient processing



Domain Specific Accelerators

The amount of compute used in the largest Al training runs has been increasing exponentially
with a 3.4-month doubling time (by comparison, Moore’s Law had a 2-year doubling period)

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days
le+h
AlphaGoZero

le+2 Meural Machine
Translation
TI7 Dota 1vl
le+(
VGG
ResNets
le-2 AlexNet
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining
DON
iK:
TD-Gammon v2.1
BILSTM for Speech
1o LeNet-5
NETtalk RNN for Speech
ALVINN
le-10
le-12 2-year doubling (Moore’s Law)

1e-14 Perceptron ¢ First Era Modern Era 2
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Distributed ML

> CSCS: Europe’s Top Supercomputer (World 3rd) - 4500+ GPU Nodes, state-of-the-
art interconnect Task:

> Image Classification (ResNet-152 on ImageNet)
>> Single Node time (TensorFlow): 19 days
>> 1024 Nodes: 25 minutes (in theory)

Time to Train Model

l; - Communication

. Computation

.

2 4 8 16 32 64
Number of GPU Nodes

Days




Distributed ML

> Parallelism in Distributed
Machine Learning. Data Parallel

> Data parallelism trains D D@ D®
multiple instances of the @ @ @
same model on different
subsets of the training l l l
dataset,

Model Parallel

M

M@

> model parallelism

distributes parallel paths \ l /

of a single model to
multiple nodes

Trained model

A Survey on Distributed Machine Learning: https://arxiv.org/ftp/arxiv/papers/1912/1912.09789.pdf

N/

Trained model



https://arxiv.org/ftp/arxiv/papers/1912/1912.09789.pdf

> Centralized systems (Figure 3a) employ a
strictly hierarchical approach to aggregation,
which happens in a single central location.

> Decentralized systems allow for intermediate
aggregation, either with a replicated model
that is consistently updated when the
aggregate is broadcast to all nodes such as in
tree topologies (Figure 3b) or with a
partitioned model that is shared over multiple
parameter servers (Figure 3c).

> Fully distributed systems (Figure 3d) consists
of a network of independent nodes that
ensemble the solution together and where no
speciffic roles are assigned to certain nodes

Trained model

Ensembling
Compute
‘ ML node ‘ ‘ ML node ‘ ‘ ML node ‘

------ s
v v g -

(a) Centralized (Ensembling)

l ML nodh | | ML nod ‘ | ML nod l| ML nod
-------- e
(c) Decentralized (Parameter Server)

SN

N%

ML nod
2 o
aggregate p =~ aggregate
e “broadcast broadcast *
e ] e |
Compute
A Ba A L
l ML node ‘ ML node l ML node ‘ ML node
Data

NZINZINZANSINTANT NS

(b) Decentralized (Tree)

i!

AN e
T
N

(d) Fully Distributed (Peer to Peer)



zroprocesesra Laboratory

Distributed Machine Learning

General Purpose Distributed : Natively Distributed ML Single-Machine ML
Computing Frameworks : Systems Systems and Libraries
« Caffe2 + Theano
« Apache Hadoop et > + CNTK < A + Caffe
» Apache Spark MLlib « DistBelief NVIDIA « Scikit
« Apache Flink » « DIANNE NCCL « MLPack
« &iC. « Tensorflow B + NVIDIA Libraries
Hadoop/Spark « MxNet . et
| + AllReduce_ « etc.
L

-~

r

Cloud Machine Learning

Google Cloud Al
Microsoft Azure ML
Amazon AWS ML
IEM Watson Cloud
etc.

Fig. 4. Distributed Machine Learning Ecosystem. Both general purpose distributed frameworks and single-
machine ML systems and libraries are converging towards Distributed Machine Learning. Cloud emerges as
a new delivery model for ML.



zroprocesesra Laboratory

Data Science and ML platforms

Alteryx 1))

@ RapidMiner
@ T118CO Software

Dataiku @
@ KNIME

@ MathWorks

@203 @ Databricks

® M @ Microsoft
@ Google @ DataRobot
OOgIE

) SAP @
Anaconda @

Datawatch (Angoss)

ABILITY TO EXECUTE

COMPLETENESS OF VISION As of November 2018 © Gartner, Inc



FPGA for ML

> In many applications, neural network is trained in back-end CPU or GPU clusters ¢
FPGA:

> very suitable for latency-sensitive real-time inference job
>> Unmanned vehicle
>> Speech Recognition
>> Audio Surveillance
>> Multi-media



CPU vs FPGASs

Experimental Results: vs. CPU

Energy Speedup
90x
20x b
1thread -O3 16 threads -O3 FPGA 1thread -O3 16 threads -03 FPGA
gcc4.7.2-03
CPU Xeon E5-2430 (32nm) 16 cores | 2.2 GHz OpenMP 3.0
FPGA | Vitex7-485t(28nm) | 448PEs | 100MHz Vivado 2015.2 18
Vivado HLS 2015.2

http://cadlab.cs.ucla.edu/~cong/slides/HALO15 keynote.pdf
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> Classification
>> Naive Bayes

> Training
>> Logistic regression

> DNN
>> Resnetb0
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> Deploy and run your
FPGA-accelerated
applications using
Jupyter Notebooks

> InAccel manager
allows the instant
deployment of
FPGASs through
HupyterHub

Jupyter - JupyterHub

JupyterHub spawns the
Jupyter Notebook Server
instances that your
browser connects to.

_—
Jjupyter
-

Jupyter Notebook Server
(spawned by JupyterHub)

-

=

Browser

jupyter

s—_—
Jjupyter
4

Jupyter Notebook Server
(spawned by JupyterHub)

=

Browser

Y
Jjupyter
4

Jupyter Notebook Server
(spawned by JupyterHub)

xS

=

Browser
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JupyterHub on FPGAS

> Instant acceleration of
Jupyter Notebooks
with zero code-
changes

> Offload the most
computational
Intensive tasks on
FPGA-based servers

.
JJJJJJJJJJJJ

»

inaccel

) .

Kubernetes cluster

68



FPGA flow

-5 == Generate an Program the
bitstream FPGA

FPGA Logic Design using FPGA Place-and-Route using
Xilinx Vivado on C4 or M4 Xilinx Vivado on C4 or M4
instance Instance



Bitstream repository

c 8 storeinaccel.com/artifactory/webapp/#/artifacts/browse/tree/General/bitstreams/xilinx/u280/xdma_201920.3/com/xilinx/vitis/vision

@ inaccel
> FPGA Resource Man ager IS @8 Artifact Repository Browser

|ntegrated Wlth a bItStream 0 Tree Simple Q h £ xilinx/vitis/vision

repository that is used to

£ intel

store FPGA bitstreams s
a'\-‘v's-'-.-'u%'p- .I 'ﬂ‘nanll u‘::E..-u.-':-:m. B — Seion ﬂJ
Er aws-vu9p-f1-04261818/dynamic_5.0/com

httDS //Sto re. | n accel .Com _ Repository Path: bitstreams/xilinx/u280/xdma_201920.3/com/xilinx/vitis/vision/ ﬂ_]

1200
E dataCompression/Iz4/1.0

Application FPGA bitstream S —
re pOS|tO ry Er security/aes256/1.0

I Er vision/1.0/1stereoBM

inaccel

- ) Deployed By: xilinx
Er xdma_201820.1/com
N Artifact Count / Size: Show
Er xdma_201830.2/com
Created: 09-03-20 10:37:17 +00:00 (77d 1h 31m 45s ago)

£ inaccel/math/vector/0.1/2addition_2subtraction

Er xilinx/vitis

(L

Er u250/xdma_201830.2

E com

F inaccel
Er xilinx/vitis

Er quantitativeFinance/monteCarlo/1.0/1Calibration_1Pre

Er vision
[RREN D] (AR NN mmnnnn By x||\n‘.'.-'.'on'_-'r'ece;:rch abs
- - - - - - o T o
: : z : : : & u280
H = = - = H
[T i T Er xdma_201910.1/com/inaccel/math/vector/0.1/2addition_2subt

FPGA cluster © xdma_201920.3/com

7 inaccel
inaccel bitstream install [command options] & xilinx/vitisfvision
4 ETA

Y


https://store.inaccel.com/

Lab Exercise

> Introduction

> Creating a Bitstream Artifact

> Running the first FPGA accelerated application
> Scikit-Learn on FPGAs

> Naive Bayes Example

> Logistic Regression Example

https://edu.inaccel.com/



https://edu.inaccel.com/

Useful links

> MIT: Tutorial on Hardware Accelerators for Deep Neural Networks
>> http://eyeriss.mit.edu/tutorial.html

> Intel

>> https://software.intel.com/content/www/us/en/develop/training/course-deep-learning-inference-
fpga.html

> UCLA: Machine Learning on FPGASs
>> http://cadlab.cs.ucla.edu/~cong/slides/HALO15 keynote.pdf

> Distributed ML
>> https://www.podc.org/data/podc2018/podc2018-tutorial-alistarh.pdf

12
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Spectrum of new architectures for DNN

4 I

DPU: Deep Learning Processing Unit

Soft DPUs Hard DPUs In-Memory
s s (FPGA) (ASIC) Compute

\ = . .
Using non-volatile

DeePhi resistive memories

Intel . AMD

| . . : |
Z AMD = NVIDIA i Teradeep or
ARM XDMN stacked DRAM*
| I— ISAAC, Tetris,

| TPU, Cerehras, Graphcore, Neurcube
Grog, Nervana, Wave

Vector-based SIMD processors Computing, Eyeriss,
becoming increasingly customized for Deep Learning Movidius, Kalray
(Tensor Cores, Reduced Precision,...)

*Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.5. ond Srkumar, V., 2016. ISAAC: A convolutionol neural

network accelerotor with in-situ analog arithimetic in crossbars. ACM SIGARCH
Chi, P, Li, 5., Xu, C, Zhang, T., Zhao, 1., Liu, Y., Wang, Y. and Xie, ¥., 2016, June. Prime: A novel processing-in-memaory architecture for neural network

computation in reram-bosed main memory. In ACM 5IGARCH
= 39 Chen, ¥, Luo, T, Liu, 5., Zhang, 5., He, L, Wang, 1, Li, L., Chen, T, Xu, Z, 5un, N. and Temam, Q., 2014, December. Dadignnao: A machine-learning fr XI I_I NX
supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE Computer Society. - ¥



DNN requirements

> Throughput

> Latency

> Energy EoeilH -
> Power 50ms Latency Response
> Cost

CPU/GPU

For high throughput, must
wait for multiple inputs
before processing begins

EHED >

3ms Latency Response

FPGA/ACAP

Processing 2 Result 1

Each input is
processed
immediately
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> Optimized hardware acceleration of both Al inference and other performance-critical
functions by tightly coupling custom accelerators into a dynamic architecture silicon
device.

> This delivers end-to-end application performance that is significantly greater than a fixed-
architecture Al accelerator like a GPU;

Xilinx — Matched Throughput GPU & CPU - Mismatched Throughput

Performance Al Performance Performance Al Performance
Critical Functions Inference Critical Functions Critical Functions Inference Critical Functions
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Roofline

Theoretical Peak Performance —

Application

=
L7 ]
-8 1
: |
log | |5 Memory Bound
L
axes || £
-
S
g

Number of Operations per Read/Write Byte in Memory

10 100 /1000 10000 100000
Arithmetic Intensity (OP5/Byte)
TPUw1 TPUVZ - 1chip —\100 —P100 —P4 —P4a0

*Williams, 5., Waterman, A. and Patterson, D., 2009,
>> 27 Roofline: an insightful visual performance model for multicare architectures. Communications of the ACM



Adaptive to new models

Al Models Are Rapidly Evolving

80
Al Classification
Model Innovation*
70
60
50
¢ &
13;@\ ~|~‘~“"H§'b AW et mﬁ‘ﬁt B“@cﬁ'ﬁ o o o PO NS o b e A P
NG 487 P e e ROt ¥
‘.‘}"?.tle Gd::@ ?"aﬁ ?_ef.-. E'r: {.LBE’ 1;.1_@5 \ﬂcﬁdoi:cp‘?gaﬂgaﬁ ?gﬁﬂ;&@\.‘l} A ot
\;\\}
2012 » 2018

Adaptable silicon allows Domain-Specific Architectures (DSAs) to be updated,
optimizing the latest Al models without needing new silicon



FPGASs for DNN

> The XxDNN processing engine has A s
dedicated execution paths for each type |
of command (download, conv, pooling,
element-wise, and upload). This allows for

Image Queue | I I

I Instruction Buffer |

convolution commands to be run in aal .
parallel with other commands if the E 2
. o =
network graph allows it e : Systolic Anray
Filter % - % ™
Coneatenation g u:,j
E}L N -
Comy 3x3 Conv 5x5 Conv 1x1 T '
1 ¥ ' 1 !
Conv 1x1 I‘: o | Bias | | Bias | | Bias | | Bias |
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Figure 2: Inception Layer in GooglLeNet v1 WP504_01_082418



DNN layers
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https://www.Xxilinx.com/publications/events/machine-learning-live/colorado/HotChipsOverview. pdf
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CPU-FPGA

> Even though the xDNN processing engine supports a wide range of CNN
operations, new custom networks are constantly being developed—and
sometimes, select layers/instructions might not be supported by the engine in the
FPGA. Layers of networks that are not supported in the xDNN processing engine
are identified by the xfDNN compiler and can be executed on the CPU. These
unsupported layers can be in any part of the network—beginning, middle, end, or in

FPGA or CPU FPGA CPU . FPGA CPU
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Figure 5: Processing Partitioned by the Compiler



CPU-FPGA

> networks and models are prepared for deployment on XxDNN through Caffe,
TensorFlow, or MxNet.

> FPGA supports layers for xDNN while running unsupported layers on the CPU.
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Figure 7: xfDNN Flow Diagram



Optimized architecture

> Network optimization by fusing layers, optimizing memory dependencies in the
network, and pre-scheduling the entire network. This removes CPU host control

bottlenecks.
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Figure 9: xfDNN Compiler Optimizations



DNN tradeoffs

ImageNet Classification Top5% vs Compute Cost
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Precision vs Performance vs power

Reducing Precision Inherently Saves Power
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Lis W Design Space trade offs

Reduced Precision can provide better accuracy and lower
hardware cost for specific accuracy targets

In order to find optimal solutions, solution space needs to be
considered and allow for algorithmic freedom




Table I: FPGA and GPU comparison breal

Runtime (s) pert/W

Kernel FPGA GPU ratio ratio |
Hotspot 88,593 12,097 0.14 0.59
GICOV 148 438 2.97 7.76
Dilate 234 347 1.4% 4.51
MGVF 89,715 11,816 0.13 0.50
SRAD 1,950 1,790 0.92 4.52
BP-1 536 371 0.69 3.10
BP-2 1,995 358 0.18 0.58
StepFactor 4,004 607 0.15 0.58
Flux 145 11 0.08 0.35
LUD 181,055 9,042 0.05 0.17
Kmeans 16,975 3,211 0.19 0.62
KNN 2,538 258 0.10 0.32
SC 15,464 1,187 0.08 0.35
NW 48 362 7.54 19.29
PF 28,750 24,680 0.86 2.85

J. Cong et al., Understanding Performance Differences of FPGAs and GPUs



S \Winners

Feature
DNN Training
DNN Inference

Large data analysis

Timing latency
Processing/Watt
Processing/S$
Interfaces

Backward compatibility

Ease of change
Customization
Size

Development

Analysis
GPU floating point capabilities are greater
FPGA can be customized, and has lower latency
CPUs support largest memory and storage capacities. FPGAs
are good for inline processing.
Algorithms implemented on FPGAs provide deterministic
timing, can be an order of magnitude faster than GPUs
Customized designs can be optimal
GPUs win because of large processing capabilities. FPGA
configurability enables use in a broader acceleration space.
FPGA can implement many different interfaces
CPUs have more stable architecture than GPUs. Migrating
RTL to new FPGAs requires some work.
CPUs and GPUs provide an easier path to changes to
application functionality.
FPGAs provide broader flexibility
CPU and FPGA’s lower power consumptions leads to smaller
volume solutions
CPUs are easier to program than GPUs, both easier than FPGA

Figure 3 Summary of CPU, GPU, and FPGA comparison
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https://www.semanticscholar.org/paper/Unified-Deep-Learning-with-CPU%2C-GPU%2C-and-FPGA-Rush-Sirasao/64c8428e93546479d44a5a3e44cb3d2553eab284#extracted



https://www.semanticscholar.org/paper/Unified-Deep-Learning-with-CPU%2C-GPU%2C-and-FPGA-Rush-Sirasao/64c8428e93546479d44a5a3e44cb3d2553eab284#extracted

Links, more Info

FPGA-based Accelerators of Deep
Learning Networks for Learning and
Classification: A Review

AHMAD SHAWAHNA', SADIQ M. SAIT" 2, (Senior Member, IEEE), AND AIMAN EL-MALEH',
=, (Member, IEEE)



