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1 Overview 
This document describes the format of ASCII character streams used to describe a dynamic control-

flow graph (DCFG) and supporting data from the execution of one or more processes on a computer 

processor. The adjective “dynamic” indicates that the nodes and edges reflect the actual paths 

traversed during execution, not all possible paths in the processes. Also, the format contains counts 

of nodes and edges from a specific execution, not just static structural data. 

1.1 Data-interchange format 

The character stream conforms to the JSON format described at http://www.json.org. An established 

format was chosen to simplify the process of creating tools for encoding and decoding. Many JSON 

parsers are available in various programming languages. JSON was also chosen because of its 

simplicity and ease of storing hierarchical and array-based data, both of which are prevalent in DCFG 

data. (XML was specifically not used because it does not have an efficient way to store arrays.) 

The format does not specify the container for the stream. It could be stored in memory, saved in a 

file (with or without text-compression), transmitted inter-process, etc. 

1.2 Conventions 

The following conventions are used to standardize some common idioms: 

1.2.1 Hex values 

JSON provides only base-10 integer and floating-point number encoding natively. Many values in the 

DCFG are almost always displayed in base-16 (hex) format in other tools, such as disassemblers. 

Certainly, all values could be stored in base-10 and converted by parsers, but this makes human-

reading of the values and manual correlation with other tools difficult. Thus, it is legal for numerical 

values to be stored as strings in C-style encoding. Example: “0x400000” is equivalent to the decimal 

value 4194304, the default load address for binaries in Linux. 

Important: Certain values (like addresses) are typically stored as hex strings, and certain values (like 

sizes and counts) are typically stored as integers, but this is not enforced. Parsers should recognize 

both hex strings and native integers anywhere an integer is required. In the remainder of this 

document, the term “integer” will be used to indicate that a number can be stored in either format. 

1.2.2 Tables 

JSON does not provide a native table type. Tables of data are common in the DCFG format, and the 

following convention is used throughout.  

Tables are stored as two levels of nested arrays. The outer array holds the columns, and the inner 

arrays hold the rows. The first row contains a header for the table, consisting of an array of strings 

indicating what is contained in each following data row. This is similar to data in a spreadsheet with a 

header row. Example: 

[ [ "EMPLOYEE_ID", "NAME" ], 

  [ 1234, "MARY" ], 

  [ 5678, "BOB" ], 

http://www.json.org/
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  [ 9874, "IGOR" ] 

] 

Notes: 

o An element in a table can be any JSON value, including objects (key-value pairs) and other 

arrays and tables. This allows arbitrary construction of complex hierarchical structures 

including tables. 

o Some values in some tables are optional, so the data arrays do not all have to be the same 

length. Any given row must consist of all provided values in a continuous sequence from the 

beginning. In other words, a value cannot be omitted and then followed on the same row by 

another value. 

o Important: When reading, use the header to determine the column of particular data items, 

not the absolute column position. 

1.2.3 ID numbers 

Integer ids are numbers assigned to uniquely identify different elements in a set. They range 

between one (1) and 0x7fffffff, inclusive, unless otherwise noted. Negative numbers, zero (0) 

and numbers greater than or equal to 0x80000000 are reserved. Parsers should always read the ids 

and never assume values. In addition, there should not even be an assumption that ids 

corresponding to the same element in different DCFG streams will be the same. (This does not hold 

for paired DCFG and DCFG-traces, where ids are shared.) 

1.2.4 JSON objects 

JSON objects contain key-value pairs, where the key must be a string. To reduce ambiguity, especially 

in the case where objects are loaded into map data structures with unique keys, keys will not be 

repeated in a given object. Parsers should not rely on any particular order of key-value pairs shown in 

examples in this document or elsewhere. 

1.2.5 Tags and table headers 

Pre-defined strings are used as keys in JSON objects and in table headers. These strings consist only 

of upper-case letters, numbers and underscores. Example: “LOAD_ADDRESS” is used to tag the load 

address for an image. An effort has been made to maintain consistency. For example, “item_COUNT” 

is used to indicate a dynamic count of some type of item, and “NUM_items” is used for a static 

count. An effort has also been made to use abbreviations consistently and not gratuitously. Common 

abbreviations include, but are not limited to, the following: 

Abbreviation Expansion 

ADDR Address. 

INSTR Instruction. 

ID Identifier (integer). 
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1.2.6 White space 

Per JSON specifications, white space between tokens and values is optional and ignored. Specifically, 

parsers should not rely on any values being on the same or different lines as any other values. 

2 DCFG contents 
The DCFG format allows storage of information on processes, including their constituent images, 

symbols, debug data, and control-flow graph defined by a specific execution of the processes. 

2.1 Example 

Following are excerpts from a DCFG describing a simple “Hello, World” program: 

{ "MAJOR_VERSION" : 1, 

  "MINOR_VERSION" : 0, 

  "FILE_NAMES" : [ 

    [ "FILE_NAME_ID", "FILE_NAME" ], 

    [ 1, "hello-world" ], 

    [ 2, "\/lib64\/ld-linux-x86-64.so.2" ], ...], 

  "EDGE_TYPES" : [ 

    [ "EDGE_TYPE_ID", "EDGE_TYPE" ], 

    [ 1, "ENTRY" ], 

    [ 2, "EXIT" ], 

    [ 3, "CALL" ], ...], 

  "SPECIAL_NODES" : [ 

    [ "NODE_ID", "NODE_NAME" ], 

    [ 1, "START" ], [ 2, "END" ] ], 

  "PROCESSES" : [ 

    [ "PROCESS_ID", "PROCESS_DATA" ], 

    [ 13723, 

      { "INSTR_COUNT_PER_THREAD" : [ 1867502 ], 

        "INSTR_COUNT" : 1867502, 

        "IMAGES" : [ 

          [ "IMAGE_ID", "LOAD_ADDR", "SIZE", "IMAGE_DATA" ], 

          [ 1, "0x400000", 2112944, 

            { "FILE_NAME_ID" : 1, 

              "SYMBOLS" : [ 

                [ "NAME", "ADDR_OFFSET", "SIZE" ], 

                [ "main", "0xdd0", 128 ], ...], 

              "SOURCE_DATA" : [ 

                [ "FILE_NAME_ID", "LINE_NUM", 

                  "ADDR_OFFSET", "SIZE", "NUM_INSTRS" ], 

                [ 8, 25, "0xb28", 4, 1 ], 

                [ 8, 26, "0xb2c", 5, 1 ], ...], 

              "BASIC_BLOCKS" : [ 

                [ "NODE_ID", "ADDR_OFFSET", "SIZE", 

                  "NUM_INSTRS", "LAST_INSTR_OFFSET", "COUNT" ], 

                [ 4, "0xb28", 9, 2, 4, 1 ], 

                [ 5, "0xb31", 5, 2, 4, 1 ], 

                [ 6, "0xb40", 12, 2, 6, 10 ], ...], 
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              "ROUTINES" : [ 

                [ "ENTRY_NODE_ID", "EXIT_NODE_IDS", 

                  "NODES", "LOOPS" ], 

                [ 90, 

                  [ 90, 93, 95 ], 

                  [ [ "NODE_ID", "IDOM_NODE_ID" ], 

                    [ 90, 90 ], [ 91, 90 ], [ 92, 91 ], 

                    [ 93, 92 ], [ 94, 93 ], [ 95, 91 ] ], 

                  [ [ "LOOP_HEAD_NODE_ID", 

                      "LOOP_BACK_EDGE_SOURCE_NODE_IDS", 

                      "LOOP_NODE_IDS", 

                      "PARENT_LOOP_HEAD_NODE_ID" ], 

                    [ 93, [ 94 ], [ 93, 94 ] ] ] 

                ], ...] 

            } ], ...] 

        }, 

        "EDGES" : [ 

          [ "EDGE_ID", "SOURCE_NODE_ID", "TARGET_NODE_ID", 

            "EDGE_TYPE_ID", "COUNT_PER_THREAD" ], 

          [ 2887, 1741, 1742, 16, [ 1 ] ], 

          [ 1357, 665, 676, 13, [ 3 ] ], 

          [ 2888, 2424, 2069, 6, [ 1 ] ], ...] 

    ] 

  ] 

} 

Each of the different types of elements is described in one of the following sections. 

2.2 Top-level structure 

The top-level JSON value is an object (sequence of key-value pairs). 

The major sections of the DCFG stream are tagged in the top-level object. They are listed briefly 

below and are expanded in the remainder of this document: 

 Format version. 

 Lists of identifiers (ids) used to reference strings later in the stream: file names, edge types, 

and special nodes. 

 The following data on each process: 

o Process ID. 

o Total and per-thread instruction counts. 

o List of images (i.e., binaries and shared objects): 

 Load address and size. 

 Filename id. 

 List of symbols. 

 Source-file and line-number debug data. 

 List of basic block nodes. 

 List of routines and their constituent loops. 

o List of edges, including their trip-counts per thread. 
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Example top-level object: 

{ "MAJOR_VERSION" : 0, 

  "MINOR_VERSION" : 6, 

  "FILE_NAMES" : […], 

  "EDGE_TYPES" : […], 

  "SPECIAL_NODES" : […], 

  "PROCESSES" : […], 

} 

Most of these sections and sub-sections are optional as noted below. Specifically, even though this 

format is referred to as the “DCFG” format, the control-flow graph is optional; the format can be 

used to store other useful information such as processes, images, symbols and debug data. 

2.3 Version 

The major and minor versions of the file format are listed as two separate tags in the top-level object. 

Top-level tag Value 

MAJOR_VERSION Integer. 

MINOR_VERSION Integer. 

The intention is that the DCFG format will be both backward and forward-compatible as much as 

possible. Backward compatibility means that future versions should not change the pre-defined tags 

or remove non-optional data. Forward compatibility means that additions should be done in a way 

such that parsers for existing formats should be able to read future formats if they ignore unknown 

tags. 

If compatibility is broken, or if a major new feature is added, the major version number should be 

incremented and the minor version number reset to zero. Otherwise, if any other format change is 

made, the minor version number should be incremented. 

When converted to text, the major version and minor versions are separated by a dot (“.”), and the 

minor version should be displayed as two digits to allow up to 99 minor versions without confusion 

due to decimal place value, e.g., 2.03 precedes 2.12. 

Example: 

"MAJOR_VERSION" : 3, 

"MINOR_VERSION" : 4, 

Indicates version 3.04. 

2.4 File names 

The list of file names is used to save space by allowing file names to be later referred to by their 

integer identifiers rather than long strings that might otherwise need to be repeated many times. 

Top-level tag Value 
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FILE_NAMES File-name table (see below and section 1.2.2). 

File-name table: 

Table heading Value 

FILE_NAME_ID Integer id (see section 1.2.3). 

FILE_NAME String containing full path of file if known. 

Example: 

"FILE_NAMES" : 

 [ [ "FILE_NAME_ID", "FILE_NAME" ], 

   [ 2, “\/usr\/joe\/src\/misc\/hello-world" ], 

   [ 5, "\/lib64\/libgcc_s.so" ], 

   [ 4, “\/usr\/joe\/src\/misc\/hello-world.c" ], 

 ] 

Notes: 

o As with all strings, special characters are escaped per JSON string-formatting rules. 

o Parsers should not assume that ids start with one or are sequential or are in any particular 

order. 

o All file names used in the DCFG stream are stored in the same table, including those for 

images and source files. 

o This table is optional. If it is not present, no file names can be referenced in the remainder of 

the data. 

2.5 Edge types 

The list of edge types is used to save space by allowing edge types to be later referred to by their 

integer identifiers rather than strings that would otherwise need to be repeated many times.  

Top-level tag Value 

EDGE_TYPES Edge-type table (see below and section 1.2.2). 

Edge-type table: 

Table heading Value 

EDGE_TYPE_ID Integer id (see section 1.2.3). Important: the ID number 
assigned to any given edge type is valid only within a 
DCFG and is not necessarily the same between any two 
DCFGs. 

EDGE_TYPE String containing pre-defined edge type (see below). 
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Pre-defined edge-type strings: 

Edge-type string value Meaning 

ENTRY First edge traversed in the DCFG. This will be from the 
START node to the first basic block node executed. 

EXIT Last edge traversed in the DCFG. This will be from the 
last basic block node executed to the END node. 

BRANCH Any unknown type of branch. 

CONDITIONAL_BRANCH Any type of conditional branch (direct or indirect). This is 
the “taken” edge. 

UNCONDITIONAL_BRANCH Any type of unconditional branch (direct or indirect). 

DIRECT_BRANCH Any type of direct branch (conditional or not). 

INDIRECT_BRANCH Any type of indirect branch (conditional or not). 

DIRECT_CONDITIONAL_BRANCH A direct, conditional branch. 

INDIRECT_CONDITIONAL_BRANCH An indirect, conditional branch. 

DIRECT_UNCONDITIONAL_BRANCH A direct, unconditional branch. 

INDIRECT_UNCONDITIONAL_BRANCH An indirect, unconditional branch. 

REP An edge indicating an instruction with a “REP” prefix is 
repeated. This edge will be from the instruction with the 
“REP” prefix back to itself. 

FALL_THROUGH An edge indicating the instruction at the next address 
was executed. This occurs at the end of any basic block 
that does not end in a control-flow instruction. It also 
occurs after conditional branches as the not-taken path. 

CALL Any unknown type of call. 

DIRECT_CALL A direct call, i.e., one using a static address. 

INDIRECT_CALL An indirect call, i.e., one using a dynamic address. 

RETURN A return, usually from a called routine. 

CALL_BYPASS A “fabricated” edge from the caller’s basic block to the 
basic block at the return site. It indicates the control 
flow within a routine without following CALL edges. This 
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is useful for implementing various control-flow and 
graph-traversal algorithms. 

SYSTEM_CALL A special call to a system routine. 

SYSTEM_RETURN A return from a system routine. 

SYSTEM_CALL_BYPASS A “fabricated” edge similar to CALL_BYPASS, except for 
system calls. 

CONTEXT_CHANGE An edge created from any non-control-flow instruction 
(e.g., a hardware interrupt or a faulting instruction) to a 
hander. 

CONTEXT_CHANGE_RETURN A return from the context-change handler. 

CONTEXT_CHANGE_BYPASS A “fabricated” edge similar to CALL_BYPASS, except for 
context-change handlers. 

EXCLUDED_CODE_BYPASS A “fabricated” edge used to maintain control flow when 
excluding a region of code from the CFG, e.g., when 
skipping over spin-wait loops. 

UNKNOWN Any unknown type of edge. 

 

Example: 

"EDGE_TYPES" : 

  [ [ "EDGE_TYPE_ID", "EDGE_TYPE" ], 

    [ 1, "ENTRY" ], 

    [ 2, "EXIT" ], 

    [ 3, "CALL" ], 

    [ 4, "DIRECT_CALL" ], 

    [ 5, "INDIRECT_CALL" ], 

    [ 6, "RETURN" ], 

    [ 7, "CALL_BYPASS" ], 

    [ 8, "BRANCH" ], 

    [ 9, "CONDITIONAL_BRANCH" ], 

    [ 10, "UNCONDITIONAL_BRANCH" ], 

    [ 11, "DIRECT_BRANCH" ], 

    [ 12, "INDIRECT_BRANCH" ], 

    [ 13, "DIRECT_CONDITIONAL_BRANCH" ], 

    [ 14, "INDIRECT_CONDITIONAL_BRANCH" ], 

    [ 15, "DIRECT_UNCONDITIONAL_BRANCH" ], 

    [ 16, "INDIRECT_UNCONDITIONAL_BRANCH" ], 

    [ 17, "REP" ], 

    [ 18, "FALL_THROUGH" ], 

    [ 19, "SYSTEM_CALL" ], 
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    [ 20, "SYSTEM_RETURN" ], 

    [ 21, "SYSTEM_CALL_BYPASS" ], 

    [ 22, "INTERRUPT" ], 

    [ 23, "INTERRUPT_RETURN" ], 

    [ 24, "INTERRUPT_BYPASS" ], 

    [ 25, "CONTEXT_CHANGE_BYPASS" ], 

    [ 26, "UNKNOWN_IMAGE_BYPASS" ], 

    [ 27, "UNKNOWN" ] 

  ] 

Notes: 

o Do not assume that ids start with one (1) or are sequential or are in any particular order. 

o Important: Do not assume that ids are fixed or are the same between DCFGs. For example, 

an “ENTRY” node might have id=1 in one DCFG and id=3 in another. 

o This table is optional. If it is not present, no edges can be defined in the process section. 

2.6 Special nodes 

The list of special nodes is used to save space by allowing special nodes to be later referred to by 

their integer identifiers. More it allows special nodes to be referenced similarly to the more common 

basic-block nodes. 

Top-level tag Value 

SPECIAL_NODES Special-node table (see below and section 1.2.2). 

Special-node table: 

Table heading Value 

NODE_ID Integer id (see section 1.2.3). 

NODE_NAME String containing pre-defined node (see below). 

Pre-defined node strings: 

Node string value Meaning 

START A source node for the ENTRY edge. 

END A target node for the EXIT edge. 

UNKNOWN Indicates an error in DCFG construction, so this should 
not be seen in a well-formed DCFG. 

 

Example: 

"SPECIAL_NODES" : 
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  [ [ "NODE_ID", "NODE_NAME" ], 

    [ 1, "START" ], 

    [ 2, "END" ], 

    [ 3, "UNKNOWN" ] 

 ] 

Notes: 

o Parsers should not assume that ids start with one or are sequential or are in any particular 

order. 

o Important: Parsers should not assume that ids are fixed or are the same between DCFGs. For 

example, a “START” node might have id=1 in one DCFG and id=3 in another. 

o This table is optional. If it is not present, no edges can be defined in the process section. 

2.7 Processes 

All processes are stored in this top-level tag. 

Top-level tag  Value 

PROCESSES Process table (see below and section 1.2.2). 

Process table: 

Table heading Value 

PROCESS_ID Integer corresponding to the actual process id (“PID”) 
assigned by the operating system. 

PROCESS_DATA A JSON object containing more process data (see 
section 2.8). 

Example: 

"PROCESSES" : 

  [ [ "PROCESS_ID", "PROCESS_DATA" ], 

    [ 22814, {…} ], 

    [ 958, {…} ] 

  ] 

2.8 Process Data 

All data for a process is stored in this object, which appears in the PROCESS_DATA column of the 

PROCESSES table above. The keys in the object are as follows. 

Process-object tag  Value 

INSTR_COUNT Integer: total instruction count for this process across all 
threads. 
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INSTR_COUNT_PER_THREAD Array of integers: each integer is a total instruction 
count for this process for one thread, starting with 
thread zero. The length of this array indicates the 
number of threads executed. The sum should equal the 
value in INSTR_COUNT. 

IMAGES Image table (see sections 2.9 and 1.2.2). 

EDGES Edge table (see sections 2.16 and 1.2.2). 

Example: 

{ "INSTR_COUNT" : 2134576, 

  "INSTR_COUNT_PER_THREAD" : [ 1997750, 51676, 19794, 

                               18381, 19598, 27377 ], 

  "IMAGES" : […], 

  "EDGES" : […] 

} 

2.9 Images 

All images for a given process are stored in this table, which appears after the IMAGES key in the 

process data object above.  

Image table: 

Table heading Value 

IMAGE_ID Integer id (see section 1.2.3). Unlike most IDs this can be 
zero. 

LOAD_ADDR An integer containing the base address of the image 
where it was loaded by the operating system. It will be 
32 or 64 bits, depending on the OS. 

SIZE An integer containing the size of the image, starting 
from the LOAD_ADDR. 

IMAGE_DATA A JSON object containing more image data (see section 
2.10). 

Example: 

[ [ "IMAGE_ID", "LOAD_ADDR", "SIZE", "IMAGE_DATA" ], 

  [ 1, "0x400000", 2102216, {…} ], 

  [ 2, "0x2aaaaaaab000", 1166728, {…} ] 

] 
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2.10 Image Data 

All data for a given image is stored in this object, which appears in the IMAGE_DATA column of the 

IMAGES table above. The keys in the object are as follows. All are optional. 

Image-object tag  Value 

FILE_NAME_ID Integer id from file-name table (see section 2.4). 

SYMBOLS Symbol table (see sections 2.11 and 1.2.2). 

SOURCE_DATA Source-data table (see sections 2.12 and 1.2.2). 

BASIC_BLOCKS Basic-block table (see sections 2.13 and 1.2.2). 

ROUTINES Routine table (see sections 2.14 and 1.2.2). 

Example: 

{ "FILE_NAME_ID" : 4, 

  "SYMBOLS" : […], 

  "SOURCE_DATA" : […], 

  "BASIC_BLOCKS" : […], 

  "ROUTINES" : […] 

} 

Notes: 

o During the course of execution, it is possible for a dynamically-linked process to unload one 

image and load another image such that the address spaces for these images overlap. In this 

situation, the addresses of symbols, debug data and basic blocks are not sufficient to 

uniquely identify them. Fortunately, at any given temporal point in a workload execution the 

subset of active images should have non-overlapping address regions, allowing an address to 

unambiguously correspond to a symbol, debug data and/or basic block. Unfortunately, if a 

workload employs self-modifying-code (SMC) or any other mechanism that modifies the 

code space, this might also be violated. 

2.11 Symbols 

All symbols for a given image are stored in this table, which appears after the SYMBOLS key in the 

image data object above.  

Symbol table: 

Table heading Value 

NAME String containing the symbol name. Special chars must 
be escaped per JSON specifications. 
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ADDR_OFFSET An integer containing the base address of the symbol 
relative to the load address of the containing image. 
Thus, the actual starting address of the symbol will be 
the load address of the image plus this offset. 

SIZE An integer containing the size of the symbol in bytes, 
starting from the ADDR_OFFSET. 

Example: 

[ [ "NAME", "ADDR_OFFSET", "SIZE " ], 

  [ "free", "0x127f0", 60 ], 

  [ "malloc", "0x12940", 13 ], 

  [ "calloc", "0x12a00", 9 ] 

] 

2.12 Source information 

All debug source information for a given image is stored in this table, which appears after the 

SOURCE_DATA key in the image data object above.  

Source-data table: 

Table heading Value 

FILE_NAME_ID Integer id from file-name table (see section 2.4) 
representing the source-code file of this debug data. 

LINE_NUM An integer representing the source-code line number 
from the file referenced above. 

ADDR_OFFSET An integer containing the base address of the debug 
data relative to the load address of the containing 
image. Thus, the actual starting address of the data will 
be the load address of the image plus this offset. 

SIZE An integer containing the size of the data in bytes, 
starting from the ADDR_OFFSET. 

NUM_INSTRS An integer containing the number of instructions 
covered by this debug data, starting with and including 
the one at the starting address. 

Example: 

[ [ "FILE_NAME_ID", "LINE_NUM", "ADDR_OFFSET", 

    "SIZE", "NUM_INSTRS" ], 

  [ 8, 25, "0x7a8", 4, 1 ], 

  [ 8, 26, "0x7ac", 5, 1 ], 

  [ 9, 9, "0x7bb", 4, 1 ], 
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  [ 9, 10, "0x7bf", 1, 1 ], 

  [ 10, 11, "0x970", 43, 10 ], 

  [ 10, 12, "0x99b", 10, 2 ] 

] 

2.13 Basic blocks 

All basic blocks for a given image is stored in this table, which appears after the BASIC_BLOCKS key 

in the image data object above. A basic block has only one entry point and one exit point. Basic 

blocks are defined dynamically, so they may vary from run-to-run of the same workload, depending 

on which edges in the CFG were traversed. This variance may include not only which basic blocks are 

included, but also the beginning and ending addresses of each. 

Source-data table: 

Table heading Value 

NODE_ID Integer id (see section 1.2.3). This id must be unique 
across the entire process, not just within the image. 
Also, it must not be one of the special node ids. 

ADDR_OFFSET An integer containing the address of the first instruction 
in the basic block relative to the load address of the 
containing image. Thus, the actual starting address of 
the block will be the load address of the image plus this 
offset. 

SIZE An integer containing the size of the block in bytes, 
starting from the ADDR_OFFSET. 

NUM_INSTRS An integer containing the number of instructions in this 
block, starting with and including the one at the starting 
address. 

LAST_INSTR_OFFSET An integer containing the address of the last instruction 
in the basic block relative to the address of the first 
instruction. Thus, the actual address of the last 
instruction will be the load address of the image plus the 
offset of the first instruction plus this offset. Note that 
the address of the last instruction is not the same as the 
address of the first instruction plus the size minus one 
unless the last instruction is exactly one byte long. 

COUNT An integer containing the total number of times this 
block was executed across all threads. This is optional 
and actually redundant because it can be calculated 
from the edge counts. If per-thread counts are desired, 
the edge-count data must be used. The number of 
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instructions executed in the block is NUM_INSTRS 
multiplied by COUNT. 

Example: 

[ [ "NODE_ID", "ADDR_OFFSET", "SIZE", "NUM_INSTRS", 

    "LAST_INSTR_OFFSET", "COUNT" ], 

  [ 4, "0x7a8", 9, 2, 4, 1 ], 

  [ 5, "0x7b1", 5, 1, 0, 9 ], 

  [ 6, "0x7b6", 5, 1, 0, 8 ], 

  [ 7, "0x7bb", 5, 2, 4, 1 ], 

  [ 8, "0x7c0", 12, 2, 6, 11 ] 

] 

2.14 Routines 

All routine information for a given image is stored in this table, which appears after the ROUTINES 

key in the image data object above. Routines must follow the following rules: 

o A routine can have only one entry. (A routine can have multiple exit points.) 

o Each node in the routine must be reachable from the entry node. This means that each node 

must be the immediate successor (target of an edge) of the entry node or another node in 

the routine. Inter-routine edges (calls, returns, context changes, etc.) are not allowed in this 

traversal, but bypass edges are. However, each node that is reachable from the entry node is 

not required to be in the same routine; this allows for dividing routines when there are 

multiple entry nodes, jumps between routines, and other non-standard control flow. 

o Each node in a routine must be in the containing image. 

o Every node of an image (except start and end) will appear in exactly one routine. 

Thus, the addresses and sizes routines will not necessarily correspond to those in the symbol table. 

Also, routines may be entered with edges other than calls and may be exited with edges other than 

returns. 

Routine table: 

Table heading Value 

ENTRY_NODE_ID Basic-block id (integer id from the basic-block table in 
the same image, see section 2.13) indicating the basic-
block at the entry to this routine (usually a call target). 

EXIT_NODE_IDS Array of basic-block ids indicating one or more basic 
blocks which have edges that leave this routine (these 
blocks usually end with return instructions). 

NODES Table of all basic-block ids in this routine and their 
immediate dominators, including the entry and exit 
nodes (see below). 
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LOOPS Loop table (see sections 2.15and 1.2.2). This can be 
omitted if there are no loops. 

Node table: 

Table heading Value 

NODE_ID Basic-block id in this routine. 

IDOM_NODE_ID Basic-block id of the immediate dominator of this node. 
This information is used in various graph algorithms. 

Example: 

[ [ "ENTRY_NODE_ID", "EXIT_NODE_IDS", "NODES", "LOOPS" ], 

  [ 4, [ 4, 5, 6, 7 ], 

    [ [ "NODE_ID", "IDOM_NODE_ID" ], 

      [ 4, 4 ], 

      [ 5, 4 ], 

      [ 6, 5 ], 

      [ 7, 6 ] ] ], 

  [ 63, [ 65, 67 ], 

    [ [ "NODE_ID", "IDOM_NODE_ID" ], 

      [ 66, 65 ], 

      [ 67, 63 ], 

      [ 63, 63 ], 

      [ 64, 63 ], 

      [ 65, 64 ] ], […] 

] 

2.15 Loops 

All loop information for a given routine is stored in this table, which appears under the LOOPS 

column in the routine table above. Loops are defined with a standard graph-traversal algorithm. The 

following constraints apply: 

o A loop can have only one head node. 

o A loop can have multiple back-edges. 

o All nodes in a loop are in the containing routine. 

Loop table: 

Table heading Value 

LOOP_HEAD_NODE_ID Basic-block id (integer id from the basic-block table in 
the same image, see section 2.13) indicating the basic-
block at the head of this loop. 

LOOP_BACK_EDGE_SOURCE_NODE_IDS Basic-block ids of the node(s) that contain branches 
back to the loop head. 
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LOOP_NODE_IDS Array of basic-block ids of all the nodes in the loop, 
including the head nodes, back-edge source nodes and 
inner loop nodes, if any. 

PARENT_LOOP_HEAD_NODE_ID Basic-block id of the head node of the loop containing 
this loop if this is not an outer loop in this routine. This 
can be omitted or entered as zero (0) if it is an outer 
loop in this routine. 

Example (loops 145 and 137 are inner loops with respect to loop 133): 

[ [ "LOOP_HEAD_NODE_ID", "LOOP_BACK_EDGE_SOURCE_NODE_IDS",     

    "LOOP_NODE_IDS", "PARENT_LOOP_HEAD_NODE_ID" ], 

  [ 133, [ 139, 147 ], 

    [ 133, 134, 135, 136, 137, 138, 139, 145, 146, 147 ] ], 

  [ 145, [ 145 ], [ 145 ], 133 ], 

  [ 137, [ 138 ], [ 137, 138 ], 133 ] 

] 

2.16 Edges 

All edge information for a given process is stored in this table, which appears after the EDGES tag in 

the process object above. Edges are placed outside the image data because edges often go between 

different images. 

Loop table: 

Table heading Value 

EDGE_ID Integer id (see section 1.2.3). 

SOURCE_NODE_ID Special node id or basic-block id of the tail of this edge 
(where the control flow is coming from). 

TARGET_NODE_ID Special node id or basic-block id of the head of this edge 
(where the control flow is going to). 

EDGE_TYPE_ID Edge-type integer id (see section 2.5). 

COUNT_PER_THREAD Array of integers: each integer is an execution count for 
this edge for one thread, starting with thread zero. 

Example (this process had 6 threads): 

[ [ "EDGE_ID", "SOURCE_NODE_ID", "TARGET_NODE_ID",  

    "EDGE_TYPE_ID", "COUNT_PER_THREAD" ], 

  [ 4810, 1683, 3002, 16, [ 0, 0, 1, 1, 1, 0 ] ], 

  [ 3460, 1597, 1598, 18, [ 1, 0, 0, 0, 0, 0 ] ], 

  [  953, 1597, 1599, 13, [ 7, 0, 0, 0, 0, 0 ] ] 

] 
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Notes: 

 Bypass-type edges may exist without their corresponding call and return edges. This will be 

the case when the called code is not included in the CFG. This will always be the case for 

EXCLUDED_CODE_BYPASS. In the case where there are no corresponding call and return 

edges, the counts of the bypass edges should be set to indicate the number of times the call 

was taken. 

 More typically, bypass-type edges exist with their corresponding call and return edges. This is 

the normal case where the call and return are in the CFG, and the bypass edges are added to 

indicate intra-routine control flow. In this case, the counts of the bypass edges should be 

zero. 

 It is also possible to have a subset of a given call to be counted and the remainder to be 

counted in its bypass, but this is uncommon. 

3 DCFG-trace contents 
The DCFG format above contains total counts for all edges in the graph, but it does not indicate 

sufficient information required to reconstruct the order in which edges, basic-blocks, routines, loops, 

etc. are traversed. The purpose of the DCFG-trace format described in this section is to provide a 

specification to efficiently and effectively encode the sequence of edge-ids traversed during the 

execution. Given the sequence of edge-ids and the corresponding DCFG, the sequence of basic-

blocks, etc. can be reconstructed. 

For the DCFG stream described in section 2, the order of entries in objects and columns and rows in 

tables was not specified, and parsers should not expect or rely on any particular order. However, the 

DCFG-trace is designed to be read by “streaming” parsers that make one pass from beginning to end 

and do not keep all the contents in memory. For that reason, the order of contents in certain objects 

and tables are specified. These will be noted in their respective sections in paragraphs labeled 

“Ordering.” 

3.1 Top-level structure 

The top-level DCFG-trace value is an object (sequence of key-value pairs). 

The major sections of the DCFG-trace stream are tagged in the top-level object. They are listed briefly 

below and are expanded in the remainder of this document: 

 Format version. 

 The following data on each process: 

o Process ID. 

o Trace data for each thread. 

Example top-level object: 

{ "MAJOR_VERSION" : 1, 

  "MINOR_VERSION" : 0, 

  "PROCESSES" : […] 

} 
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Ordering: for the top-level object, all these entries must appear in this order. 

3.2 Version 

Identical format to that of the DCFG format (see section 2.3). A DCFG stream paired with a given 

DCFG-trace stream will usually be the same version, but it is not required. 

3.3 Processes 

All processes are stored in this top-level tag. 

Top-level tag  Value 

PROCESSES Process table (see below and section 1.2.2). 

Process table: 

Table heading Value 

PROCESS_ID Integer corresponding to the actual process id (“PID”) 
assigned by the operating system. This should 
correspond to a PID in the matching DCFG, if there is 
one. 

STRING_DICTIONARY A JSON object containing string-substitution values (see 
below) for this process. 

TRANSITION_TABLE Edge-id transition table (see below and section 1.2.2) for 
this process. 

THREAD_DATA A table containing more per-thread data (see section 
3.4). 

Example: 

"PROCESSES" : 

  [ [ "PROCESS_ID", "STRING_DICTIONARY",  

      "TRANSITION_TABLE", "THREAD_DATA" ], 

    [ 22814, {…}, […], […] ], 

    [ 958, {…}, […], […] ] 

  ] 

Ordering: the columns must appear in this order. The processes (rows) can appear in any order. 

3.4 String dictionary 

This dictionary is used to save space by providing a look-up table for repeated edge-id sequence sub-

strings that appear in one or more following processes and threads.  
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The dictionary is a JSON object where the keys are case-sensitive strings consisting of the characters 

in the set {‘A’…’Z’, ‘a’…’z’, ‘0’…’9’, ‘+’, ‘-’}. The values are any legal edge-id 

sequences (see section 3.7.1). 

Example: 

{ “a”: “bks2hD7kB+KDk87(6*AB)Aw3ABD9”, 

  “b”: “KkDk123(42*(25*a))45690D<a>7Fjdkpm” 

} 

3.5 Transition table 

This table defines how to reconstruct a sequence of edge-ids from a bit string. It is modeled after a 

standard state-transition table (see http://en.wikipedia.org/wiki/State_transition_table).  

Transition table: 

Table heading Value 

CURRENT_EDGE_ID Integer corresponding to the ID of a given starting edge 
(see section 2.16) . 

TRANSITION_CODE A string containing a sequence of zero or more bits, 
written with the characters ‘0’ and ‘1’. The maximum 
number of bits is 32. 

NEXT_EDGE_IDS A JSON array containing one or more edge-id(s) that 
follow EDGE_ID. 

Example: 

[ [ "CURRENT_EDGE_ID", "TRANSITION_CODE", "NEXT_EDGE_IDS" ], 

  [ 123, "0", [ 124 ] ], 

  [ 123, "1", [ 125 ] ], 

  [ 124, "",  [ 456 ] ], 

  [ 125, "0", [ 543 ] ], 

  [ 125, "10", [ 542, 549 ] ], 

  [ 125, "11", [ 540, 541 ] ], 

 … 

] 

Ordering: the columns must appear in this order. The data (rows) can appear in any order. 

The table is used to determine the sequence of edges using a sequence of binary digits in this 

manner: For any given CURRENT_EDGE_ID, the set of corresponding TRANSITION_CODEs indicate 

the possible edges that can follow it. The minimum number of bits are read from the binary 

sequence (described later) to unambiguously determine which NEXT_EDGE_IDS follows the 

CURRENT_EDGE_ID. The last edge in NEXT_EDGE_IDS becomes the CURRENT_EDGE_ID for the 

subsequent table look-up. This is repeated until the desired number of edge-ids is discovered. 

This format does not prescribe the scheme used to create the encoding. It only requires that each 

CURRENT _EDGE_ID + TRANSITION_CODE pair is unique. A pair is considered unique if a CURRENT 

http://en.wikipedia.org/wiki/State_transition_table
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_EDGE_ID and its TRANSITION_CODE expressed as a 32-bit integer padded on the right with zeros 

appears only once in the table. 

Not specifying the encoding scheme allows the implementation of the writing software to trade off 

encoding time and complexity with encoding efficiency (compression ratio). Simple and fast but 

inefficient schemes might use fixed-length bit strings and single-value edge-id sequences. More 

complex and efficient schemes might use variable-length bit strings created with Huffman encoding 

and similar algorithm and variable-length edge-id sequences such that common sequences are 

specified with fewer bits. 

Example decoding using the above example table:  

Example 1: Starting at edge-id 123, with binary sequence: “110”, find the next three edge-ids. First, we 

need one bit to distinguish between the two transitions from edge-id 123. The first bit is “1”, so we 

consume that and find that the next edge-id is 125. There are three possible transitions from edge-id 

125, but the lengths of the binary encodings are not the same: one has one bit and two have two bits. 

This variable-length is typical of Huffman encoding and similar algorithms. If the next bit were “0”, it 

would be a valid complete encoding. However, the next bit is “1”, which is not a valid complete 

encoding, so we read the next bit, which is “0”, forming the valid encoding “10”. Therefore, the next 

two edge-ids are 542 and then 549. So, the entire sequence in this example is 123, 125, 542, 549 

(including the starting one). 

Example 2: Starting at edge-id 123, with binary sequence: “0”, find the next two edge-ids. First, we 

need one bit to distinguish between the two transitions from edge-id 123. The first (and only) bit is 

“0”, so we consume that and find that the next edge-id is 124. There is only one transition from edge-

id 124, so it can be encoded with zero bits. The next edge-id must be 456. So, the entire sequence in 

this example is 123, 124, 456 (including the starting one). 

3.6 Thread data 

Data for some or all threads of a process are stored in this table. It is not required that a DCFG-trace 

contains data on all processes or all threads of a given process. For example, a trace for a 6-thread 

process could contain data for threads 0 and 2 only. 

Thread-data table: 

Table heading  Value 

THREAD_ID The thread id corresponding to the following edge trace. 
This is not the thread-id (TID) assigned by the operating 
system—this is an index of threads corresponding to the 
entries in the INSTR_COUNT_PER_THREAD array in the 
process data section of the DCFG data, starting with 
index zero (0). 

TRACE_DATA A table containing the trace data (see section 3.7). 

Example: 
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[ ["THREAD_ID", "TRACE_DATA" ], 

  [ 0, […] ], 

  [ 2, […] ], 

] 

Ordering: the columns must appear in this order. The threads (rows) can appear in any order. 

3.7 Trace data 

The sequence of edges for the corresponding thread are stored in this table. The rows of the table 

are temporal chunks of data of arbitrary length. Benefits of this format: 

o A tool may “fast-forward” to a desired chunk based on instruction counts without having to 

fully decode preceding sequences.  

o A multi-threaded tool may process more than one thread or chunk in parallel. 

o A sequence of edges is sufficient to enable reconstruction of the sequence of nodes, routine 

calls, etc.  

o Because the number of instructions is given for each node in the DCFG, instruction-counts 

relative to the beginning of the process can be calculated at any point in a sequence. 

Trace-data table: 

Table heading  Value 

PRECEDING_INSTR_COUNT The instruction count before the first node in a chunk is 
executed, counted from the beginning of the process 
only on the thread corresponding to the corresponding 
THREAD_ID from above. The first one will typically be 

zero (0), but a trace can contain one or more subsets of 
the overall execution. Chunks must listed be in 
execution order, but they are not required to be 
contiguous. 

INSTR_COUNT The number of instructions executed in this chunk. This 
is defined as the sum of instructions in the source nodes 
of all edges, so it does not include the instructions in the 
target node of the last edge (this avoids double-
counting instruction in the nodes that join pairs of 
chunks). 

EDGE_COUNT The number of edge-ids in the chunk, including one for 
the FIRST_EDGE_ID and the rest encoded in the 
EDGE_ID_SEQUENCE. 

FIRST_EDGE_ID The first edge-id in the chunk (if EDGE_COUNT is zero, 
this value is ignored). 

EDGE_ID_SEQUENCE A string containing a sequence of EDGE_COUNT-1 edge-
ids following FIRST_EDGE_ID. This is a bit string encoded 
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in modified Base64 as described below (unlike the 
sequence in the TRANSITION_TABLE with the same 
name, the last edge-id encoded in this sequence is not 
the FIRST_EDGE_ID in the next one); see section 3.7.1. 

Example: 

[ ["PRECEDING_INSTR_COUNT", "INSTR_COUNT", "EDGE_COUNT", 

   "FIRST_EDGE_ID", "EDGE_ID_SEQUENCE" ], 

  [ 0, 1003408, 237298, 1, 

    "bks2hD7kB+KDk87(9*AB)Aw3ABD9-03n38KDFi…" ], 

  [ 1003408, 1483936, 386610, 842, 

    "Ks83bn<a>BjS920+KkDk123(2*(6*a))45690D7Fjdkpm…" ] 

] 

Ordering: the columns must appear in this order. The rows must appear in order of execution. 

3.7.1 Converting an edge-id sequence string into a bit string 

The edge-id sequence is a bit (binary digit) string. It is encoded into a sequence of ASCII characters 

using modified Base64 coding. In addition, sub-sequences of characters may be further compressed 

using two schemes: one for consecutive repeating sub-sequences, and one that does not require the 

sub-sequences to be consecutive. Process characters from left to right. Each character determines 

which of the following processing is done: 

3.7.1.1 A modified Base64 character 

If the character is in the set {‘A’…’Z’, ‘a’…’z’, ‘0’…’9’, ‘+’, ‘-’}, it is a modified 

Base64 character as described here: http://en.wikipedia.org/wiki/Base64. We use the modified 

encoding with ‘-’ instead of ‘/’ in the last position to avoid any problem with JSON libraries that 

expect the slash character (solidus) to be escaped in strings. In this encoding, each character 

encodes 6 bits: the values 0b000000 through 0b111111. These 64 values are mapped to the 

characters in the above set in the given order; ‘A’ encodes 0b000000, ‘B’ encodes 0b000001, etc. 

(Base64 encoding is 75% efficient compared to raw binary because 8 bits are used to represent 6 bits 

of information.) 

When the number of edge-ids indicated by EDGE_COUNT has been decoded, discard any trailing 

unused bits from the last ASCII character, if any. 

Example: The ASCII string “C+” encodes the twelve bits 0b000010111110. If only eleven bits were 

needed, the final zero bit would be discarded. 

3.7.1.2 A consecutive repeating sub-sequence 

If the character is a ‘(’, there must be one or more immediately following character(s) in the set 

{‘0’…’9’} followed by the character ‘*’. Read the digits and interpret them as a base-10 value, M. 

Read and discard the ‘*’. Next read characters until a matching ‘)’ is reached; these characters make 

up the sub-sequence. Parentheses can be nested, so a counter (or recursion, etc.) must be used to 

ensure the proper characters are read. Substitute the original string, including ‘(’ and ‘)’, with M 

copies of the sub-sequence. Restart processing from the beginning of the substituted value. 

Examples: 

http://en.wikipedia.org/wiki/Base64
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The ASCII string “A(4*BC)D” becomes “ABCBCBCBCD”.  

The ASCII string “123(2*(6*a)b)456” becomes “123aaaaaabaaaaaab456”. 

Following these substitutions, the remaining Base64 characters would be decoded into bits. 

3.7.1.3 A sequence-dictionary reference 

If the character is a ‘<’, read all characters following it until a ‘>’ is reached. The characters between 

‘<’ and ‘>’ form a key and should appear in the STRING_DICTIONARY described in section 3.4. If the 

key does not appear, this is an error. Substitute the original string, including ‘<’ and ‘>’, with the value 

from the table corresponding to the key. Restart processing from the beginning of the substituted 

value. Thus, values from the table can be any legal edge-id sequence string, including nested 

references to other sequence-dictionary entries. Of course, circular references are not allowed. It is 

also possible for consecutive repeating sub-sequences to contain sequence-dictionary references. 

Examples: The STRING_DICTIONARY contains the following entries: 

{ “a”: “bks2hD7kB+KDk87(6*AB)Aw3ABD9”, 

  “b”: “KkDk123(42*(25*a))45690D<a>7Fjdkpm” 

} 

The ASCII string “A<a>B” becomes “Abks2hD7kB+KDk87(6*AB)Aw3ABD9B”.  

The ASCII string “(2*A<a>B)” becomes “A<a>BA<a>B” after consecutive repeating sub-sequence 

substation and then 

“Abks2hD7kB+KDk87(6*AB)Aw3ABD9BAbks2hD7kB+KDk87(6*AB)Aw3ABD9B” after the 

two sequence-dictionary substitutions. (Equivalently, the substitution of “<a>” could be done first, 

and then the remaining repeating sub-sequence could be expanded.) 

The ASCII string “A<b>B” becomes “AKkDk123(42*(25*a))45690D<a>7FjdkpmB” after the 

first-level substitution and then 

“AKkDk123(42*(25*a))45690Dbks2hD7kB+KDk87(6*AB)Aw3ABD97FjdkpmB” after the 

nested one.  

Following these substitutions, the consecutive repeating sub-sequences would be expanded, and 

then the remaining Base64 characters would be decoded into bits.  

3.7.2 Decoding a sequence of edges 

Once an edge-id sequence string is converted to a bit string as described in section 3.7.1, the entire 

sequence of edge-ids for this chunk may be constructed. The first edge-id in the chunk is given in the 

FIRST_EDGE_ID field. The sequence of edge-ids following this is determined by using the 

TRANSITION_TABLE described in section 3.4. The data is processed from left to right until 

EDGE_COUNT edge-ids have been decoded, including the FIRST_EDGE_ID. 

(END OF DOCUMENT) 


