
1

Προηγμένη Αρχιτεκτονική Υπολογιστών

Στατικές Αρχιτεκτονικές Παραλληλισμού

Επιπέδου Εντολής – Τεχνικές Λογισμικού

Νεκτάριος Κοζύρης & Διονύσης Πνευματικάτος

{nkoziris,pnevmati}@cslab.ece.ntua.gr

8ο εξάμηνο ΣΗΜΜΥ ⎯ Ακαδημαϊκό Έτος: 2019-20

http://www.cslab.ece.ntua.gr/courses/advcomparch/

2

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to maximize IPC (or minimize CPI)
 Pipeline CPI =

 Ideal pipeline CPI +

 Structural stalls +

 Data hazard stalls +

 Control stalls

 Parallelism within basic block is limited
 A code sequence:

 no branch in except to the entry & no branch out except at the
exit

 Typical size of basic block = 3-6 instructions

 Must optimize across branches

3

Data Dependence

 Loop-Level Parallelism (plenty in many cases)
 Unroll loop statically or dynamically

 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if

 Instruction i produces a result that may be used by instruction j

 Instruction j is data dependent on instruction k and instruction k
is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

4

Getting CPI below 1 (superscalar)
 CPI ≥ 1 if issue only 1 instruction every clock cycle

 Multiple-issue processors come in 3 flavors:

 statically-scheduled superscalar processors,

 dynamically-scheduled superscalar processors, and

 VLIW (very long instruction word) processors

 Also, Vector, SIMD…

 2 types of superscalar processors issue varying numbers of

instructions per clock

 use in-order execution if they are statically scheduled, or

 out-of-order execution if they are dynamically scheduled

 VLIW processors, issue a fixed number of instructions

formatted either as one large instruction or as a fixed

instruction packet with the parallelism within instructions

explicitly indicated by the instruction (Intel/HP Itanium)

5

Static Multiple Issue

 Issue >1 instructions per cycle (multiple parallel
pipelines)

 Examine all the dependencies among the
instructions in the bundle

 If no dependencies exist in bundle, execute

 If there are, issue only independent

Easier/cheaper

 Limit the classes of instructions that can be
parallel
 i.e. one FP, one scalar, etc

6

Static Multiple Issue

7

Example

Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

8

Getting CPI < 1: Issuing Multiple Instructions/Cycle

 Superscalar MIPS: 2 instructions, 1 FP & 1 anything

– Fetch 64-bits/clock cycle; Int on left, FP on right

– Can only issue 2nd instruction if 1st instruction issues

– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages

Int. instructionIF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

 1 cycle load delay expands to 3 instructions in SS

 instruction in right half can’t use it, nor instructions in next

slot

9

Multiple Issue Details
 issue packet: group of instructions from fetch unit

that could potentially issue in 1 clock

 If instruction causes structural or a data hazard either

due to earlier instruction in execution or to earlier

instruction in issue packet, then instruction cannot issue

 0 to N instruction issues per clock cycle, for N-issue

 Performing issue checks in 1 cycle could limit

clock cycle time: O(n2-n) comparisons

 => issue stage usually split and pipelined

 1st stage decides how many instructions from within this

packet can issue, 2nd stage examines hazards among

selected instructions and those already been issued

 => higher branch penalties => prediction accuracy

important

10

Multiple Issue Challenges
 While Integer/FP split is simple for the HW, get CPI of 0.5

only for programs with:
 Exactly 50% FP operations AND No hazards

 If more instructions issue at same time, greater difficulty of
decode and issue:
 Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide

if 1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)

 Register file: need 2xN reads and 1xN writes/cycle

 Rename logic: must be able to rename same register multiple times
in one cycle (multiple registers too)! Consider 4-way issue:

add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!

 Result buses: Need to complete multiple instructions/cycle

 So, need multiple buses with associated matching logic at every
reservation station.

 Or, need multiple forwarding paths

11

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the source

instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

12

FP Loop: Where are the Hazards?

for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

To simplify assume:

 8 is lowest address

 R1 = base address of X

 F2 = s

Loop:L.D F0,0(R1) ;F0=vector element

ADD.D F4,F0,F2 ;add scalar from F2

S.D 0(R1),F4 ;store result

DADDUI R1,R1,-8 ;decrement pointer 8B(DW)

BNEZ R1,Loop ;branch R1!=zero

13

FP Loop Showing Stalls

Cost: 9 clock cycles

Can we rewrite the code to minimize stalls?

1 Loop: L.D F0,0(R1) ;F0=vector element

2 stall

3 ADD.D F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)

8 stall ;assumes can’t forward to branch

9 BNEZ R1,Loop ;branch R1!=zero

14

Revised FP Loop Minimizing Stalls

Swap DADDUI and S.D by changing address of S.D

1 Loop: L.D F0,0(R1)

2 DADDUI R1,R1,-8

3 ADD.D F4,F0,F2

4 stall

5 stall

6 S.D 8(R1),F4 ;fix offset after DADDUI

7 BNEZ R1,Loop

7 clock cycles: 3 for execution (L.D, ADD.D,S.D)

and 4 for loop overhead. How to make faster?

15

Unroll Loop Four Times (Simple way)

Rewrite loop
to minimize

stalls?

1 Loop:L.D F0,0(R1)

3 ADD.D F4,F0,F2

6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ

7 L.D F6,-8(R1)

9 ADD.D F8,F6,F2

12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ

13 L.D F10,-16(R1)

15 ADD.D F12,F10,F2

18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ

19 L.D F14,-24(R1)

21 ADD.D F16,F14,F2

24 S.D -24(R1),F16

25 DADDUI R1,R1,#-32 ;alter to 4*8

26 BNEZ R1,LOOP

Assumes R1 is multiple of 4: 14 instructions vs 28!

27 clock cycles, or 6.75 per iteration

1 cycle stall

2 cycles stall

16

Unrolled Loop That Minimizes Stalls

1 Loop:L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 S.D 8(R1),F16 ; 8-32 = -24

14 BNEZ R1,LOOP

14 instructions, 14 clock cycles, or 3.5 per iteration

No stalls?

17

Unrolled Loop Details
 Do not usually know upper bound of loop

 Suppose it is n, and we would like to unroll the loop to

make k copies of the body

 Instead of a single unrolled loop, we generate a pair of

consecutive loops:

 1st executes (n mod k) times and has a body that is the original

loop

 2nd is the unrolled body surrounded by an outer loop that iterates

(n/k) times

 For large values of n, most of the execution time will be

spent in the unrolled loop

 Called “Strip mining”

 Versioning the code: different sequences for different

cases/conditions/…

18

5 Loop Unrolling Decisions
Requires understanding how one instruction depends

on another and how the instructions can be changed

or reordered given the dependences:
 Determine loop unrolling useful by finding that loop iterations were

independent (except for maintenance code)

 Use different registers to avoid unnecessary constraints forced by

using same registers for different computations

 Eliminate the extra test and branch instructions and adjust the loop

termination and iteration code

 Determine that loads and stores in unrolled loop can be

interchanged by observing that loads and stores from different

iterations are independent

• Transformation requires analyzing memory addresses and

finding that they do not refer to the same address

 Schedule the code, preserving any dependences needed to yield

the same result as the original code

20

3 Limits to Loop Unrolling
1) Decrease in amount of overhead amortized with

each extra unrolling
 Remember Amdahl’s Law

2) Growth in code size
 For larger loops, it increases the instruction cache miss

rate

 Code size important for embedded devices

3) Register pressure: potential shortfall in registers

created by aggressive unrolling and scheduling
 If not possible to allocate all live values to registers, may

lose some or all of its advantage

 Loop unrolling reduces impact of branches on

pipeline; another way is branch prediction

21

Another possibility: Software Pipelining

 Observation: if iterations from loops are

independent, then can get more ILP by taking

instructions from different iterations

 Software pipelining: reorganizes loops so that

each iteration is made from instructions chosen

from different iterations of the original loop
Iteration

0 Iteration
1 Iteration

2 Iteration
3 Iteration

4

Software-
pipelined
iteration

22

S/W Pipelining: prolog/epilogue
for i = 1 to bignumber

A(i)

B(i)

C(i)

End

Prologue: A(1), A(2), B(1)

for i = 1 to (bignumber – 2)

A(i+2)

B(i+1)

C(i)

End

Epilogue: B(10) C(9), C(10)

Main loop body very
small!

Assume: A, B, C
independent

23

SW Pipelining

Source code:
for(i=2; i<n;i++)

a[i] = a[i-3] + c;

loada
add

store

incra3
incra

dependence spans

three iterations

“distance = 3”

Assembly:

load

add

store

incra3
incra

load

add

store

incra3
incra

load

add

store

incra3
incra

load

add

store

incra3
incra

load

add

store

incra3
incra

load

add

store

incra3
incra

kernel

1 cycle

Pipeline
Initiation Interval (II)

Software Pipelining Example

Before: Unrolled 3 times

1 L.D F0,0(R1)

2 ADD.DF4,F0,F2

3 S.D 0(R1),F4

4 L.D F6,-8(R1)

5 ADD.DF8,F6,F2

6 S.D -8(R1),F8

7 L.D F10,-16(R1)

8 ADD.DF12,F10,F2

9 S.D -16(R1),F12

10 DSUBUI R1,R1,#24

11 BNEZ R1,LOOP

After: Software Pipelined

1 S.D 0(R1),F4 ; Stores M[i]

2 ADD.D F4,F0,F2 ; Adds to M[i-1]

3 L.D F0,-16(R1); Loads M[i-2]

4 DSUBUI R1,R1,#8

5 BNEZ R1,LOOP

Symbolic Loop Unrolling

– Maximize result-use distance

– Less code space than unrolling

– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

o
v
e

rl
a

p
p

e
d

 o
p

s

Time

Time

5 cycles per iteration

25

When Safe to Unroll Loop?
 Example: Where are data dependencies?

(A,B,C distinct & nonoverlapping)
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 S2 uses the value A[i+1] computed by S1 in the same

iteration

 S1 uses a value computed by S1 in an earlier iteration, since

iteration i computes A[i+1] which is read in iteration i+1. The

same is true of S2 for B[i] and B[i+1]

This is a “loop-carried dependence”: between iterations

 For the previous example each iteration was distinct

 Implies that iterations can’t be executed in parallel, right????

26

Loop-carried dependence => no parallelism?

 Consider:

for (i=0; i< 8; i=i+1) {

A = A + C[i]; /* S1 */

}

Could compute:

“Cycle 1”: temp0 = C[0] + C[1];

temp1 = C[2] + C[3];

temp2 = C[4] + C[5];

temp3 = C[6] + C[7];

“Cycle 2”: temp4 = temp0 + temp1;

temp5 = temp2 + temp3;

“Cycle 3”: A = temp4 + temp5;

 Relies on associative nature of “+”.

 See “Parallelizing Complex Scans and Reductions” by Allan Fisher

and Anwar Ghuloum

27

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:

 One integer instruction (or branch)

 Two independent floating-point operations

 Two independent memory references

 Must be enough parallelism in code to fill the

available slots

Memory

Reference #1

Memory

Reference #2

FP Operation

#1

FP Operation

#2

Integer

Operation/Branch

28

VLIW Processors

 Disadvantages:
 Statically finding parallelism

 Code size (store even empty slots)

 No hazard detection hardware

 Binary code compatibility?
 What happens to the code for a new, bigger, better model?

29

VLIW: Very Large Instruction Word
 Each “instruction” explicitly codes multiple operations

 In IA-64, grouping called a “packet”

 In Transmeta, grouping called a “molecule” (with “atoms”

as ops)

 Tradeoff instruction space for simple decoding

 The long instruction word has room for many operations

 By definition, all the operations the compiler puts in the

long instruction word are independent => execute in

parallel

 E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1

branch

 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

 Compiler must schedule across several branches

30

Recall: Unrolled Loop Minimizes Stalls for Scalar

1 Loop: L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle

ADD.D to S.D: 2 Cycles

31

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1

L.D F10,-16(R1) L.D F14,-24(R1) 2

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6

S.D -16(R1),F12 S.D -24(R1),F16 7

S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8

S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

32

Problems with 1st Generation VLIW

 Increase in code size
 generating enough operations in a straight-line code fragment

requires ambitiously unrolling loops

 whenever VLIW instructions are not full, unused functional units

translate to wasted bits in instruction encoding

 Operated in lock-step; no hazard detection HW
 a stall in any functional unit pipeline caused entire processor to

stall, since all functional units must be kept synchronized

 Compiler might predict function units, but caches hard to predict

 Binary code compatibility
 Pure VLIW => different numbers of functional units and unit

latencies require different versions of the code

33

Solutions to these Problems

 Smaller “packets” that express

independence
 Code Efficiency (stop early if no independent instructions)

 Portability (can express too much parallelism that a future

implementation can exploit)

 More registers, special registers, compiler techniques

 Better code (utilization)

 Dynamic decisions

 No lock-step, but more complex!

34

Multiple Issue

