Computer History \& Computer Characteristics

Prof. Dimitrios Soudris

dsoudris@microlab.ntua.gr

Integrated Circuit

In 1959 both parties applied for patents. Jack Kilby and Texas Instruments received U.S. patent \#3,138,743 for miniaturized electronic circuits. Robert Noyce and the Fairchild Semiconductor Corporation received U.S. patent \#2,981,877 for a silicon based integrated circuit. The two companies wisely decided to cross license their technologies after several years of legal battles, creating a global market now worth about $\$ 1$ trillion a year.
"What we didn't realize then was that the integrated circuit would reduce the cost of electronic functions by a factor of a million to one, nothing had ever done that for anything before" - Jack Kilby

The USA patent for the first integrated circuit

June 23, 1964

J. S. KiLBy

3,138,743 KINIATURIZED ELDCTRONIC CIRCUITS
Filed Feb. 6, 1959
4 Sheets-Sheet 2

Computing at Manchester after WWII Mark I

The University of Manchester made a considerable contribution to the development of computing. They produced the first stored program computer, the first floating point machine, the first transistor computer and the first computer to use virtual memory.

Right Images of Mark 1 the computer built at Manchester
University after WWII
Above Kilburn and Williams at the Manchester Mark 1 Console http://www.computer50.org/kgill/index.html

ENIAC

U.S. Army Computer @ University of Pennsylvania

o ENIAC contained approximately 18,000 vacuum tubes, 70,000 resistors, 10,000 capacitors, and 6,000 switches.
o It was 100 feet long, 10 feet high, and 3 deep. It consumed 140 kilowatts of power.

The Transistor

John Bardeen, Walter Brattain and William Shockley discovered the transistor effect and developed the first device in December 1947, while the three were members of the technical staff at Bell Laboratories in Murray Hill, NJ. They were awarded the Nobel Prize in physics in 1956.

Developed as a replacement for bulky and inefficient vacuum tubes and mechanical relays, the transistor later revolutionized the entire electronics world.

The MOS Transistor

Cross-Section of CMOS Technology

Intel

1950's: Shockley leaves Bell Labs to establish Shockley Labs in California. Some of the best young electronic engineers and solid-state physicists come to work with him. These include Robert Noyce and Gordon Moore.

1969: Intel was a tiny start-up company in Santa Clara, headed by Noyce and Moore.

1970: Busicom placed an order with Intel for custom calculator chips. Intel had no experience of custom-chip design and sets outs to design a general-purpose solution.

1971: Intel have problems translating architectures into working chip designs - the project runs late.

Faggin joins Intel and solves the problems in weeks.
The result is the Intel 4000 family (later renamed MCS-4, Microcomputer System 4bit), comprising the 4001 (2k ROM), the 4002 (320-bit RAM), the 4003 (10 -bit I/O shift-register) and the 4004, a 4-bit CPU.

Moore's Law

Dr. Gordon E. Moore co-
founded Intel in 1968.
His observation that number
of transistors doubled every
two years became known as
"Moore's Law"

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

[^0]
Intel Microprocessor - 286

Intel 4004 Micro-Processor

Intel Microprocessor - 386

Intel Microprocessor - Pentium III

Intel Microprocessor - Pentium III

Intel Duo and Quad

Intel Quad Core Nehalem
Die size 265 mm 2

19.6 mm

731 million transistors
8 MB L3 plus $4 \times 0.5 \mathrm{MB}$ L2
128 bit DDR 3 bus and $2 x$ Quick patch I/O Branch pred. and prefetchers doubled for SMT? Reworked SSE / FP
Single core Eize: ~29.6 mm2
L 2 and L 3 cache tiles: $\sim 5.8 \mathrm{~mm} 2 / \mathrm{MB}$ (excl.tags)
www.chip-architect.com rev.4: Oct 15,2007

INTEL i7 core

ARM Eлєڭعрүабтńs

Advanced Bus Interface Unit

Елє§єрүабтท́ৎ Cell үıа Playstation3

Cell Broadband Engine Processor

Transistor cost

Design criteria of Digital Integrated Circuits

\square Performance (or speed)
\square Silicon Area

\square Power consumption
\square Temperature - Heat Dissipation

Memory $=$ Performance Bottleneck

Y-Chart - Domaino\& Designlevels

Prof. Diphysigal Somains, ECE, NTUA

[^0]: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

